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Abstract

We investigate the calculation of A* bounds for
sequence and tree models which are the explicit
intersection of a set of simpler models or can be
bounded by such an intersection. We provide a
natural viewpoint which unifies various instances
of factored A* models for trees and sequences,
some previously known and others novel, includ-
ing multiple sequence alignment, weighted finite-
state transducer composition, and lexicalized sta-
tistical parsing. The specific case of parsing with
a product of syntactic (PCFG) and semantic (lexi-
cal dependency) components is then considered in
detail. We show that this factorization gives a mod-
ular lexicalized parser which is simpler than com-
parably accurate non-factored models, and which
allows efficient exact inference with large treebank
grammars.
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sum of the scores of the arcs along the path, and that lower
scores are bettér. The particular assumption in this paper

is that the arc scoring function has a special factored form.
Specifically, there exists a set of projectiofasg, . ..y} of
nodes (and therefore also arcs and graphs) such that for any
arc(x, y), its scores is given by:

k
oc(X.y) =D . om (1 (X), mi(Y))

Whenever the scoring function factors in this way, we have an
immediate recipe for factored A* bound, which we denote

by h. Specifically, we can bound the shortest patiGifrom

a noden to the goalg by the sum of the shortest paths inside
each projectionr (G). Formally, ifag(n, g) is the length of

a shortest path fromto g in a graphG, then:

k
ac(n.g) = hn.g) =)

i=1
This follows immediately from the optimality of the project

paths and the structure of the scoring function. These pro-
jections need not be mutually compatible, and therefore the
bound may not be tight. Broadly speaking, the greater the de-

i () (i (N), 7 (9))

sgreeto which each projection prefers similar paths, theebet

: . . . ! )
The primary challenge when using A* search s tofind heuri the bound will be, and the more efficient our search will be.

tic functions that simultaneously are admissible, closado
tual completion costs, and efficient to calculate. In this pa .
per, we describe a family of tree and sequence models is Projection Models for Sequences
which path costs are either defined as or bounded by a confror intuition, we first consider applications to sequencemo
bination of simpler component models, each of which scoregls before extending to the more complex case of tree models.
some projection of the full structure. In such models, we can ] ]
exploit the decoupled behavior over each projection to give3-1 Example: Multiple Sequence Alignment
sharp heuristics for the combined space. While we focug\ situation which fits this framework perfectly is the align-
on models of trees and sequences within NLP applicationsnent of multiple genome sequences in bioinformatics, where
the approach can be applied more generally (and already hasich multiple sequence alignments (MSAs) are standardly
been, in the case of biological sequence models). All the corevaluated by sum-of-pairs scorifigurbinet al., 1994. MSA
crete cases we consider here involve search over spacds whig a generalization of the longest-common-subsequente pro
are equivalent to dynamic programming lattices, thoug thi lem, in which one is given sequences like those in figure 1a,
detail, too, is somewhat peripheral to the basic ideas. and asked to produce pointwise alignments. Alignments of
d sequencestsy, ...} consist oft vertical timeslices which

2 Projection Models for Graphs specify, for each sequence, either a successive elemeng of t

. . sequence or a gap (-), and are such that if the gaps are re-
The core idea of factored A* search can apply to any graphyoyed, the rows contain the original sequences. The score

search. Assume th&@ = (N, A) is a very large graph, with ¢ 5 timeslice is the sum of the scores of each of the pairs
a single source nodeand a single goal nodg and that we

wish to use A* search to efficiently find a best path freto Iwe will talk about minimum sums, but other semirings work as
g. For concreteness, assume also that the score of a path is thell, specifically maximum products.
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Figure 2: Effectiveness of the factored A* bound for the riplst

in that slice (where each pair of symbols is assigned somalignment of several sequence sets. Numbers in the dataisetsn
experimental goodness value). give the number of sequencss being .allgned. the the log:scal

The well-known dynamic program for calculating opti- Loéigéﬁﬂﬁfﬁ g)rzhglggt-izetzi:r\cﬁearch is over a trillion timesren
mal multiple alignments involves a lattice of position nede
n = [i1, ...ik] which specify an index along each sequenceshows that factored A* bounds can be highly effective.
[Durbin et al., 1999. When each node is visited, each of  One potential worry with A* search is that the cost of com-
its 2 — 1 successorp’ (where each position is either in- puting heuristics can be substantial. In this case,Qii?)
cremented or not) are relaxed with the best score thrqugh paijrwise alignments could be calculated very efficiently; i
combined with the score of the timeslice that the change fror‘@ur experiments this pre-search phase took up much less than

p to p’ represents. These nodes form a lattice of §Z8%), 19 of the total time.
wheren is the maximum length of the sequences. This be- o
comes extremely inefficient d&sgrows. 3.2 Example: Finite State Transducers

The specific following idea has been used befdteetla  We briefly describe another potential application of fagtbr
and Imai, 199%is the earliest reference we could find) and A* search for sequence models: the intersection of weighted
it has been worked on recentlj¥pshizumiet al., 2004 in- finite-state transducers (WFST5)WFSTs are probabilistic
ter alia), though perhaps it has not received the attention imappings between sequences in one alphabet to sequences
deserves in the bioinformatics literature. We presentiehe in another, for example a transducer might map an input of
because (1) it is a good example that can be cast into ougritten text to an output of that text’s pronunciation as a
framework and (2) it gives a good starting intuition for the phoneme sequence. Intersections of WFSTs have been ap-
novel cases below. Since the score of an arc (timeslice) is plied to various tasks in speech and N[Mohri, 1997,
sum of pairwise goodness scores, we can definefarggitof  such as text-to-speech, and, most famously in the NLP lit-
projections, one onto each pair of indiaés ip). Undermap,  erature, modeling morphophonolold$aplan and Kay, 1994;
anodefiy, ..., ik] will project to itsa andb indices,[ia,ip].  Albro, 2004. In these cases, each transducer constrains some
It is easy to see that the optimal path in this projection$s$ ju small portion of the overall output sequence. The case of find
the optimal 2-way alignment of the portions of sequergtes ing the most likely intersected output of a set of WFSWs}
a_mdb which are to the right of the indiceg andip, respec-  for an input sequencg = owy, involves the following:
tively. We can therefore bound the total completion cost of ; ., eachMl;, create the projection; of the full output

th.ek-way a”g.”me”t fromm onward with t_he sum of_th_e pair- spaceO onto M;’s output space (note that this can be
wise completion costs of the 2-way alignments inside each the identity projectioan

projection. g ) )
Figure 2 shows some experimental speed-ups given by this2- FOr each index alongw and each output i (O),
method, compared to exhaustive search. We took several COMPpute optimal completion costs(j, 7i (O)) for M.
protein sequence groups froicClure et al., 1994, and, 3. Useh(i, O) = }; @i (j, i (O)) as an A* heuristic.
for each set, we aligned as large a subset of each group asyyhile transduction intersection fits cleanly into the fac-
was possible using uniform-cost search with 1GB of mem+gred framework, the primary utility of transducers lies in
ory. The left four runs show the cost (in nodes visited) Ofthejr composition, not their intersectidMohri, 1997. In
aligning these subsets with both uniform-cost search and Afhjs case, transducers are chained together, with the butpu
search. In the right four runs, we added another sequencg one serving as the input to the next. In this case, it is
to the subsets and solved the multiple alignment using only,orth switching from talk of summed distances to talk of
the A* search. The A* savings are substantial, usually promytiplied probabilities. Say we have two transducévisx
viding several orders of magnitude over uniform-cost S®arc \yhich gives a distributiorP(X|1) from sequences to se-
and many orders of magnitude over the exhaustive dynamigyencesx, and Mxo, which givesP(O|X) from X to O.
programming approachThis verifies previous findings,and —__ "
SWFSTs are equivalent to HMMs which have emission weights
2Note that the DP was never run —itwould not have fitin memoryassigned to their transitions (not states) and which mag bpsilon
— but it is easy to calculate the size of the lattice. Thereadse  transitions.
subtleties in running the uniform-cost search since theesob a 4For simplicity, we assume all history relevant to any trarmsat
timeslice can be negative (we add in a worst possible negsatiore).  is encoded into the state spade
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Figure 3: Three kinds of parse structures.

goal symbol, along with the region of the input it spans. The goal
node is then a parse of the root symbol over the entire in-
/\ put. (Hyper)paths embody trees, and the score of a path is
NP VERE @ @ the combination of the scores of the arcs in the tree. One fine

point is that, while a standard path from a sousde a goal
/\ g through a nod@ breaks up into two smaller pathsto n
@ @ andn to g), in the tree case there will be an inside path and
ARTICLE NOUN . . . .
&) an outside path, as shown in the right of figure 5. In general,
then, the completion structures that represent paths gothle

€Y (b) (marked by in the figure) are specified not only by a natle
Figure 4: Two representations of a parse: (a) a tree, (b)laipaghe ~ and goalg, but also by the original souree
edge hypergraph. With this modification, the recipe for the factored A*

bound is now:
We then wish to answer questions about their composed be-
havior. For example, we might want to find the output %G¢(Sn.9) = h(s.n.g) = Zi o (G) (7i (8), 7i (), i (9))
which maximizesP (0|i) according to this model. The com-
mon Viterbi approximation is to settle for the from the
pair (0, x) which maximizesP (o, x|i). This problem would
fit neatly into the factored framework if the (usually false)
conditional independende(o, x|i) = P(0|i)P(x|i)) where
true — in fact it would then be WFST intersection. How-
ever, something close to this does trivially hok€o, x|i) =
P(o|x,i)P(x]i). Given this, we can define another model
R(oli) = max P(0o|x,i). R is not a proper probabilistic
model — it might well assign probability one to every trans-
duction — but its intersection witF(x|i) does upper-bound
the actual composed model. Hence these two projections pr
vide a factored bound for a non-factored model, with thepra
tical utility of this bound depending on how tightlR(o|i)
typically boundsP(0|x, i).

Next, we present a concrete projection model for scoring lex
icalized trees, and construct an A* parser using the assatia
factored A* bound.

Generative models for parsing natural language typically
model one of the kinds of structures shown in figure 3. While
word-free syntactic configurations like those embodied by
phrase structure trees (figure 3a) are good at capturing the
broad linear syntax of a languag€harniak, 1995 word-
to-word affinities like those embodied by lexical dependenc
trees (figure 3b) have been shown to be important in resolv-
ing difficult ambiguities[Hindle and Rooth, 1993 Since
Poth kinds of information are relevant to parsing, the trend
Chas been to model lexicalized phrase structure trees like fig

ure 3c.
In our current framework, it is natural to think of a lexi-
o calized tree as a palt = (T, D) of a phrase structure tree
4 Projection Models for Trees T and a dependency tre2. In this view, generative mod-

Search in the case of trees is not over standard directefglS OVer lexicalized trees, of the sort standard in |exaeali

graphs, but over a certain kind of directed hypergraph ir"%{c':G parsindCollins, 1999; Charniak, 2000can be re-

which arcs can have multiple sources (but have a single ta arded as assigning maB¢T, D) to such pairs. In the stan-

get). This is because multiple sub-trees are needed to form3rd approach, one builds a joint model o®(T, D), and,

larger tre€? Figure 4 shows a fragment of such a hypergrapH©f @ given word sequenagu, one searches for the maxi-

for a small parse tree (note that all the lines going to one arMUMm posterior parse:

rowhead representsingle hyperarc). We don't give the full L* = max_—ct.p) P(T. D|w)

definitions of hypergraph search here (B8alloet al., 1993

for details), but the basic idea is that one cannot travemse aSinceP(w) is a constant, one operationally searches instead

arc until all its source nodes have been visited. In the parstor the maximizer ofP(T, D, w).

case, for example, we cannot build a sentence node until we The naive way to do this is a®(n®) dynamic program

build both a noun phrase node and an (adjacent) verb phrageften called a tabular parser or chart parser) that works as

node. The nodes in this graph are identified by a grammadfiollows. The core declarative object is @dge, such as

e=[X,i, j, hl which encapsulates all parses of the span

5These directed B-hypergraphs model what has been explsred avhich are labeled with grammar symb¥land are headed by

AND/OR trees in Al. word wh (i < h < j). Edges correspond to the nodes in the



Extract the PCFG projection and set up the PCFG parser. g
Use the PCFG parser to find projection scarigsea(S, €, 9) for each edge.
Extract the dependency projection and set up the depepgeanser.

Use the dependency parser to find projection saases(s, €, g) for each edge.
Combine PCFG and dependency projections into the fullahod

Form the factored A* estimate(s, e, 9) = apcred(S, €, 9) + apep(S, €, 9)

Use the combined parser, wthiks, e, g) as an A* estimate ok(s, e, g)

NooakrwhpE

S
Figure 5: The top-level algorithm (left) and an illustratiof how paths decompose in the parsing hypergraph (right).

parsing hypergraph. Two edggX, i, j, h] and[Y, j, k, h'] length increases). The A* estimates were so effective that
can be combined whenever they are contiguous (the righgven with our object-heavy Java implementation of the com-
one starts where the left one ends) and the grammar pebined parser, total parse time was dominated by the initial,
mits the combination. For example, if there were a rewritearray-based PCFG phase (see figure%b).

Z[wn] — X[wn]Y[wh], those two edges would combine to

form [Z,i, k, h], and that combination would be scored by 4.1 Specific Projection Models for Parsing

some joint model over the word and symbol configuration: tet our factored parser, we built several component mod-
P(XY,h|Z,h).® These weighted combinations are the arc P y P

\ Sels, which were intended to show the modularity of the ap-
in the hypergraph. proach. We merely sketch the individual models here; more
A natural projection of a lexicalized trdeis onto its com-  details can be found ifKlein and Manning, 2008 ForP(T),
ponentsT and D (though, to our knowledge, this projec- we built successively more accurate PCFGs. The simplest,
tion has not been exploited previously). In this case, thecraBAsic, used the raw treebank grammar, with nontermi-
score for the combination above would BeXY, h'|Z, h) = nals and rewrites taken directly from the training trE@bar-
P(XY|Z)P(N[h). niak, 1998. In this model, nodes rewrite atomically, in a
This kind of projected model offers two primary benefits. top-down manner, in only the ways observed in the training
First, since we are building component models over mucldata. For improved models &f(T), tree nodes’ labels were
simpler projections, they can be designed, engineered, arahnotated with various contextual markersptFG-PA, each
tested modularly, and easily. To underscore this point, weode was marked with its parent’s label afiohnson, 1998
built three PCFG models &#(T) and two lexical dependency Itis now well known that such annotation improves the accu-
models of P(T). In section 4.2, we discuss the accuracy ofracy of PCFG parsing by weakening the PCFG independence
these models, both alone and in combination. assumptions. For example, the NP in figure 3a would actu-
Second, our A* heuristic will be loose only to the degree@lly have been labeled NP"S. Since the counts were not frag-

that the two models prefer different structures. Therefine ~ Mented by head word or head tag, we were able to directly
combined search only needs to figure out how to optimallyise the MLE parameters, without smoothifig. The best
reconcile these differences, not explore the entire space &’CFG model,PCFGLING, involved selective parent split-
legal structures. Figure 6 shows the amount of work donding, order-2 rule markovization (similar fCollins, 1999;

in the uniform-cost case versus the A* case. Clearly, theCharniak, 2000), and linguistically-derived feature splits.
uniform-cost version of the parser is dramatically less ef—py ———— ] )
ficient; by sentence length 15 it extracts over 800K edges Note that the uniform-cost parser does enough work to exploi

while even at length 40 the A* heuristics are so effectivé tha "€ shared structure of the dynamic program, and therefdge e
only around 2K edges are extracted. At length 10, the avounts appear to grow polynomially. However, the A* parseed]
) ' little work that there is minimal structure-sharing.dtige counts

. . S
erage number is less than 80, and the fraction of edges nﬂﬁerefore appear to groexponentially over these sentence lengths,

suppressed is better than 1/10K (and it improves as sentengg jike a non-dynamic-programming parser's would. Withan
longer sentences, or a less efficient estimate, the polyaidmhav-
ior would reappear.

9There are other ways of speeding up lexicalized parsing-with
out sacrificing search optimality. Eisner and Sésner and Satta,
sighing mass to pairs which are incompatible, either bexausy 1999_pr0pose acleve@_(n4) moqificatic_)n which separates this pro-
do not generate the same terminal string or do not embody asmp ¢€SS into two4steps by |n_trod_uc_|ng an |_ntermed|ate objgowever{
ible bracketings. Therefore, the total mass assigned td sauc- ~ €Ven theO(n") formulation is impractical for exhaustive parsing
tures will be less than one. We could imagine fixing this byoren ~ With broad-coverage, lexicalized treebank grammars. Bsereial
malizing. In particular, this situation fits into the prodiad-experts ~ ré@son is that the non-terminal set is just too large. We rdjle-
framework[Hinton, 2000, with one semantic expert and one syn- ment a version of this parser using theitn%) formulation, but, be-
tactic expert that must agree on a single structure. Howsimge  cause of the effectiveness of the A* estimate, it was onlyginatly
we are presently only interested in finding most-likely parsno faster; as figure 6b shows, the combined search time is veaif.sm
global renormalization constants need to be calculatednyncase, 10This is not to say that smoothing would not improve perfor-
the question of mass deficiency impacts only parameter astim mance, but to underscore how the factored model encourgsss |
not inference, which is our focus here. sparsity problems than a joint model.

SMost models, including ours, will also mention distance; we
ignore this for now.
7As a probabilistic model, this formulation is mass deficjest
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PCFG Model | Precision Recall §F ExactMatch H
PCFG-BASIC| 75.3 702 727 11.0 4.2 Parsing Performance
PCFG-PA | 784 769 777 18.5 In this section, we describe our various projection modeds a
PCFG-LING | 83.7 821 829 25.7

test their empirical performance. There are two ways to mea-
sure the accuracy of the parses produced by our system. First
Dependency Mode] Dependency Acq the phrase structure of the PCFG and the phrase structure pro
DEP BASIC o3 jection of the combination parsers can be compared to the
(b) Dependency Models Alone trgebank parses. The parsing measures standardly used for
, L this task are labeled precision and redallWe also report
Figure 7: Performance of the projection models alone. F1, the harmonic mean of these two quantities. Second, for
the dependency and combination parsers, we can score the

(a) PCFG Models Alone

PCFG Model Dependency ModélPrec  Rec I Exact| DepAcc dependency structures. A dependency struciuie viewed
PCFGBASIC DEP-BASIC 80.1 782 791 167 872 as a set of head-dependent pdfrsd), with an extra depen-
PCFGBASIC DEP-VAL 825 815 820 17.7) 892 dency(root, x) wherer oot is a special symbol and is the
PCFG-PA DEP-BASIC 82.1 822 821 237 880 head of th Althouah the d d del
PCFGPA DEP-VAL 840 850 845 248 897 ead of the sentence. Although the dependency model gen-
PCFGLING DEP-BASIC 85.4 848 851 304 903 erates part-of-speech tags as well, these are ignored for de
PCFGLING DEP-VAL 866 868 867 321 910 pendency accuracy. Punctuation is not scored. Since all de-

Figure 8: The combined model, with various projection medel  pendency structures overnon-punctuation terminals con-
tain n dependenciesn(— 1 plus the root dependency), we
report only accuracy, which is identical to both precisiod a
recall. It should be stressed that the “correct” dependency
structures, though generally correct, are generated fham t
PCFG structures by linguistically motivated, but automati
and only heuristic rules.

Figure 7 shows the relevant scores for the various PCFG
and dependency parsers alone. The valence model increases

! 0, 0

right, which then generat&eptember-NN to the right, which éhaecﬁe&i@gﬁgﬁ/ﬁ”&ﬂﬂg&:ﬁfggf‘ %Sr%?eé%ﬁe? E;[wOeSF?é)F/(O;' and

generates> on both sides. We then return io-IN, gener- L
: models, from 72.7% to 77.7% to 82.9%. The combination
ate o to the right, and so on. The dependency models re; arser’s performance is given in figure 8. As each individ-

quired smoothing, as the word-word dependency data is Ve'&)al model is improved, the combination I5 also improved,

sparse. In our basic modedeP-BASIC, we generate a de- . X ; !

o S 9 g rom 79.1% with the pair of basic models to 86.7% with the
pendent conditioned on the heaq and d|re_ct|on, requiring goir of top l;nodels. Tphe dependency accuracy alsoo goes up:
Lnodkel ;fp(g)d[ td#"?{ .tht’ d”)l' ;I'rg?hwas est|mbe_1|ted_ USIIIII‘t]g 4 from 87.2% to 91.0%. Note, however, that even the pair of ba-

ack-off model which interpolated the sparse bilexicalteu ;. 0 hasacombined dependénc ;
; . X . . y accuracy higher than
with the denser but less specific counts given by I9N0MNG e enhanced dependency model alone, and the top three have

the head word or by first generating the dependent tag ang?mbined Ir better than the best PCFG model alone. For the

then generating the dependent word given only the depende{b e . . .
: ; . 1g-o (0P pair, figure 6c illustrates the relative Bf the combina-
tag. The interpolation parameters were estimated on held Otion parser to the PCFG component alone, showing the unsur-

data. The resulting model can thus capture classical bilexi_ . . P
cal selection such%s the affinity betwepgyrollsandfell as  Prising trend that the addition of the dependency modelselp

well as_monolexmal preferences, such as the tendenayf for 11A tree T is viewed as a set of constituert€T). Constituents
to modify nou_n_s. In the enhan(.:ed dependency mm in the correct and the proposed tree must have the sameestdrt,
VAL, we condition not only on direction, but also on distanceanq jabel to be considered identical. For this measure,etieal
and valence. Note that this is (intentionally) very simt@ar  heads of nodes are irrelevant. The actual measures useetailed
the generative model ¢€ollins, 1999 in broad structure, but  in [Magerman, 1995 and involve minor normalizations like the re-
substantially less complex. moval of punctuation in the comparison.

Models of P(D) were lexical dependency models, which
deal with part-of-speech tagged words: pajus t). First
the headwn, th) of a constituent is generated, then succes
sive right dependent@ug, tg) until a STOP toker> is gen-
erated, then successive left dependents unid generated
again. For example, in figure 3, first we chods#-vBD
as the head of the sentence. Then, we genénate to the



more for longer sentences, which, on average, contain mom@odels we outlined, and on any large space which can nat-
attachment ambiguity. The top; lof 86.7% is greater than urally be viewed as a composition of (possibly overlapping)
that of the lexicalized parsers presentefNtagerman, 1995; projections.

Collins, 1996, but less than that of the newer, more com-
plex, parsers presented [€harniak, 2000; Collins, 1999
which reach as high as 90.1%.FHowever, it is worth point-
ing out that these higher-accuracy parsers incorporate/ ma
finely wrought enhancements which could presumably be apreferences
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