
Factored A* Search for Models over Sequences and Trees

Dan Klein
Department of Computer Science

Stanford University
Stanford, CA 94305-9040

klein@cs.stanford.edu

Christopher D. Manning
Department of Computer Science

Stanford University
Stanford, CA 94305-9040
manning@cs.stanford.edu

Abstract

We investigate the calculation of A* bounds for
sequence and tree models which are the explicit
intersection of a set of simpler models or can be
bounded by such an intersection. We provide a
natural viewpoint which unifies various instances
of factored A* models for trees and sequences,
some previously known and others novel, includ-
ing multiple sequence alignment, weighted finite-
state transducer composition, and lexicalized sta-
tistical parsing. The specific case of parsing with
a product of syntactic (PCFG) and semantic (lexi-
cal dependency) components is then considered in
detail. We show that this factorization gives a mod-
ular lexicalized parser which is simpler than com-
parably accurate non-factored models, and which
allows efficient exact inference with large treebank
grammars.

1 Introduction
The primary challenge when using A* search is to find heuris-
tic functions that simultaneously are admissible, close toac-
tual completion costs, and efficient to calculate. In this pa-
per, we describe a family of tree and sequence models in
which path costs are either defined as or bounded by a com-
bination of simpler component models, each of which scores
some projection of the full structure. In such models, we can
exploit the decoupled behavior over each projection to give
sharp heuristics for the combined space. While we focus
on models of trees and sequences within NLP applications,
the approach can be applied more generally (and already has
been, in the case of biological sequence models). All the con-
crete cases we consider here involve search over spaces which
are equivalent to dynamic programming lattices, though this
detail, too, is somewhat peripheral to the basic ideas.

2 Projection Models for Graphs
The core idea of factored A* search can apply to any graph
search. Assume thatG = (N, A) is a very large graph, with
a single source nodes and a single goal nodeg, and that we
wish to use A* search to efficiently find a best path froms to
g. For concreteness, assume also that the score of a path is the

sum of the scores of the arcs along the path, and that lower
scores are better.1 The particular assumption in this paper
is that the arc scoring function has a special factored form.
Specifically, there exists a set of projections{π1, . . . πk} of
nodes (and therefore also arcs and graphs) such that for any
arc(x, y), its scoreσ is given by:

σG(x, y) =
∑k

i=1
σπi (πi (x), πi (y))

Whenever the scoring function factors in this way, we have an
immediate recipe for afactored A* bound, which we denote
by h. Specifically, we can bound the shortest path inG from
a noden to the goalg by the sum of the shortest paths inside
each projectionπ(G). Formally, if αG (n, g) is the length of
a shortest path fromn to g in a graphG, then:

αG (n, g) ≥ h(n, g) =
∑k

i=1
απi (G)(πi (n), πi (g))

This follows immediately from the optimality of the projected
paths and the structure of the scoring function. These pro-
jections need not be mutually compatible, and therefore the
bound may not be tight. Broadly speaking, the greater the de-
gree to which each projection prefers similar paths, the better
the bound will be, and the more efficient our search will be.

3 Projection Models for Sequences
For intuition, we first consider applications to sequence mod-
els before extending to the more complex case of tree models.

3.1 Example: Multiple Sequence Alignment
A situation which fits this framework perfectly is the align-
ment of multiple genome sequences in bioinformatics, where
such multiple sequence alignments (MSAs) are standardly
evaluated by sum-of-pairs scoring[Durbinet al., 1998]. MSA
is a generalization of the longest-common-subsequenceprob-
lem, in which one is given sequences like those in figure 1a,
and asked to produce pointwise alignments. Alignments of
d sequences{s1, . . . sd } consist oft vertical timeslices which
specify, for each sequence, either a successive element of the
sequence or a gap (–), and are such that if the gaps are re-
moved, the rows contain the original sequences. The score
of a timeslice is the sum of the scores of each of the pairs

1We will talk about minimum sums, but other semirings work as
well, specifically maximum products.



w r n c
w a y c
w y c

w r n c
w a y c
w – y c

(a) (b)

σ123(ra–) = σ12(ra) + σ13(r–) + σ23(a–)

(c)
Figure 1: An example of a multiple sequence alignment. (a) The
original sequences. (b) A multiple alignment with one timeslice dis-
tinguished. (c) The sum-of-pairs scoring function for thattimeslice.

in that slice (where each pair of symbols is assigned some
experimental goodness value).

The well-known dynamic program for calculating opti-
mal multiple alignments involves a lattice of position nodes
n = [i1, . . . ik] which specify an index along each sequence
[Durbin et al., 1998]. When each node is visited, each of
its 2k − 1 successorsp′ (where each position is either in-
cremented or not) are relaxed with the best score throughp
combined with the score of the timeslice that the change from
p to p′ represents. These nodes form a lattice of sizeO(nk),
wheren is the maximum length of the sequences. This be-
comes extremely inefficient ask grows.

The specific following idea has been used before ([Ikeda
and Imai, 1994] is the earliest reference we could find) and
it has been worked on recently ([Yoshizumiet al., 2000] in-
ter alia), though perhaps it has not received the attention it
deserves in the bioinformatics literature. We present it here
because (1) it is a good example that can be cast into our
framework and (2) it gives a good starting intuition for the
novel cases below. Since the score of an arc (timeslice) is a
sum of pairwise goodness scores, we can define a set{πab} of
projections, one onto each pair of indices(ia, ib). Underπab,
a node[i1, . . . , ik] will project to itsa andb indices,[ia, ib].
It is easy to see that the optimal path in this projection is just
the optimal 2-way alignment of the portions of sequencesa
andb which are to the right of the indicesia andib, respec-
tively. We can therefore bound the total completion cost of
thek-way alignment fromn onward with the sum of the pair-
wise completion costs of the 2-way alignments inside each
projection.

Figure 2 shows some experimental speed-ups given by this
method, compared to exhaustive search. We took several
protein sequence groups from[McClure et al., 1994], and,
for each set, we aligned as large a subset of each group as
was possible using uniform-cost search with 1GB of mem-
ory. The left four runs show the cost (in nodes visited) of
aligning these subsets with both uniform-cost search and A*
search. In the right four runs, we added another sequence
to the subsets and solved the multiple alignment using only
the A* search. The A* savings are substantial, usually pro-
viding several orders of magnitude over uniform-cost search,
and many orders of magnitude over the exhaustive dynamic
programming approach.2 This verifies previous findings, and

2Note that the DP was never run – it would not have fit in memory
– but it is easy to calculate the size of the lattice. There arealso
subtleties in running the uniform-cost search since the score of a
timeslice can be negative (we add in a worst possible negative score).

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

1.0E+14

1.0E+16

1.0E+18

pro-4 rh-4 kin-4 glob-7 pro-5 rh-5 kin-5 glob-8

N
od

es
 V

is
ite

d

A*

Uniform-Cost

Dynamic Program

Figure 2: Effectiveness of the factored A* bound for the multiple
alignment of several sequence sets. Numbers in the data set names
give the number of sequences being aligned. Note the log scale:
for example, on glob-7 the A* search is over a trillion times more
efficient than exhaustive search.

shows that factored A* bounds can be highly effective.
One potential worry with A* search is that the cost of com-

puting heuristics can be substantial. In this case, theO(k2)

pairwise alignments could be calculated very efficiently; in
our experiments this pre-search phase took up much less than
1% of the total time.

3.2 Example: Finite State Transducers
We briefly describe another potential application of factored
A* search for sequence models: the intersection of weighted
finite-state transducers (WFSTs).3 WFSTs are probabilistic
mappings between sequences in one alphabet to sequences
in another, for example a transducer might map an input of
written text to an output of that text’s pronunciation as a
phoneme sequence. Intersections of WFSTs have been ap-
plied to various tasks in speech and NLP[Mohri, 1997],
such as text-to-speech, and, most famously in the NLP lit-
erature, modeling morphophonology[Kaplan and Kay, 1994;
Albro, 2000]. In these cases, each transducer constrains some
small portion of the overall output sequence. The case of find-
ing the most likely intersected output of a set of WFSTs{Mi }

for an input sequencew = 0wn involves the following:

1. For eachMi , create the projectionπi of the full output
spaceO onto Mi ’s output space (note that this can be
the identity projection).4

2. For each indexj along w and each output inπi (O),
compute optimal completion costsαi ( j, πi(O)) for Mi .

3. Useh(i, O) =
∑

i αi ( j, πi(O)) as an A* heuristic.

While transduction intersection fits cleanly into the fac-
tored framework, the primary utility of transducers lies in
their composition, not their intersection[Mohri, 1997]. In
this case, transducers are chained together, with the output
of one serving as the input to the next. In this case, it is
worth switching from talk of summed distances to talk of
multiplied probabilities. Say we have two transducers,MI X
which gives a distributionP(X |I ) from sequencesI to se-
quencesX , and MX O , which givesP(O|X) from X to O.

3WFSTs are equivalent to HMMs which have emission weights
assigned to their transitions (not states) and which may have epsilon
transitions.

4For simplicity, we assume all history relevant to any transducer
is encoded into the state spaceO.



S

NP

NN

Factory

NNS

payrolls

VP

VBD

fell

PP

IN

in

NN

September

fell-VBD

payrolls-NNS

Factory-NN

Factory

payrolls

fell in-IN

in September-NN

September

S, fell-VBD

NP, payrolls-NNS

Factory-NN

Factory

payrolls-NNS

payrolls

VP, fell-VBD

fell-VBD

fell

PP, in-IN

in-IN

in

September-NN

September

(a) PCFG Structure (b) Dependency Structure (c) Combined Lexicalized Structure
Figure 3: Three kinds of parse structures.

ARTICLE NOUN

NP VERB

goal

ARTICLE
[0,1]

NOUN
[1,2]

VERB
[2,3]

s

NP
[0,2]

goal
[0,3]

(a) (b)
Figure 4: Two representations of a parse: (a) a tree, (b) a path in the
edge hypergraph.

We then wish to answer questions about their composed be-
havior. For example, we might want to find the outputo
which maximizesP(o|i) according to this model. The com-
mon Viterbi approximation is to settle for theo from the
pair (o, x) which maximizesP(o, x |i). This problem would
fit neatly into the factored framework if the (usually false)
conditional independenceP(o, x |i) = P(o|i)P(x |i)) where
true – in fact it would then be WFST intersection. How-
ever, something close to this does trivially hold:P(o, x |i) =

P(o|x, i)P(x |i). Given this, we can define another model
R(o|i) = maxx P(o|x, i). R is not a proper probabilistic
model – it might well assign probability one to every trans-
duction – but its intersection withP(x |i) does upper-bound
the actual composed model. Hence these two projections pro-
vide a factored bound for a non-factored model, with the prac-
tical utility of this bound depending on how tightlyR(o|i)
typically boundsP(o|x, i).

4 Projection Models for Trees
Search in the case of trees is not over standard directed
graphs, but over a certain kind of directed hypergraph in
which arcs can have multiple sources (but have a single tar-
get). This is because multiple sub-trees are needed to form a
larger tree.5 Figure 4 shows a fragment of such a hypergraph
for a small parse tree (note that all the lines going to one ar-
rowhead represent asingle hyperarc). We don’t give the full
definitions of hypergraph search here (see[Galloet al., 1993]
for details), but the basic idea is that one cannot traverse an
arc until all its source nodes have been visited. In the parse
case, for example, we cannot build a sentence node until we
build both a noun phrase node and an (adjacent) verb phrase
node. The nodes in this graph are identified by a grammar

5These directed B-hypergraphs model what has been explored as
AND/OR trees in AI.

symbol, along with the region of the input it spans. The goal
node is then a parse of the root symbol over the entire in-
put. (Hyper)paths embody trees, and the score of a path is
the combination of the scores of the arcs in the tree. One fine
point is that, while a standard path from a sources to a goal
g through a noden breaks up into two smaller paths (s to n
andn to g), in the tree case there will be an inside path and
an outside path, as shown in the right of figure 5. In general,
then, the completion structures that represent paths to thegoal
(marked byα in the figure) are specified not only by a noden
and goalg, but also by the original sources.

With this modification, the recipe for the factored A*
bound is now:

αG(s, n, g) ≥ h(s, n, g) =
∑

i
απi (G)(πi (s), πi (n), πi (g))

Next, we present a concrete projection model for scoring lex-
icalized trees, and construct an A* parser using the associated
factored A* bound.

Generative models for parsing natural language typically
model one of the kinds of structures shown in figure 3. While
word-free syntactic configurations like those embodied by
phrase structure trees (figure 3a) are good at capturing the
broad linear syntax of a language[Charniak, 1996], word-
to-word affinities like those embodied by lexical dependency
trees (figure 3b) have been shown to be important in resolv-
ing difficult ambiguities[Hindle and Rooth, 1993]. Since
both kinds of information are relevant to parsing, the trend
has been to model lexicalized phrase structure trees like fig-
ure 3c.

In our current framework, it is natural to think of a lexi-
calized tree as a pairL = (T, D) of a phrase structure tree
T and a dependency treeD. In this view, generative mod-
els over lexicalized trees, of the sort standard in lexicalized
PCFG parsing[Collins, 1999; Charniak, 2000], can be re-
garded as assigning massP(T, D) to such pairs. In the stan-
dard approach, one builds a joint model overP(T, D), and,
for a given word sequence0wn , one searches for the maxi-
mum posterior parse:

L∗ = maxL=(T ,D) P(T, D|w)

SinceP(w) is a constant, one operationally searches instead
for the maximizer ofP(T, D, w).

The naive way to do this is anO(n5) dynamic program
(often called a tabular parser or chart parser) that works as
follows. The core declarative object is anedge, such as
e = [X, i, j, h] which encapsulates all parses of the spaniw j
which are labeled with grammar symbolX and are headed by
word wh (i ≤ h < j ). Edges correspond to the nodes in the



1. Extract the PCFG projection and set up the PCFG parser.
2. Use the PCFG parser to find projection scoresαPCFG(s, e, g) for each edge.
3. Extract the dependency projection and set up the dependency parser.
4. Use the dependency parser to find projection scoresαDEP(s, e, g) for each edge.
5. Combine PCFG and dependency projections into the full model.
6. Form the factored A* estimateh(s, e, g) = αPCFG(s, e, g) + αDEP(s, e, g)

7. Use the combined parser, withh(s, e, g) as an A* estimate ofα(s, e, g)

words

g

s

e

β

α

Figure 5: The top-level algorithm (left) and an illustration of how paths decompose in the parsing hypergraph (right).

parsing hypergraph. Two edges[X, i, j, h] and [Y, j, k, h′]

can be combined whenever they are contiguous (the right
one starts where the left one ends) and the grammar per-
mits the combination. For example, if there were a rewrite
Z [wh] → X[wh ]Y [wh′], those two edges would combine to
form [Z , i, k, h], and that combination would be scored by
some joint model over the word and symbol configuration:
P(XY, h′|Z , h).6 These weighted combinations are the arcs
in the hypergraph.

A natural projection of a lexicalized treeL is onto its com-
ponentsT and D (though, to our knowledge, this projec-
tion has not been exploited previously). In this case, the
score for the combination above would beP(XY, h′|Z , h) =

P(XY |Z)P(h′|h).7

This kind of projected model offers two primary benefits.
First, since we are building component models over much
simpler projections, they can be designed, engineered, and
tested modularly, and easily. To underscore this point, we
built three PCFG models ofP(T ) and two lexical dependency
models ofP(T ). In section 4.2, we discuss the accuracy of
these models, both alone and in combination.

Second, our A* heuristic will be loose only to the degree
that the two models prefer different structures. Therefore, the
combined search only needs to figure out how to optimally
reconcile these differences, not explore the entire space of
legal structures. Figure 6 shows the amount of work done
in the uniform-cost case versus the A* case. Clearly, the
uniform-cost version of the parser is dramatically less ef-
ficient; by sentence length 15 it extracts over 800K edges,
while even at length 40 the A* heuristics are so effective that
only around 2K edges are extracted. At length 10, the av-
erage number is less than 80, and the fraction of edges not
suppressed is better than 1/10K (and it improves as sentence

6Most models, including ours, will also mention distance; we
ignore this for now.

7As a probabilistic model, this formulation is mass deficient, as-
signing mass to pairs which are incompatible, either because they
do not generate the same terminal string or do not embody compat-
ible bracketings. Therefore, the total mass assigned to valid struc-
tures will be less than one. We could imagine fixing this by renor-
malizing. In particular, this situation fits into the product-of-experts
framework[Hinton, 2000], with one semantic expert and one syn-
tactic expert that must agree on a single structure. However, since
we are presently only interested in finding most-likely parses, no
global renormalization constants need to be calculated. Inany case,
the question of mass deficiency impacts only parameter estimation,
not inference, which is our focus here.

length increases).8 The A* estimates were so effective that
even with our object-heavy Java implementation of the com-
bined parser, total parse time was dominated by the initial,
array-based PCFG phase (see figure 6b).9

4.1 Specific Projection Models for Parsing
To test our factored parser, we built several component mod-
els, which were intended to show the modularity of the ap-
proach. We merely sketch the individual models here; more
details can be found in[Klein and Manning, 2003]. ForP(T ),
we built successively more accurate PCFGs. The simplest,
PCFG-BASIC, used the raw treebank grammar, with nontermi-
nals and rewrites taken directly from the training trees[Char-
niak, 1996]. In this model, nodes rewrite atomically, in a
top-down manner, in only the ways observed in the training
data. For improved models ofP(T ), tree nodes’ labels were
annotated with various contextual markers. InPCFG-PA, each
node was marked with its parent’s label as in[Johnson, 1998].
It is now well known that such annotation improves the accu-
racy of PCFG parsing by weakening the PCFG independence
assumptions. For example, the NP in figure 3a would actu-
ally have been labeled NPˆS. Since the counts were not frag-
mented by head word or head tag, we were able to directly
use the MLE parameters, without smoothing.10 The best
PCFG model,PCFG-LING, involved selective parent split-
ting, order-2 rule markovization (similar to[Collins, 1999;
Charniak, 2000]), and linguistically-derived feature splits.

8Note that the uniform-cost parser does enough work to exploit
the shared structure of the dynamic program, and therefore edge
counts appear to grow polynomially. However, the A* parser does
so little work that there is minimal structure-sharing. Itsedge counts
therefore appear to growexponentially over these sentence lengths,
just like a non-dynamic-programming parser’s would. With much
longer sentences, or a less efficient estimate, the polynomial behav-
ior would reappear.

9There are other ways of speeding up lexicalized parsing with-
out sacrificing search optimality. Eisner and Satta[Eisner and Satta,
1999] propose a cleverO(n4) modification which separates this pro-
cess into two steps by introducing an intermediate object. However,
even theO(n4) formulation is impractical for exhaustive parsing
with broad-coverage, lexicalized treebank grammars. The essential
reason is that the non-terminal set is just too large. We did imple-
ment a version of this parser using theirO(n4) formulation, but, be-
cause of the effectiveness of the A* estimate, it was only marginally
faster; as figure 6b shows, the combined search time is very small.

10This is not to say that smoothing would not improve perfor-
mance, but to underscore how the factored model encounters less
sparsity problems than a joint model.



1

10

100

1000

10000

100000

1000000

0 10 20 30 40

Length

E
dg

es
 P

ro
ce

ss
ed

Uniform-Cost
A-Star

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

Length

T
im

e 
(s

ec
)

Combined Phase

Dependency Phase

PCFG Phase

0

25

50

75

100

0 10 20 30 40

Length

A
bs

ol
ut

e 
F

1

0.5

1

1.5

R
el

at
iv

e 
F

1

Combination
PCFG
Combination/PCFG

(a) (b) (c)
Figure 6: (a) A* effectiveness measured by edges expanded, (b) time spent on each phase, and (c) relative F1, all as sentence length increases.

PCFG Model Precision Recall F1 Exact Match
PCFG-BASIC 75.3 70.2 72.7 11.0

PCFG-PA 78.4 76.9 77.7 18.5
PCFG-LING 83.7 82.1 82.9 25.7

(a) PCFG Models Alone

Dependency Model Dependency Acc
DEP-BASIC 76.3
DEP-VAL 85.0

(b) Dependency Models Alone

Figure 7: Performance of the projection models alone.

PCFG Model Dependency ModelPrec Rec F1 Exact DepAcc
PCFG-BASIC DEP-BASIC 80.1 78.2 79.1 16.7 87.2
PCFG-BASIC DEP-VAL 82.5 81.5 82.0 17.7 89.2

PCFG-PA DEP-BASIC 82.1 82.2 82.1 23.7 88.0
PCFG-PA DEP-VAL 84.0 85.0 84.5 24.8 89.7

PCFG-LING DEP-BASIC 85.4 84.8 85.1 30.4 90.3
PCFG-LING DEP-VAL 86.6 86.8 86.7 32.1 91.0

Figure 8: The combined model, with various projection models.

Models of P(D) were lexical dependency models, which
deal with part-of-speech tagged words: pairs〈w, t〉. First
the head〈wh , th〉 of a constituent is generated, then succes-
sive right dependents〈wd , td 〉 until a STOP token� is gen-
erated, then successive left dependents until� is generated
again. For example, in figure 3, first we choosefell-VBD
as the head of the sentence. Then, we generatein-IN to the
right, which then generatesSeptember-NN to the right, which
generates� on both sides. We then return toin-IN, gener-
ate � to the right, and so on. The dependency models re-
quired smoothing, as the word-word dependency data is very
sparse. In our basic model,DEP-BASIC, we generate a de-
pendent conditioned on the head and direction, requiring a
model of P(wd , td |wh, th , dir). This was estimated using a
back-off model which interpolated the sparse bilexical counts
with the denser but less specific counts given by ignoring
the head word or by first generating the dependent tag and
then generating the dependent word given only the dependent
tag. The interpolation parameters were estimated on held-out
data. The resulting model can thus capture classical bilexi-
cal selection, such as the affinity betweenpayrolls andfell, as
well as monolexical preferences, such as the tendency forof
to modify nouns. In the enhanced dependency model,DEP-
VAL , we condition not only on direction, but also on distance
and valence. Note that this is (intentionally) very similarto
the generative model of[Collins, 1999] in broad structure, but
substantially less complex.

4.2 Parsing Performance
In this section, we describe our various projection models and
test their empirical performance. There are two ways to mea-
sure the accuracy of the parses produced by our system. First,
the phrase structure of the PCFG and the phrase structure pro-
jection of the combination parsers can be compared to the
treebank parses. The parsing measures standardly used for
this task are labeled precision and recall.11 We also report
F1, the harmonic mean of these two quantities. Second, for
the dependency and combination parsers, we can score the
dependency structures. A dependency structureD is viewed
as a set of head-dependent pairs〈h, d〉, with an extra depen-
dency〈root, x〉 whereroot is a special symbol andx is the
head of the sentence. Although the dependency model gen-
erates part-of-speech tags as well, these are ignored for de-
pendency accuracy. Punctuation is not scored. Since all de-
pendency structures overn non-punctuation terminals con-
tain n dependencies (n − 1 plus the root dependency), we
report only accuracy, which is identical to both precision and
recall. It should be stressed that the “correct” dependency
structures, though generally correct, are generated from the
PCFG structures by linguistically motivated, but automatic,
and only heuristic rules.

Figure 7 shows the relevant scores for the various PCFG
and dependency parsers alone. The valence model increases
the dependency model’s accuracy from 76.3% to 85.0%, and
each successive enhancement improves the F1 of the PCFG
models, from 72.7% to 77.7% to 82.9%. The combination
parser’s performance is given in figure 8. As each individ-
ual model is improved, the combination F1 is also improved,
from 79.1% with the pair of basic models to 86.7% with the
pair of top models. The dependency accuracy also goes up:
from 87.2% to 91.0%. Note, however, that even the pair of ba-
sic models has a combined dependency accuracy higher than
the enhanced dependency model alone, and the top three have
combined F1 better than the best PCFG model alone. For the
top pair, figure 6c illustrates the relative F1 of the combina-
tion parser to the PCFG component alone, showing the unsur-
prising trend that the addition of the dependency model helps

11A tree T is viewed as a set of constituentsc(T ). Constituents
in the correct and the proposed tree must have the same start,end,
and label to be considered identical. For this measure, the lexical
heads of nodes are irrelevant. The actual measures used are detailed
in [Magerman, 1995], and involve minor normalizations like the re-
moval of punctuation in the comparison.



more for longer sentences, which, on average, contain more
attachment ambiguity. The top F1 of 86.7% is greater than
that of the lexicalized parsers presented in[Magerman, 1995;
Collins, 1996], but less than that of the newer, more com-
plex, parsers presented in[Charniak, 2000; Collins, 1999],
which reach as high as 90.1% F1. However, it is worth point-
ing out that these higher-accuracy parsers incorporate many
finely wrought enhancements which could presumably be ap-
plied to benefit our individual models.12

4.3 Factored Bounds for Non-Projection Models
Arbitrary tree models will not be factored projection models.
For example, while our parsing model was expressly designed
so thatP(T, D) = P(T )P(D), to our knowledge no other
model over lexicalized trees with this decomposition has been
proposed. Nonetheless, non-factored models can still have
factored bounds. Given any modelP(A, B), we can imagine
boundsR(A) andR(B) that obey:

∀A, B : P(A, B) < R(A)R(B)

Trivially, R(A) = R(B) = 1 will do. To
get a non-trivial bound, consider a joint (local) model
P(XY, h′|Z , h) of lexicalized tree rewrites. Early lexical-
ized parsing work[Charniak, 1997] used models of ex-
actly this form. We can use the chain rule to write
P(XY, h′|Z , h) = P(XY |Z , h)P(h′|XY, Z , h). Then, we
can form R(XY |Z) = maxh P(XY |Z , h) and R(h′|h) =

maxXY,Z P(h′|XY, Z , h). This technique allows one to use
factored A* search for non-factored models, though one
might reasonably expect such bounds to be much less sharp
for non-factored models than for factored models. A particu-
lar application of this method for future work would be the ex-
act parsing of the models in[Charniak, 1996; Collins, 1999;
Charniak, 2000], as the details of their estimation suggest that
their word dependency and phrase structure aspects would be
approximately factorizable.

5 Conclusion
Not all models will factor, nor will all models which fac-
tor necessarily have tight factored bounds (for example MSA
with many sequences or parsing if the component models do
not prefer similar structures). However, when we can design
factored models or find good factored bounds, the method of
factored A* search has proven very effective. For the MSA
problem, A* methods allow exact alignment of up to 9 pro-
tein sequences (though 5–6 is more typical) of length 100–
300, when even three-way exhaustive alignment can easily
exhaust memory. For the parsing problem, we have presented
here the first optimal lexicalized parser which can exactly
parse sentences of reasonable length using large real-world
Penn Treebank grammars. The projected models can be de-
signed and improved modularly, with improvements to each
model raising the combined accuracy. Finally, we hope that
this framework can be profitably used on the other sequence

12For example, the dependency distance function of[Collins,
1999] registers punctuation and verb counts, and both smooth the
PCFG production probabilities.

models we outlined, and on any large space which can nat-
urally be viewed as a composition of (possibly overlapping)
projections.

Acknowledgements
We would like to thank Lillian Lee, Fernando Pereira, and
Dan Melamed for advice and discussion about this work.

References
[Albro, 2000] Daniel M. Albro. Taking primitive optimality theory

beyond the finite state. InProceedings of the Special Interest
Group in Computational Phonology, 2000.

[Charniak, 1996] Eugene Charniak. Tree-bank grammars. InAAAI
13, pages 1031–1036, 1996.

[Charniak, 1997] Eugene Charniak. Statistical parsing with a
context-free grammar and word statistics. InAAAI 14, pages
598–603, 1997.

[Charniak, 2000] Eugene Charniak. A maximum-entropy-inspired
parser. InNAACL 1, pages 132–139, 2000.

[Collins, 1996] Michael John Collins. A new statistical parser
based on bigram lexical dependencies. InACL 34, pages 184–
191, 1996.

[Collins, 1999] Michael Collins. Head-Driven Statistical Models
for Natural Language Parsing. PhD thesis, Univ. of Pennsylva-
nia, 1999.

[Durbin et al., 1998] R. Durbin, S. Eddy, A. Krogh, and G. Mitchi-
son.Biological Sequence Analysis: Probabilistic Models of Pro-
teins and Nucleic Acids. Cambridge University Press, 1998.

[Eisner and Satta, 1999] Jason Eisner and Giorgio Satta. Efficient
parsing for bilexical context-free grammars and head-automaton
grammars. InACL 37, pages 457–464, 1999.

[Gallo et al., 1993] G. Gallo, G. Longo, S. Pallottino, and Sang
Nguyen. Directed hypergraphs and applications.Discrete Ap-
plied Mathematics, 42:177–201, 1993.

[Hindle and Rooth, 1993] Donald Hindle and Mats Rooth. Struc-
tural ambiguity and lexical relations.Computational Linguistics,
19(1):103–120, 1993.

[Hinton, 2000] Geoffrey E. Hinton. Training products of experts by
minimizing contrastive divergence. Technical Report GCNUTR
2000-004, GCNU, University College London, 2000.

[Ikeda and Imai, 1994] T. Ikeda and T. Imai. Fast A* algorithms for
multiple sequence alignment. InGenome Informatics Workshop
V, pages 90–99, 1994.

[Johnson, 1998] Mark Johnson. PCFG models of linguistic tree
representations.Computational Linguistics, 24:613–632, 1998.

[Kaplan and Kay, 1994] Ron Kaplan and Martin Kay. Regular
model of phonological rule systems.Computational Linguistics,
20:331–378, 1994.

[Klein and Manning, 2003] Dan Klein and Christopher D. Man-
ning. Fast exact inference with a factored model for naturallan-
guage parsing. InNIPS, volume 15. MIT Press, 2003.

[Magerman, 1995] David M. Magerman. Statistical decision-tree
models for parsing. InACL 33, pages 276–283, 1995.

[McClureet al., 1994] M.A McClure, T.K. Vasi, and W.M. Fitch.
Comparative analysis of multiple protein-sequence alignment
methods.Molecular Biology and Evolution, 11:571–592, 1994.

[Mohri, 1997] Mehryar Mohri. Finite-state transducers in language
and speech processing.Computational Linguistics, 23(4):269–
311, 1997.

[Yoshizumiet al., 2000] Takayuki Yoshizumi, Teruhisa Miura, and
Toru Ishida. A* with partial expansion for large branching factor
problems. InAAAI/IAAI, pages 923–929, 2000.


