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Abstract

Language exhibits structure at different scales, ranging from subwords to words,
sentences, paragraphs, and documents. To what extent do deep models capture
information at these scales, and can we force them to better capture structure across
this hierarchy? We approach this question by focusing on individual neurons, ana-
lyzing the behavior of their activations at different timescales. We show that signal
processing provides a natural framework for separating structure across scales,
enabling us to 1) disentangle scale-specific information in existing embeddings
and 2) train models to learn more about particular scales. Concretely, we apply
spectral filters to the activations of a neuron across an input, producing filtered
embeddings that perform well on part of speech tagging (word-level), dialog speech
acts classification (utterance-level), or topic classification (document-level), while
performing poorly on the other tasks. We also present a prism layer for training
models, which uses spectral filters to constrain different neurons to model structure
at different scales. Our proposed BERT + Prism model can better predict masked
tokens using long-range context and produces multiscale representations that per-
form better at utterance- and document-level tasks. Our methods are general and
readily applicable to other domains besides language, such as images, audio, and
video.

1 Introduction

Language exhibits structure at multiple levels, ranging from morphology at the subword level [1],
word meaning at the lexical level [2], coherence and other discourse properties at the clause or
sentence level [3} 14} 5], to topical and narrative structures for entire documents [|6, [7]]. Prior work in
NLP has shown how these kinds of structures can be explicitly modeled by representing individual
levels of structure [8} 9, [10, 111} {12} [13]], multiple levels of structure [14} 15, |16], building hierarchical
models that capture structure at the sentence level [[17, 18] or between sentences [[19,[20], and probing
to discover known linguistic levels of structure [21} 22} 23] [24]].

We propose a new method for uncovering and learning this kind of structure in representations at
every scale, from word meaning to document topics, without drawing on prior linguistic models of
specific structural levels like "sentence" or "clause." To do so, we employ tools from spectral analysis,
widely used in signal processing and other fields [25] to separate and control information at different
timescales. Intuitively, any sequence of values, such as a neuron’s activations across input tokens,
can be represented as a weighted sum of cosine waves with different frequencies. The weight for a
particular frequency indicates the amount of structure in the sequence at that scale: weight on higher
frequencies indicates faster changes in the neuron’s activation from token to token, while weight on
lower frequencies indicates activations that shift more gradually across an input. By removing certain
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Figure 1: The prism layer specializes different neurons for different scales. First, the representa-
tions for an input are computed (left; in this case, the input is of length three). Next, a spectral filter
(a low-, high-, or band-pass) is applied along the activations of each individual neuron (right). This
produces neurons that are only able to represent structure at particular scales. Curved lines illustrate
the scales at which neurons can change over an input.

frequencies, called spectral filtering, we can remove information about variation at particular scales.
See Figure [2|for a visualization.

In this work, we apply spectral filters to the activations of individual neurons in BERT [26]], a popular
deep NLP model. This enables us to separate information in model representations that changes at
different rates across the input—for example, part of speech changes on a word-to-word basis, while
topical changes are much more gradual. Concretely, we contribute:

1. A principled framework based on spectral analysis for describing structure at multiple
scales in deep representations. While we consider applications to NLP models, this is a
general framework that could extend to other models with representations arranged in spatial
or temporal structure. (Section

2. A technique, spectral filtering, for extracting scale-specific information from language
representations. We show how low-pass filters can alter representations to only perform
well on topic classification (document-level), while band-pass and high-pass filters do the
same for dialog acts classification (utterance-level) and part of speech tagging (word-level).
(Section[3))

3. A new model component, the prism layer, which specializes neurons in a model for
particular scales of structure. After training with a prism layer, our model is more sensitive
to long-range interactions between tokens and produces individual representations that
perform comparably or better than BERT’s across tasks at different scales. (Section [))

2 Spectral filtering of contextual word representations

This section provides some background on the spectral analysis tools we use and describes how we
apply them to deep language representations.

2.1 Background: The discrete cosine transform and spectral filters

In order to perform operations in the frequency domain of a sequence, we first need to obtain a
representation of the input in the frequency domain. This is the role of a spectral transform. The
spectral transform we use in this work is the discrete cosine transform (DCTEb [27]], a widespread
tool used in audio coding, texture analysis, image classification, and compression [28| [27]]. The
DCT represents a real-valued sequence of points as a same-length sequence of weights over cosine

*More precisely, this transform is known as the DCT-II
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Figure 2: A visual depiction of spectral filters and their effects in the input and frequency
domain. The input domain shows a sequence of values (e.g., the activation of a neuron across input
tokens). The frequency domain shows the weight on the cosine waves which sum to produce the
curve in the input domain. Low-pass filters only allow low frequencies to pass through, producing
a smoothed input. High-pass filters only allow high frequencies and produce a locally-normalized
input. Band-pass filters (not shown) are compositions of low- and high-pass filters.

functions of different frequencies. Formally, for a real-valued sequence {z(*) ...z =D} its DCT
(the weights for each frequency) is obtained by

N-1
) 1
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n=0

Intuitively, the DCT computes the similarity of a signal and cosine waves of different frequencies by
taking the dot product between them. These dot products constitute the coefficients of the signal in
the frequency domain. The DCT is closely related to the discrete Fourier transform (DFT). We use
the DCT here because it is a real-to-real function (the DFT is complex-to-complex), is widely used in
practice, and can often produce fewer artifacts than the DFT when filtering [27, [29].

The DCT of a sequence enables straightforward manipulation of structure at different scales in a
sequence. For example, one can remove components above some threshold frequency kipresh by
setting fr <— O for all k& > kgpnresh, then applying the inverse DCT (IDCT) to return the signal to the
original domain [30]. This is known as a low-pass filter, and returns a smoothed, same-length version
of the original input, removing shorter-term fluctuations. The inverse operation can be performed to
achieve a high-pass filter, which returns a signal where each term is locally normalized with respect
to its neighbors, neutralizing longer-term trends. Composing these two operations yields a band-pass
filter, as only a band of frequencies is allowed to pass through the filter. See Figure [2]for a visual
depiction

2.2 Applying the DCT to contextual word representations

How do we apply the DCT to deep language representations? A common feature of modern NLP
models is contextual word representations, a sequence of vectors created by processing a sequence of
tokens (e.g., words or subword units). These representations are produced by a wide range of modern
NLP architectures, including Transformer-based [34] models like BERT [26] and GPT-2 [35]], as well
as LSTM-based [36] models such as ELMo [37]].

Assume we are given a sequence of contextual word representations vy, ..., vny—_1. The core tech-
nique we propose is to apply the DCT to a slice of these representations along a single neuron:
vold], ..., vn—1[i]. We refer to the transformed sequence in the frequency domain fy[d], . .., fx—1]]
as the spectrum of the ith neuron. fy[i] is the lowest frequency term, corresponding to the average
value of vg[i],...,vn—_1[i], while fy_1[i] is the highest frequency term. We can then implement
any of the filters from Section [2.1| by zeroing out the appropriate values in the spectrum, and then
applying the IDCT to return the sequence to the original domain. In practice, external libraries make
this quite simple: we show a three-line implementation of a low-pass filter in Figure [3b]

3Fully zeroing out frequencies (a brick wall filter) can produce artifacts after performing the IDCT, motivating
the use of smoother attenuation functions [31}32]], which reduce artifacts in exchange for allowing less-than-full
attenuation of frequencies outside the desired band. However, for simplicity, we use brick wall filters in this
work, leaving study of other filters, as well as other spectral tools like wavelets [33]], for future work.



def low_pass(H, k):

Filter Ex. Scale  Period (toks) DCT index H dct = det(H.T)

HIGH Word 1-2 130-511 H_dct[:, k:]1 =0

MID-HIGH ~Clause 2-8 34-129 return idct(H_dct).T

MID Sentence 8-32 9-33 (b) Spectral filters are simple to

MID-LOW  Paragraph 32-256 2-8 incorporate into existing models.

LOW Document 256-00 0-1 Python-style code for a low-pass

. ] ] ] filter over representations. Input H
(a) The spectral filters we consider in this work, along with is a list of representations for each
their periods, spectral bands (the indices in the DCT), and example input token, while k is the low-pass
linguistic phenomena at that scale. The period of a cosine wave threshold frequency. T is the trans-
for a DCT index is the approximate number of tokens it takes for pose operator. We use a PyTorch
the wave to complete a cycle. library to compute the (I)DCT.
Figure 3

3 The relationship between spectral frequencies and linguistic phenomena

We have seen how to apply spectral filters to the hidden states of deep NLP models. In this section,
we explore how these spectral filters can be used to separate out phenomena at different scales in
contextual word representations.

3.1 Disentangling scale-specific information in representations

Contextual word representations have been shown to not only encode the meaning of tokens in context
[37], but also a wider range of linguistic phenomena such as semantic roles, entity types, constituent
labels, relations between entities, and coreference [38]]. This suggests that these representations
may already be encoding information about multiple scales ranging from the (sub)word itself to its
containing phrase, clause, sentence, paragraph and perhaps the document as a whole. In this work, we
consider whether these phenomena can be separated out at the level of individual neurons by using
spectral filters to tease apart structure at different scales in a neuron’s activations across an input.

To investigate, we observe how the choice of spectral filter affects the ability of a classifier to perform
tasks at different scales using the filtered representations. Each spectral filter is determined by a
corresponding spectral band: the range of frequencies that is used for the low-, high-, or band-
pass. We seek to choose bands corresponding to different scales. However, the scale of a particular
frequency is revealed by its period: the number of tokens it takes to complete a full cycle. For
example, from Equation [T we see that index 8 of the DCT has a frequency of 2 * 8 = 16, and thus for
inputs of size 512 has a period of 512/16 = 32 tokens.

In this work, we divide the frequency spectrum into five bands, chosen reflect the inductive bias that
linguistic units at one scale are composed of multiple units from the scale below (e.g. several words
compose a phrase). Thus, we allocate bands such that for each band, the periods of the frequencies
in the next higher band decay by a fixed amount. This produces five bands (LOW, MID-LOW, MID,
MID-HIGH, and HIGH) with a diverse range of scales, as shown in Table [3al*| See the Appendix for
more details on band allocation and discretization.

3.2 Probing bandpassed representations for linguistic information

We evaluate the content of these filtered representations through probing experiments [39, 40, |41]].
For each dataset below, we encode each training example with a fixed, pretrained BERT-Base cased
model [26]]. This produces a series of 768-dimensional contextual word representations. We then
apply a spectral filter along each dimension and train a softmax classifier to perform a particular task
using each filtered representation. We examine three English-language tasks, involving classification
of word-, utterance-, and document-level phenomena, providing a natural testbed for investigating the
content of these representations:

“We use these five separate bands in part for instructive purposes; however, in practice, one might wish to
smoothly change the endpoints of the spectral band across neurons. One could also specifically choose bands for
a task based on their corresponding periods to include or exclude particular scales of interest.



1. Part of speech tagging (word-level): We use the Penn Treebank dataset [42]. The task is
to predict the part of speech (e.g. PAST TENSE VERB, WH-PRONOUN, CARDINAL NUMBER)
from the given token representation.

2. Dialog speech act classification (utterance-level): We use the Switchboard Dialog Speech
Acts corpus [43] |44] 45]E] The task is to predict the dialog speech act (e.g. APOLOGY,
HEDGE, APPRECIATION) of the utterance containing the given token representation.

3. Topic classification (document-level): We use the 20 Newsgroups dataset [46]. The task
is to predict the topic (newsgroup; e.g. SCI.SPACE, COMP.GRAPHICS, REC.AUTOS) of the
document containing the given token representation.

We train our probing models for a maximum of 30 epochs, using the Adam optimizer [47] with
default parameters. We use early stopping with a patience of one, decaying the learning rate by
a factor of 2 when successive epochs do not produce a decrease in validation loss. To compare
against the masked language modeling (MLM) task, which was the original target taskE] for these
representations [26]], we also train an MLLM probe for three epochs on the WikiText-103 dataset [48]].

As Figure[d]shows, different spectral filters indeed produce representations specialized for the expected
task. The highest probing accuracy for part of speech tagging occurs when extracting the HIGH band,
aligning with the fact that this is a word-level task. However, the highest frequency spectral band
still performs worse than the original representations, suggesting that lower frequency information is
sometimes necessary for this task (e.g. for parts of speech correlated over several tokens, such as
strings of numbers or lists of nouns). By contrast, topic-classification performs best with information
from the LOW band, aligning with the fact that it is a document-level phenomenon. Interestingly, the
accuracy for the LOW band is substantially higher than for the original representations, suggesting
that higher frequency variation present in the original representations may be harmful for that task.
Meanwhile, probing for dialog speech acts, a classification task over utterances, is most successful
at the MID band, with performance comparable to that of the original representations. The probing
results for masked language modeling are most similar to part of speech tagging, underscoring the
degree to which MLM is a local task.

These results demonstrate that spectral filters are effective tools for separating multiscale linguistic
phenomena in contextual word representations.

4 Using spectral filters during training

In the previous section, we saw how spectral filters can be used to isolate information about linguistic
phenomena at different scales in an existing model’s representations. However, this observed structure
arose naturally from BERT’s masked language modeling task, which we saw is a relatively local task.
In this section, we will show how spectral filters can be used during training to produce multiscale
representations with improved performance on mid-scale and global tasks despite being trained with
masked language modeling.

4.1 The prism layer

In BERT, the information for the different tasks discussed above may be distributed across all
neurons, rather than specialized in particular ones. Spectral filters, however, provide a natural
way to force BERT to use different neurons for information about different scales. The resulting
multiscale representations may then be better suited for a broader range of tasks than the original
BERT representations.

To accomplish this, we take a given hidden state in BERT and divide the units evenly into five
sectors[] To each sector, we then apply a different band-pass from Table|3al We call these additional
computations a prism layer, as they separate out the different frequencies in a layer’s representations.
See Figure[I] for an illustration. In our main experiments, we apply one prism layer after the last
BERT layer. See the Appendix for an investigation of placing prism layers after each BERT layer.

SWe use the preprocessing library from https://github.com/cgpotts/swda

®We do not consider the next sentence prediction task (NSP) [26]]. While it was also used for BERT
pretraining, we discard the [CLS] tokens, which are used to predict the NSP label.

"We distribute the 768 (mod 5) = 3 remaining units to the LOW, LOW-MID, and MID bands.
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Figure 4: Different spectral filters extract information useful for tasks at different scales. Prob-
ing accuracy for different tasks and band-passes. A low-pass filter produces representations that
yield highest probing accuracy on topic classification, while high-passed representations have highest
probing accuracy for part of speech tagging. Meanwhile, band-passing the middle frequencies is
most useful for dialog speech act probing. “ORIG” refers to the performance of the original token
representations. Error bars show standard deviations over three probing runs.

We then train our pretrained BERT model with the prism layer on the masked language modeling
task; this is so the model can adjust to the new constraints imposed upon it and learn to allocate
information at particular frequencies to the correct sectors. We use an external PyTorch library for
computing and backpropagating through the DCT and IDCT. ElWe train on the WikiText-103 dataset
[48]] for 50k steps at a batch size of 8 with default parameters for Adam. To allow for fair comparisons
between our model and BERT, we also further train an unmodified pretrained BERT model using this
same data and procedure (see the Appendix for an ablation of this step).

4.2 Results

We now compare the probing performance of the vanilla BERT model with the BERT model trained
with our prism layer, shown in Table[T] The BERT model with the prism layer performs considerably
better than BERT on topic (+18.8%) and dialog speech act (+6.9%) classification while maintaining
high accuracy on part of speech tagging (-1.5%). These results demonstrate that the prism layer
has enabled BERT to produce more general-purpose representations that capture phenomena across
scales.

4.3 Sensitivity to distant tokens

The multiscale representations produced by the prism layer are used by the model to perform the
masked language modeling (MLM) objective. Since these representations contain information at
different scales, this provides an inductive bias for the model to rely on both long-range and short-
range information when performing the MLM task. To show this quantitatively, we consider an
MLM problem where one hundred consecutive tokens in the middle of the input are masked. The
model’s loss on these tokens reflects the model’s ability to rely on distant information to predict
tokens without local context.

We plot the average log probability of the correct token in Figure[3] for both the BERT model with
the prism layer, as well as a BERT model trained on WikiText-103 for the same number of steps. As

$https://github.com/zh217/torch-dct
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Table 1: Training with a prism layer produces multiscale representations that perform compa-
rably or better than BERT across different tasks. Probing accuracy and standard deviation (3
trials) for different tasks on the final-layer BERT and BERT + Prism representations.

Task Model Accuracy (%) S.D. (%)
Topic classification BERT 32.21 0.08
BERT + Prism 51.01 0.14
Dialog speech acts  BERT 47.09 0.33
BERT + Prism 54.02 0.61
Part of speech BERT 95.86 0.02
BERT + Prism 94.41 0.02
c 0 _— —
o |
54 “. | Model
£ | | —— BERT
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Figure 5: Training with a prism layer significantly improves prediction of masked tokens with-
out local context (note the log scale). Average log probability of correct token for different indices
(N=1600). Indices between 200 and 300 are replaced with a [MASK] token in the input, requiring
the model to use long-range context to generate a probability distribution for the missing token. The
higher log probabilities in the masked region for the BERT + Prism model suggest the prism layer
makes the model more sensitive to long-range dependencies. Shaded regions are 95% bootstrap Cls
(generally too small to see without magnification).

expected, no model can precisely guess the missing tokens with perfect accuracy. But we do see a
noticeable difference between the probabilities assigned to the correct token by the BERT models
with and without the prism layer (note the log scale). This indicates that the BERT + Prism model is
a better long range language model, using context to predict distant tokens.

Another interesting phenomenon in the graph is the dips in log probability exhibited by the BERT
+ Prism model adjacent to the redacted text, indicating dependence on (redacted) distant context.
No such dip exists for the original BERT model, indicating that it solves the MLM task in a very
local way. These results suggest that the prism layer is a useful tool for encouraging modeling of
long-range dependencies in Transformer models [49,[36].

5 Related work

Our work connects with several streams of research investigating multiscale structure in natural
language and our models of it. Prior work has studied the extent of this structure at different scales in
linguistic corpora, using tools ranging from random walk models and power spectra [50}51]] to entropy
and mutual information [52]]. To model this structure, researchers have conducted multiresolution
analyses of text corpora by applying diffusion wavelets to term-document corpora 53], multinomial
topic distributions [54]], and term-term cooccurrence graphs [55)]. Concerning deep learning, several
works have considered the challenges of modeling different scales in distributed representations
of words [8} 156] and of capturing long-term dependencies in recurrent neural networks [36} |57]].
Other work conducts analytic studies of models that illuminate their scale-awareness, including the
sensitivity of LSTM language models to relationships at different scales [58]] and the attention patterns



of Transformer models [59]. In conversation with this literature, our work provides a principled
way of understanding multiscale structure in the representations of deep models, illuminating the
linguistic phenomena captured at each of these scales and enabling the construction of scale-specific
representations for downstream purposes.

In concert with these analyses, a large body of work has attempted to leverage the expressive
capability of distributed representations to improve modeling at particular scales. For example,
several works introduce different kinds of architectural modifications to recurrent neural networks
in order to encourage learning hierarchical structure, especially long-term structure, including via
updating hidden states at different intervals [60], multilayered models [61} 162]], incorporating tree
structures [[17] or syntactic parsing [18], introducing residual connections [63], adding auxiliary
losses [49], and discretizing ordinary differential equations [64]. In addition, certain works explicitly
focus on creating high-quality representations at particular scales, including the word-level [8, 9],
sentence-level [[10, 11165} 20]], paragraph-level [[12] and document-level [13]]. Perhaps most similar
to our work is a stream of work incorporating the Fourier basis into recurrent architectures 66, 67].
However, while these works focus on speeding up training or improving gradient flow in RNNs,
our approach is architecture-agnostic, provided the model produces contextual word representations,
and can be used to understand or improve specific scales of interest in the model’s representations.
Another piece of related work is Ordered Neurons [68]], which enforces an update hierarchy in the
latent state of an RNN to capture tree-like structure in an input (e.g., syntax trees). By comparison,
our approach generalizes beyond RNN or autoregressive architectures and can capture both syntactic
structure like part of speech as well as longer-range multiscale phenomena like dialog speech acts
and topic where tree structures may not be as appropriate.

Finally, our work is related to spectral approaches in audio [69, [70], where it is naturally suited as
an input representation, as well as computer vision, where the Fast Fourier Transform [71]] and the
Discrete Cosine Transform [30] have been used to speed up the training of convolutional neural
networks [72], generate filters for scene classification [73]], and compress convolutional models
[74]. Concerning scales, the authors of StyleGAN [75] investigate how different layers in their
model are responsible for phenomena at different scales, such as pose, lighting, face shape, and
finer facial features. Most related to our work is a line of research that improves training by using
spectral filters to replace downsampling operations in convolutional models [[76] as well as improving
optimization speed and generalization by removing low-magnitude [77] or high-frequency [76]
spectral coefficients. We also explore attenuation of different frequency coefficients, but in an NLP
context to improve modeling of long-range dependencies, and further use spectral techniques to
understand, control, and improve modeling at different scales.

6 Conclusion

In this work, we demonstrate how techniques from spectral analysis provide a principled and
effective framework for separating multiscale phenomena in deep language representations. We first
demonstrate how spectral filters can be used to separate information at different scales in BERT
representations. We use this technique to produce scale-disentangled representations that perform
well at either part of speech tagging, dialog acts classification, or topic classification, while performing
poorly on the other two tasks. We also show how to create multiscale representations by training
with a prism layer, which forces different neurons to capture information about different scales. The
representations produced by the resulting model enable comparable or higher performance across
the three tasks than vanilla BERT representations. We also show that training with a prism layer
increases the model’s sensitivity to long-range context, as measured by a masked language modeling
task. These results demonstrate that spectral techniques are a powerful set of tools for uncovering
and modeling multiscale phenomena in deep NLP models.

Our work provides multiple avenues for further study. For interpretability researchers, these tools
could enable better understanding of knowledge and information processing at different scales
in neural models across different tasks, inputs, and layers. For researchers of linguistic change,
this method may enable better tracking of topics over time or facilitate the removal of extraneous
information (e.g., topic) when targeting a linguistic phenomenon at a different scale. Finally, we
also see promise for improving NLP models during training in a broader range of applications and
architectures. More generally, we emphasize that our method is domain agnostic: it needs only a
collection of representations with some kind of geometric (e.g., spatial or temporal) structure—thus,



we are optimistic about the potential for further applications of these techniques on the hidden states
of computer vision, time series, and reinforcement learning models, among others.

Broader Impact

The spectral tools we provide in this paper are applicable to a wide range of neural network models
and possible end uses. While this makes it difficult to speak with confidence about broader impacts
of the research, we briefly discuss a few potential use cases. Scale isolation enables users to remove
information about particular kinds of structure inside existing representations. This could be useful
for interpretability or fairness research, as well as computational social scientists who wish to remove
e.g. topical information from word embeddings. However, scale isolation may also enable tailored
search for particular kinds of information in text or other content, which could enable uses that are
beneficial or harmful depending on the use case and whether consent is obtained by relevant parties.
The prism layer falls under a general trend of producing more capable neural networks. Such a trend
may contribute to increased automation or other changes in labor markets, which may create benefits
and harms that depend on the economic and social policies of relevant governing bodies.
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A Spectral Band Allocation

We have n frequencies we wish to allocate into &k bands such that ), a; = n, where a; denotes the number of
frequencies allocated to band 4.

We begin by allocating each band one frequency, leaving (n — k) frequencies remaining. Next, we choose a
base b (we use b = 4) and generate allocation scores s; = b* which we normalize into fractional allocations
a; = (n —k)b'/ 3", (si). However, allocations must be whole numbers, so we produce conservative allocations
G; = |a: ], and then allocate the remaining frequencies in descending order of a; — a; (i.e. whichever bands
were closest to receiving another frequency) until >, a; = n.

However, we note again that in practice, one might wish to smoothly vary the endpoints of the spectral band
between neurons, rather than choosing only 5 canonical bands. In addition, one could specifically choose bands
for a task based on their corresponding periods to include or exclude particular scales of interest.

B Additional Ablations

We present additional ablations here, with new results displayed in bold. All results are averages of three trials.

B.1 Individual sectors of the BERT + prism model

What information is accessible from individual sectors of the BERT + prism model? For the lowest frequency
sector of the BERT + prism model, topic classification probing accuracy is 45.1%, versus 5.3% for the highest-
frequency sector and 51.0% for the full model. For the highest-frequency sector, POS tagging probing accuracy is
84.1%, versus 16.8 % for the lowest-frequency sector and 94.4% for the full model. This suggests that the HIGH
and LOW frequency bands are largely but not entirely responsible for the BERT + prism model’s performance on
POS tagging and topic classification, respectively.

B.2 Performance of BERT representations without finetuning on WikiText-103

To confirm that the additional pretraining on WikiText-103 does not harm BERT, producing an artificially weak
baseline, we compare probing performance on the original pretrained BERT model. The original model achieves
an accuracy of 94.6 % for POS tagging, 41.8 % for dialog acts, and 28.9% for topic classification, slightly worse
than the better model that was trained longer on WikiText-103 (95.9%, 47.1%, 32.2% respectively).

B.3 Placing prism layers after every BERT layer

Can we obtain better representations by adding a prism layer after each BERT layer instead of just the last? We
find that this model produces worse representations than BERT + prism, achieving 45.2% accuracy on topic
classification (-5.8%), 51.8% on dialog speech acts (-2.2%) and 94.0% on POS tagging (-0.4%). We suspect
this may be because the removal of spectral information deeper in the network reduces the model’s effective
capacity, interfering with its ability to produce useful representations.

C Data and preprocessing

We tokenize all data inputs using a WordPiece tokenizer [[78]] from an external library [79]. For each gold label
(e.g., a part of speech tag, a dialog speech act annotation, or a topic), we then perform our probing experiments
on each representation from the resulting N tokens, weighting the loss and accuracy for each embedding’s
prediction by 1/|N/|.

For dialog speech acts and masked language modeling, which have long inputs, we chunk each input into
segments of at most length 510, then append the two special tokens before feeding them into our models. For part
of speech tagging and topic classification, we discard excess tokens. We use the traditional train/validation/test
splits for all models:

e The 20 Newsgroups dataset has approximately 20k documents, with 60% for training and the remainder
for testing. http://qwone.com/~ jason/20Newsgroups/

e The Switchboard Dialog Speech Acts corpus contains around 1.1k training transcripts and 19 validation
transcripts. https://github.com/cgpotts/swda

e The Penn Treebank has approximately 38.2k examples for training and 5.5k for validation. https:
//catalog.ldc.upenn.edu/LDC99T42

e Wikitext 103 has around 500MB of text for training and 1.1MB for validation. https://blog,
einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
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D Complexity

The DCT can be computed efficiently using the FFT in O(N log N) [80].

E Computational Time and Resources

All experiments were performed on single Titan XP GPUs. Each experiment took approximately one day, while
MLM training with the prism layer took approximately 8 hours. Collecting losses for Figure 5] took on the order
of minutes.
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