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ABSTRACT

Data noising is an effective technique for regularizing neural network models.
While noising is widely adopted in application domains such as vision and speech,
commonly used noising primitives have not been developed for discrete sequence-
level settings such as language modeling. In this paper, we derive a connection
between input noising in neural network language models and smoothing in n-
gram models. Using this connection, we draw upon ideas from smoothing to
develop effective noising schemes. We demonstrate performance gains when ap-
plying the proposed schemes to language modeling and machine translation. Fi-
nally, we provide empirical analysis validating the relationship between noising
and smoothing.

1 INTRODUCTION

Language models are a crucial component in many domains, such as autocompletion, machine trans-
lation, and speech recognition. A key challenge when performing estimation in language modeling
is the data sparsity problem: due to large vocabulary sizes and the exponential number of possi-
ble contexts, the majority of possible sequences are rarely or never observed, even for very short
subsequences.

In other application domains, data augmentation has been key to improving the performance of
neural network models in the face of insufficient data. In computer vision, for example, there exist
well-established primitives for synthesizing additional image data, such as by rescaling or applying
affine distortions to images (LeCun et al., 1998; Krizhevsky et al., 2012). Similarly, in speech
recognition adding a background audio track or applying small shifts along the time dimension has
been shown to yield significant gains, especially in noisy settings (Deng et al., 2000; Hannun et al.,
2014). However, widely-adopted noising primitives have not yet been developed for neural network
language models.

Classic n-gram models of language cope with rare and unseen sequences by using smoothing meth-
ods, such as interpolation or absolute discounting (Chen & Goodman, 1996). Neural network mod-
els, however, have no notion of discrete counts, and instead use distributed representations to combat
the curse of dimensionality (Bengio et al., 2003). Despite the effectiveness of distributed represen-
tations, overfitting due to data sparsity remains an issue. Existing regularization methods, however,
are typically applied to weights or hidden units within the network (Srivastava et al., 2014; Le et al.,
2015) instead of directly considering the input data.

In this work, we consider noising primitives as a form of data augmentation for recurrent neural
network-based language models. By examining the expected pseudocounts from applying the nois-
ing schemes, we draw connections between noising and linear interpolation smoothing. Using this
connection, we then derive noising schemes that are analogues of more advanced smoothing meth-
ods. We demonstrate the effectiveness of these schemes for regularization through experiments on
language modeling and machine translation. Finally, we validate our theoretical claims by examin-
ing the empirical effects of noising.
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2 RELATED WORK

Our work can be viewed as a form of data augmentation, for which to the best of our knowledge there
exists no widely adopted schemes in language modeling with neural networks. Classical regulariza-
tion methods such as L2-regularization are typically applied to the model parameters, while dropout
is applied to activations which can be along the forward as well as the recurrent directions (Zaremba
et al., 2014; Semeniuta et al., 2016; Gal, 2015). Others have introduced methods for recurrent neural
networks encouraging the hidden activations to remain stable in norm, or constraining the recurrent
weight matrix to have eigenvalues close to one (Krueger & Memisevic, 2015; Arjovsky et al., 2015;
Le et al., 2015). These methods, however, all consider weights and hidden units instead of the input
data, and are motivated by the vanishing and exploding gradient problem.

Feature noising has been demonstrated to be effective for structured prediction tasks, and has been
interpreted as an explicit regularizer (Wang et al., 2013). Additionally, Wager et al. (2014) show
that noising can inject appropriate generative assumptions into discriminative models to reduce their
generalization error, but do not consider sequence models (Wager et al., 2016).

The technique of randomly zero-masking input word embeddings for learning sentence represen-
tations has been proposed by Iyyer et al. (2015), Kumar et al. (2015), and Dai & Le (2015), and
adopted by others such as Bowman et al. (2015). However, to the best of our knowledge, no analysis
has been provided besides reasoning that zeroing embeddings may result in a model ensembling
effect similar to that in standard dropout. This analysis is applicable to classification tasks involving
sum-of-embeddings or bag-of-words models, but does not capture sequence-level effects. Bengio
et al. (2015) also make an empirical observation that the method of randomly replacing words with
fixed probability with a draw from the uniform distribution improved performance slightly for an
image captioning task; however, they do not examine why performance improved.

3 METHOD

3.1 PRELIMINARIES

We consider language models where given a sequence of indices X = (x1, x2, · · · , xT ), over the
vocabulary V , we model

p(X) =

T∏
t=1

p(xt|x<t)

In n-gram models, it is not feasible to model the full context x<t for large t due to the exponential
number of possible histories. Recurrent neural network (RNN) language models can (in theory)
model longer dependencies, since they operate over distributed hidden states instead of modeling an
exponential number of discrete counts (Bengio et al., 2003; Mikolov, 2012).

An L-layer recurrent neural network is modeled as h(l)t = fθ(h
(l)
t−1, h

(l−1)
t ), where l denotes the

layer index, h(0) contains the one-hot encoding of X , and in its simplest form fθ applies an affine
transformation followed by a nonlinearity. In this work, we use RNNs with a more complex form of
fθ, namely long short-term memory (LSTM) units (Hochreiter & Schmidhuber, 1997), which have
been shown to ease training and allow RNNs to capture longer dependencies. The output distribution
over the vocabulary V at time t is pθ(xt|x<t) = softmax(gθ(h

(L)
t )), where g : R|h| → R|V | applies

an affine transformation. The RNN is then trained by minimizing over its parameters θ the sequence
cross-entropy loss `(θ) = −∑

t log pθ(xt|x<t), thus maximizing the likelihood pθ(X).

As an extension, we also consider encoder-decoder or sequence-to-sequence (Cho et al., 2014;
Sutskever et al., 2014) models where given an input sequence X and output sequence Y of length
TY , we model

p(Y |X) =

TY∏
t=1

p(yt|X, y<t).

and minimize the loss `(θ) = −∑
t log pθ(yt|X, y<t). This setting can also be seen as conditional

language modeling, and encompasses tasks such as machine translation, where X is a source lan-
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guage sequence and Y a target language sequence, as well as language modeling, where Y is the
given sequence and X is the empty sequence.

3.2 SMOOTHING AND NOISING

Recall that for a given context length l, an n-gram model of order l + 1 is optimal under the log-
likelihood criterion. Hence in the case where an RNN with finite context achieves near the lowest
possible cross-entropy loss, it behaves like an n-gram model.

Like n-gram models, RNNs are trained using maximum likelihood, and can easily overfit (Zaremba
et al., 2014). While generic regularization methods such L2-regularization and dropout are effective,
they do not take advantage of specific properties of sequence modeling. In order to understand
sequence-specific regularization, it is helpful to examine n-gram language models, whose properties
are well-understood.

Smoothing for n-gram models When modeling p(xt|x<t), the maximum likelihood estimate
c(x<t, xt)/c(x<t) based on empirical counts puts zero probability on unseen sequences, and thus
smoothing is crucial for obtaining good estimates. In particular, we consider interpolation, which
performs a weighted average between higher and lower order models. The idea is that when there
are not enough observations of the full sequence, observations of subsequences can help us obtain
better estimates.1 For example, in a bigram model, pinterp(xt|xt−1) = λp(xt|xt−1)+ (1−λ)p(xt),
where 0 ≤ λ ≤ 1.

Noising for RNN models We would like to apply well-understood smoothing methods such as
interpolation to RNNs, which are also trained using maximum likelihood. Unfortunately, RNN
models have no notion of counts, and we cannot directly apply one of the usual smoothing methods.
In this section, we consider two simple noising schemes which we proceed to show correspond to
smoothing methods. Since we can noise the data while training an RNN, we can then incorporate
well-understood generative assumptions that are known to be helpful in the domain. First consider
the following two noising schemes:

• unigram noising For each xi in x<t, with probability γ replace xi with a sample from the
unigram frequency distribution.

• blank noising For each xi in x<t, with probability γ replace xi with a placeholder token “ ”.

While blank noising can be seen as a way to avoid overfitting on specific contexts, we will see that
both schemes are related to smoothing, and that unigram noising provides a path to analogues of
more advanced smoothing methods.

3.3 NOISING AS SMOOTHING

We now consider the maximum likelihood estimate of n-gram probabilities estimated using the
pseudocounts of the noised data. By examining these estimates, we draw a connection between
linear interpolation smoothing and noising.

Unigram noising as interpolation To start, we consider the simplest case of bigram probabilities.
Let c(x) denote the count of a token x in the original data, and let cγ(x)

def
= Ex̃ [c(x̃)] be the expected

count of x under the unigram noising scheme. We then have

pγ(xt|xt−1) =
cγ(xt−1, xt)

cγ(xt−1)

= [(1− γ)c(xt−1, xt) + γ p(xt−1)c(xt)]/c(xt−1)

= (1− γ)p(xt|xt−1) + γ p(xt),

where cγ(x) = c(x) since our proposal distribution q(x) is the unigram distribution, and the last line
follows since c(xt−1)/p(xt−1) = c(xt)/p(xt) is equal to the total number of tokens in the training

1For a thorough review of smoothing methods, we defer to Chen & Goodman (1996).
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set. Thus we see that the noised data has pseudocounts corresponding to interpolation or a mixture
of different order n-gram models with fixed weighting.

More generally, let x̃<t be noised tokens from x̃. We consider the expected prediction under noise

pγ(xt|x<t) = Ex̃<t
[p(xt|x̃<t)]

=
∑
J

π(|J |)︸ ︷︷ ︸
p(|J| swaps)

∑
xK

p(xt|xJ , xK)︸ ︷︷ ︸
p(xt|noised context)

∏
z∈xK

p(z)︸︷︷︸
p(drawing z)

where the mixture coefficients are π(|J |) = (1 − γ)|J|γt−1−|J| with
∑
J π(|J |) = 1. J ⊆

{1, 2, . . . , t − 1} denotes the set of indices whose corresponding tokens are left unchanged, and
K the set of indices that were replaced.

Blank noising as interpolation Next we consider the blank noising scheme and show that it cor-
responds to interpolation as well. This also serves as an alternative explanation for the gains that
other related work have found with the “word-dropout” idea (Kumar et al., 2015; Dai & Le, 2015;
Bowman et al., 2015). As before, we do not noise the token being predicted xt. Let x̃<t denote the
random variable where each of its tokens is replaced by “ ” with probability γ, and let xJ denote
the sequence with indices J unchanged, and the rest replaced by “ ”. To make a prediction, we use
the expected probability over different noisings of the context

pγ(xt|x<t) = Ex̃<t
[p(xt|x̃<t)] =

∑
J

π(|J |)︸ ︷︷ ︸
p(|J| swaps)

p(xt|xJ)︸ ︷︷ ︸
p(xt|noised context)

,

where J ⊆ {1, 2, . . . , t−1}, which is also a mixture of the unnoised probabilities over subsequences
of the current context. For example, in the case of trigrams, we have

pγ(x3|x1, x2) = π(2) p(x3|x1, x2) + π(1) p(x3|x1, ) + π(1) p(x3| , x2) + π(0) p(x3| , )

where the mixture coefficient π(i) = (1− γ)iγ2−i.

3.4 BORROWING TECHNIQUES

With the connection between noising and smoothing in place, we now consider how we can improve
the two components of the noising scheme by considering:

1. Adaptively computing noising probability γ to reflect our confidence about a particular
input subsequence.

2. Selecting a proposal distribution q(x) that is less naive than the unigram distribution by
leveraging higher order n-gram statistics.

Noising Probability Although it simplifies analysis, there is no reason why we should choose
fixed γ; we now consider defining an adaptive γ(x1:t) which depends on the input sequence. Con-
sider the following bigrams:

“and the” “Humpty Dumpty”

The first bigram is one of the most common in English corpora; its probability is hence well esti-
mated and should not be interpolated with lower order distributions. In expectation, however, using
fixed γ0 when noising results in the same lower order interpolation weight πγ0 for common as well
as rare bigrams. Intuitively, we should define γ(x1:t) such that commonly seen bigrams are less
likely to be noised.

The second bigram, “Humpty Dumpty,” is relatively uncommon, as are its constituent unigrams.
However, it forms what Brown et al. (1992) term a “sticky pair”: the unigram “Dumpty” almost
always follows the unigram “Humpty”, and similarly, “Humpty” almost always precedes “Dumpty”.
For pairs with high mutual information, we wish to avoid backing off from the bigram to the unigram
distribution.
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Noised γ(x1:2) q(x) Analogue

x1 γ0 q(“ ”) = 1 interpolation
x1 γ0 unigram interpolation
x1 γ0N1+(x1, •)/c(x1) unigram absolute discounting

x1, x2 γ0N1+(x1, •)/c(x1) q(x) ∝ N1+(•, x) Kneser-Ney

Table 1: Noising schemes Example noising schemes and their bigram smoothing analogues. Here
we consider the bigram probability p(x1, x2) = p(x2|x1)p(x1). Notation: γ(x1:t) denotes the
noising probability for a given input sequence x1:t, q(x) denotes the proposal distribution, and
N1+(x, •) denotes the number of distinct bigrams in the training set where x is the first unigram. In
all but the last case we only noise the context x1 and not the target prediction x2.

Let N1+(x1, •) def
= |{x2 : c(x1, x2) > 0}| be the number of distinct continutions following x1, or

equivalently the number of bigram types beginning with x1 (Chen & Goodman, 1996). From the
above intuitions, we arrive at the absolute discounting noising probability

γAD(x1) = γ0
N1+(x1, •)∑
x2
c(x1, x2)

where for 0 ≤ γ0 ≤ 1 we have 0 ≤ γAD ≤ 1, though in practice we can also clip larger nois-
ing probabilities to 1. Note that this encourages noising of unigrams that precede many possible
other tokens while discouraging noising of common unigrams, since if we ignore the final token,∑
x2
c(x1, x2) = c(x1).

Proposal Distribution While choosing the unigram distribution as the proposal distribution q(x)
preserves unigram frequencies, by borrowing from the smoothing literature we find another distri-
bution performs better. We again begin with two motivating examples:

“San Francisco” “New York”

Both bigrams appear frequently in text corpora. As a direct consequence, the unigrams “Francisco”
and “York” also appear frequently. However, since “Francisco” and “York” typically follow “San”
and “New”, respectively, they should not have high probability in the proposal distribution as they
might if we use unigram frequencies (Chen & Goodman, 1996). Instead, it would be better to
increase the proposal probability of unigrams with diverse histories, or more precisely unigrams that
complete a large number of bigram types. Thus instead of drawing from the unigram distribution,
we consider drawing from

q(x) ∝ N1+(•, x)
Note that we now noise the prediction xt in addition to the context x1:t−1. Combining this new
proposal distribution with the discounted γAD(x1) from the previous section, we obtain the noising
analogue of Kneser-Ney smoothing.

Table 1 summarizes the discussed noising schemes.

3.5 TRAINING AND TESTING

During training, noising is performed per batch and is done online such that each epoch of training
sees a different noised version of the training data. At test time, to match the training objective we
should sample multiple corrupted versions of the test data, then average the predictions (Srivastava
et al., 2014). In practice, however, we find that simply using the maximum likelihood (uncorrupted)
input sequence works well; evaluation runtime remains unchanged.

3.6 EXTENSIONS

The schemes described are for the language model setting. To extend them to the sequence-to-
sequence or encoder-decoder setting, we noise both x<t as well as y<t. While in the decoder we
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Noising scheme Validation Test

Medium models (512 hidden size)

none (dropout only) 84.3 80.4
blank 82.7 78.8
unigram 83.1 80.1
bigram Kneser-Ney 79.9 76.9

Large models (1500 hidden size)

none (dropout only) 81.6 77.5
blank 79.4 75.5
unigram 79.4 76.1
bigram Kneser-Ney 76.2 73.4
Zaremba et al. (2014) 82.2 78.4
Gal (2015) variational dropout (tied weights) 77.3 75.0
Gal (2015) (untied weights, Monte Carlo) — 73.4

Table 2: Single-model perplexity on Penn Treebank with different noising schemes. We also com-
pare to the variational method of Gal (2015), who also train LSTM models with the same hidden
dimension. Note that performing Monte Carlo dropout at test time is significantly more expensive
than our approach, where test time is unchanged.

Noising scheme Validation Test

none 94.3 123.6
blank 85.0 110.7
unigram 85.2 111.3
bigram Kneser-Ney 84.5 110.6

Table 3: Perplexity on Text8 with different noising schemes.

have y<t and yt as analogues to language model context and target prediction, it is unclear whether
noising x<t should be beneficial. Empirically, however, we find this to be the case (Table 4).

4 EXPERIMENTS

4.1 LANGUAGE MODELING

Penn Treebank We train networks for word-level language modeling on the Penn Treebank
dataset, using the standard preprocessed splits with a 10K size vocabulary (Mikolov, 2012). The
PTB dataset contains 929k training tokens, 73k validation tokens, and 82k test tokens. Following
Zaremba et al. (2014), we use minibatches of size 20 and unroll for 35 time steps when performing
backpropagation through time. All models have two hidden layers and use LSTM units. Weights
are initialized uniformly in the range [−0.1, 0.1]. We consider models with hidden sizes of 512 and
1500.

We train using stochastic gradient descent with an initial learning rate of 1.0, clipping the gradient
if its norm exceeds 5.0. When the validation cross entropy does not decrease after a training epoch,
we halve the learning rate. We anneal the learning rate 8 times before stopping training, and pick
the model with the lowest perplexity on the validation set.

For regularization, we apply feed-forward dropout (Pham et al., 2014) in combination with our
noising schemes. We report results in Table 2 for the best setting of the dropout rate (which we
find to match the settings reported in Zaremba et al. (2014)) as well as the best setting of noising
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(a) Penn Treebank corpus.
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Figure 1: Example training and validation curves for an unnoised model and model regularized
using the bigram Kneser-Ney noising scheme.

Scheme Perplexity BLEU

dropout, no noising 8.84 24.6
blank noising 8.28 25.3 (+0.7)
unigram noising 8.15 25.5 (+0.9)
bigram Kneser-Ney 7.92 26.0 (+1.4)

source only 8.74 24.8 (+0.2)
target only 8.14 25.6 (+1.0)

Table 4: Perplexities and BLEU scores for machine translation task. Results for bigram KN noising
on only the source sequence and only the target sequence are given as well.

probability γ0 on the validation set.2 Figure 1 shows the training and validation perplexity curves
for a noised versus an unnoised run.

Our large models match the state-of-the-art regularization method for single model performance
on this task. In particular, we find that picking γAD(x1) and q(x) corresponding to Kneser-Ney
smoothing yields significant gains in validation perplexity, both for the medium and large size mod-
els. Recent work (Merity et al., 2016; Zilly et al., 2016) has also achieved impressive results on this
task by proposing different architectures which are orthogonal to our data augmentation schemes.

Text8 In order to determine whether noising remains effective with a larger dataset, we perform
experiments on the Text8 corpus3. The first 90M characters are used for training, the next 5M for
validation, and the final 5M for testing, resulting in 15.3M training tokens, 848K validation tokens,
and 855K test tokens. We preprocess the data by mapping all words which appear 10 or fewer times
to the unknown token, resulting in a 42K size vocabulary. Other parameter settings are the same
as described in the Penn Treebank experiments, besides that only models with hidden size 512 are
considered, and noising is not combined with feed-forward dropout. Results are given in Table 3.

4.2 MACHINE TRANSLATION

For our machine translation experiments we consider the English-German machine translation track
of IWSLT 20154. The IWSLT 2015 corpus consists of sentence-aligned subtitles of TED and TEDx
talks. The training set contains roughly 190K sentence pairs with 5.4M tokens. Following Luong &
Manning (2015), we use TED tst2012 as a validation set and report BLEU score results (Papineni
et al., 2002) on tst2014. We limit the vocabulary to the top 50K most frequent words for each
language.

2Code will be made available at: http://deeplearning.stanford.edu/noising
3http://mattmahoney.net/dc/text8.zip
4http://workshop2015.iwslt.org/
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Figure 2: Perplexity with noising on Penn Tree-
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Figure 3: Mean KL-divergence over validation
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unnoised models and lower order distributions.
Noised model distributions are closer to the uni-
form and unigram frequency distributions.

We train a two-layer LSTM encoder-decoder network (Sutskever et al., 2014; Cho et al., 2014) with
512 hidden units in each layer. The decoder uses an attention mechanism (Bahdanau et al., 2014)
with the dot alignment function (Luong et al., 2015). The initial learning rate is 1.0 and we start
halving the learning rate when the relative difference in perplexity on the validation set between
two consecutive epochs is less than 1%. We follow training protocols as described in Sutskever
et al. (2014): (a) LSTM parameters and word embeddings are initialized from a uniform distribution
between [−0.1, 0.1], (b) inputs are reversed, (c) batch size is set to 128, (d) gradient clipping is
performed when the norm exceeds a threshold of 5. We set hidden unit dropout rate to 0.2 across all
settings as suggested in Luong et al. (2015). We compare unigram, blank, and bigram Kneser-Ney
noising. Noising rate γ is selected on the validation set.

Results are shown in Table 4. We observe performance gains for both blank noising and unigram
noising, giving roughly +0.7 BLEU score on the test set. The proposed bigram Kneser-Ney noising
scheme gives an additional performance boost of +0.5-0.7 on top of the blank noising and unigram
noising models, yielding a total gain of +1.4 BLEU.

5 DISCUSSION

5.1 SCALING γ VIA DISCOUNTING

We now examine whether discounting has the desired effect of noising subsequences according to
their uncertainty. If we consider the discounting

γAD(x1) = γ0
N1+(x1, •)
c(x1)

we observe that the denominator c(x1) can dominate than the numerator N1+(x1, •). Common
tokens are often noised infrequently when discounting is used to rescale the noising probability,
while rare tokens are noised comparatively much more frequently, where in the extreme case when
a token appears exactly once, we have γAD = γ0. Due to word frequencies following a Zipfian
power law distribution, however, common tokens constitute the majority of most texts, and thus
discounting leads to significantly less noising.

We compare the performance of models trained with a fixed γ0 versus a γ0 rescaled using discount-
ing. As shown in Figure 2, bigram discounting leads to gains in perplexity for a much broader range
of γ0. Thus the discounting ratio seems to effectively capture the “right” tokens to noise.

8



Published as a conference paper at ICLR 2017

Noising Bigrams Trigrams

none (dropout only) 2881 381
blank noising 2760 372
unigram noising 2612 365

Table 5: Perplexity of last unigram for unseen bigrams and trigrams in Penn Treebank validation
set. We compare noised and unnoised models with noising probabilities chosen such that models
have near-identical perplexity on full validation set.

5.2 NOISED VERSUS UNNOISED MODELS

Smoothed distributions In order to validate that data noising for RNN models has a similar effect
to that of smoothing counts in n-gram models, we consider three models trained with unigram
noising as described in Section 4.1 on the Penn Treebank corpus with γ = 0 (no noising), γ = 0.1,
and γ = 0.25. Using the trained models, we measure the Kullback-Leibler divergence DKL(p‖q) =∑
i pi log(pi/qi) over the validation set between the predicted softmax distributions, p̂, and the

uniform distribution as well as the unigram frequency distribution. We then take the mean KL
divergence over all tokens in the validation set.

Recall that in interpolation smoothing, a weighted combination of higher and lower order n-gram
models is used. As seen in Figure 3, the softmax distributions of noised models are significantly
closer to the lower order frequency distributions than unnoised models, in particular in the case of
the unigram distribution, thus validating our analysis in Section 3.3.

Unseen n-grams Smoothing is most beneficial for increasing the probability of unobserved se-
quences. To measure whether noising has a similar effect, we consider bigrams and trigrams in the
validation set that do not appear in the training set. For these unseen bigrams (15062 occurrences)
and trigrams (43051 occurrences), we measure the perplexity for noised and unnoised models with
near-identical perplexity on the full set. As expected, noising yields lower perplexity for these un-
seen instances.

6 CONCLUSION

In this work, we show that data noising is effective for regularizing neural network-based sequence
models. By deriving a correspondence between noising and smoothing, we are able to adapt ad-
vanced smoothing methods for n-gram models to the neural network setting, thereby incorporat-
ing well-understood generative assumptions of language. Possible applications include exploring
noising for improving performance in low resource settings, or examining how these techniques
generalize to sequence modeling in other domains.

ACKNOWLEDGMENTS

We thank Will Monroe for feedback on a draft of this paper, Anand Avati for help running exper-
iments, and Jimmy Wu for computing support. We also thank the developers of Theano (Theano
Development Team, 2016) and Tensorflow (Abadi et al., 2016). Some GPUs used in this work
were donated by NVIDIA Corporation. ZX, SW, and JL were supported by an NDSEG Fellowship,
NSERC PGS-D Fellowship, and Facebook Fellowship, respectively. This project was funded in part
by DARPA MUSE award FA8750-15-C-0242 AFRL/RIKF.

REFERENCES

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

9



Published as a conference paper at ICLR 2017

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
arXiv preprint arXiv:1511.06464, 2015.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Neural Information Processing Systems (NIPS),
2015.
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A SKETCH OF NOISING ALGORITHM

We provide pseudocode of the noising algorithm corresponding to bigram Kneser-Ney smoothing
for n-grams (In the case of sequence-to-sequence tasks, we estimate the count-based parameters
separately for source and target). To simplify, we assume a batch size of one. The noising algorithm
is applied to each data batch during training. No noising is applied at test time.

Algorithm 1 Bigram KN noising (Language modeling setting)

Require counts c(x), number of distinct continuations N1+(x, •), proposal distribution q(x) ∝
N1+(•, x)
Inputs X , Y batch of unnoised data indices, scaling factor γ0

procedure NOISEBGKN(X,Y ) . X = (x1, . . . , xt), Y = (x2, . . . , xt+1)

X̃, Ỹ ← X,Y
for j = 1, . . . , t do

γ ← γ0N1+(xj , •)/c(xj)
if ∼ Bernoulli(γ) then

x̃j ∼ Categorical(q) . Updates X̃
ỹj ∼ Categorical(q)

end if
end for
return X̃, Ỹ . Run training iteration with noised batch

end procedure
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