

Deal of No Deal? End-to-End Learning of Negotiation Dialogues

Mike Lewis

Facebook Al Research

(joint work with: Denis Yarats, Yann N. Dauphin, Devi Parikh, Dhruv Batra

ARE MACHINES TAKING OVER?

ROBO STOP

facebook shuts off robots

Shuts off robots

FACEBOOK shut down an artificial intelligence experiment after two robots began talking in a language only they understood. The "fideligence desperiment after two robots began talking in a language only they understood. The "fideligence desperiment after two robots began talking in a language only they understood. The "fideligence desperiment after two robots and Book robots and Boo after they chat in secret code

facebook shuts off robots
after they chat in secret code

Experiment . . . robot

Experiment . . . robot

Follow part line start lin

The incident closely resembles the plot of The Terminator in which a robot becomes self-aware and starts waging a war on humans

Negotiation useful, when:

- Agents have different goals
- Not all can be achieved at once
- (all the time!)

Fully Cooperative

Both linguistic and reasoning problem

Interpret multiple sentences, and generate new message

Plan ahead, make proposals, counter-offers, ask questions, vagueness, bluffing, deceit, compromising

Hard for current models

Unlike many goal-orientated dialogue problems, **no simple solutions** to achieving goal

Incentive to strategically withhold information

Adversarial aspect means it can't be "solved"

Why Negotiation? Real Applications

Many people find negotiations hard and awkward

Could practice with bots help?

Easy to evaluate – how good a deal did an agent get?

Self-play gives good development metric

Dataset

Framework

Dialogue until one agent enters that **deal is agreed**

If both agree each is given reward by environment

Agents shown same objects but different values for each

Must agree how to divide objects between them

Agents shown same objects but different values for each

Must agree how to divide objects between them

I point each

0 points each

l point each

5 points each

Agents shown same objects but different values for each

Must agree how to divide objects between them

I point each

0 points each

I point each

3 point each

5 points each

10 point maximum

Not possible for **both** agents to score 10 points

Failing to agree is 0 points

Divide these objects between you and another Turker. Try hard to get as many points as you can!

Send a message now, or enter the agreed deal!

		You: Ok, if I get everything else	
F	ellow Turker: If I get the book then you have a deal		
		You: No way - you can have one hat and all the balls	}
F	ellow Turker: Ok deal		

You can have 3 books, I will take the rest

I will give you the basketball and a book

You can have 4 books, final offer

That is deal is not fair and I will not accept. split it down the middle or no deal.

Fine walk away with nothing

You are doing the same. Hope you enjoy your rejection.

Alright I'll take a hat and a book

Awesome. Pleasure doing business with you

Dataset stats

Metric	Dataset
Number of Dialogues	5808
Average Turns per Dialogue	6.6
Average Words per Turn	7.6
Agreed (%)	80.1%
Average Score (/10)	6.0
Pareto Optimal (%)	76.9

Models

Traditional Dialogue Models

price = ?

location = ?

price =

location =

price =

location = 2

Traditional Dialogue Models

Cleanly separates interpretation, generation and reasoning

Assumes annotated dialogue states

- Expensive
- Task specific
- Not possible in general

End-to-End Dialogue Models

End-to-End Dialogue Models

No rule-based generation

No symbolic reasoning

End-to-End Dialogue Models

- Single model for interpretation, generation, reasoning
- Learned representation of dialogue state
- Cheap data collection
- Easy multitasking

Can end-to-end models learn the reasoning skills required for negotiation?

1) Linearize dialogue into token sequence

- 1) Linearize dialogue into token sequence
- 2) Train conditional language model to predict tokens

- 1) Linearize dialogue into token sequence
- 2) Train conditional language model to predict tokens
- 3) Train additional classifier to predict final deal

Repeat for each user's perspective

<write> You can have 2
hats <read> No way. I
need them all <write>
Ok, deal

Train to maximize likelihood of human-human dialogues

Decode by sampling likely messages

Simple and efficient

Allows forward modelling

Baseline Model

Similar findings with other end-to-end dialogue models (e.g. Li et al, 2016)

Baseline Model

 Model knows nothing about task, just tries to imitate human actions

Agrees too easily

 Can't go beyond human strategies

1) Generate dialogues using **self play**

2) Backpropagate(normalized) rewardusing REINFORCE

balls have zero to me to me

you i everything else

balls have a ball to me to me to me to me to me

i i can i i everything else

balls have a ball to me to me to me to me to me

You can have 2 hats, I'll take the rest

No deal, I need all 3 hats

I cannot agree. Give me all the hats.

2 hats to you, final offer

1) Generate dialogues using self play

2) **Backpropagate** (normalized) reward using REINFORCE

- 3) To maintain human-like language:
- ·Fix one model
- Interleave supervised updates

Reinforcement Learning

Much more aggressive negotiator

Sensitive to hyperparameters

Diverges from human language

"Prediction is the essence of intelligence."

— Yann LeCun

Dialogue Rollouts

1) Generate candidate set

2) Multiple rollouts to end of dialogue

3) Use move with maximum expected reward

Model understands

consequences of actions

Can go beyond human strategies

Easy to implement

Experiments

Experiments

Models

Likelihood: Train and decode to maximise likelihood

• RL: Fine tune using reinforcement learning

• Rollouts: Decode supervised model to maximise reward

• RL+Rollouts: Train and decode to maximize reward

Evaluation vs. Likelihood Agent

Evaluation vs. Likelihood Agent

Evaluation vs. Likelihood Agent

Evaluation vs. Humans

Evaluation vs. Humans

Evaluation vs. Humans

I need the book and hats

Can I have the hats and book?

I need the book and 2 hats

Real dialogue!

I can not make that deal. I need the ball and book, you can have the hats

No deal then

Sorry, I want the book and one hat

No deal doesn't work for me sorry

How about I give you the book and I keep the rest

Novel

sentences

Ok deal

Models apparently deliberately deceptive

I would like the ball and two hats

I would need the book and 3 hats

That would work for me. I can take the ball and 1 hat.

Models learn some poor tactics

I would like 2 hats and 2 balls

No, I said I'll trade you the book

OK, so you get the book and I get the rest

NO NO NO NO NO, I said I'll give you the book and I'll take the rest

Goal-based models negotiate (too) aggressively You can have the hat and the book I will take the balls and hat need at least 2 balls and the book I will take the balls and hat Are you reading what I am saying? I need 2 balls and the book I will take the balls and hat No deal I will take the balls and hat

Conclusion

Natural Language Negotiations offer hard but important problem

Planning ahead using dialogue rollouts is simple and

effective

Any questions?

facebook