Capitalization Cues Improve

Dpendency Grammar Induction

Valentin I. Spitkovsky

with Daniel Jurafsky (Stanford University)

 and Hiyan Alshawi (Google Inc.)

Problem: Grammar Induction is Hard

Problem: Grammar Induction is Hard

Major challenges:

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
- poor correlations between likelihood and accuracy

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions
(to the tune of 20 points of accuracy)

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions
(to the tune of 20 points of accuracy)
- flaws in evaluation
(Schwartz et al., 2011)

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions
(to the tune of 20 points of accuracy)
- flaws in evaluation
(Schwartz et al., 2011)

Partial solutions:

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions
(to the tune of 20 points of accuracy)
- flaws in evaluation
(Schwartz et al., 2011)

Partial solutions:

- train on more / better data (Mareček and Zabokrtský, 2012)

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions
(to the tune of 20 points of accuracy)
- flaws in evaluation
(Schwartz et al., 2011)

Partial solutions:

- train on more / better data (Mareček and Zabokrtský, 2012)
- test many data sets / languages
(fight noise with CLT)

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions
(to the tune of 20 points of accuracy)
- flaws in evaluation
(Schwartz et al., 2011)

Partial solutions:

- train on more / better data (Mareček and Zabokrtský, 2012)
- test many data sets / languages
(fight noise with CLT)
- employ less ad-hoc initializers

Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
(Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994;
Liang and Klein, 2008; Spitkovsky et al., 2009-2011)
- e.g., optimizers run away from supervised MLE solutions
(to the tune of 20 points of accuracy)
- flaws in evaluation
(Schwartz et al., 2011)

Partial solutions:

- train on more / better data (Mareček and Zabokrtský, 2012)
- test many data sets / languages
- employ less ad-hoc initializers
- constrain search space
(fight noise with CLT) ("eat your own dog food") (structure is underdetermined)

Idea: Use Capitalization as Parsing Cues

Idea: Use Capitalization as Parsing Cues

Partial bracketing constraints:

(Pereira and Schabes, 1992)

Idea: Use Capitalization as Parsing Cues

Partial bracketing constraints:

- semantic annotations
- punctuation marks
- web markup
(Pereira and Schabes, 1992)
(Naseem and Barzilay, 2011)
(Ponvert et al., 2010)
(Spitkovsky et al., 2010)

Idea: Use Capitalization as Parsing Cues

Partial bracketing constraints:

- semantic annotations
- punctuation marks
- web markup
(Pereira and Schabes, 1992)
(Naseem and Barzilay, 2011)
(Ponvert et al., 2010)
(Spitkovsky et al., 2010)
... defined over raw text (no POS tags).

Example:

Example:

[np Jay Stevens] of [np Dean Witter] actually cut his per-share earnings estimate to [NP \$9] from [${ }_{\mathrm{NP}}$ \$9.50] for [NP 1989] and to [${ }_{\mathrm{NP}} \$ 9.50$] from [${ }_{\mathrm{NP}}$ \$10.35] in [NP 1990] because he decided sales would be even weaker than he had expected.

Example:

(less WSJ-ish)

Example:

[np Jurors] in [nP U.S. District Court] in [nP Miami] cleared [np Harold Hershhenson], a former executive vice president; [np John Pagones], a former vice president; and [np Stephen Vadas] and [np Dean Ciporkin], who had been engineers with [np Cordis].

Analysis:

(English PTB)

- Mostly noun phrases (96\%):

Analysis:

(English PTB)

- Mostly noun phrases (96\%):

Apple II
World War I
Mayor William H. Hudnut III
International Business Machines Corp. Alexandria, Va

Analysis:

(English PTB)

- Mostly noun phrases (96\%):

Apple II
World War I
Mayor William H. Hudnut III
International Business Machines Corp.
Alexandria, Va

- Some proper adjectives (5\%);

Analysis:

- Mostly noun phrases (96\%):

Apple II
World War I
Mayor William H. Hudnut III
International Business Machines Corp.
Alexandria, Va

- Some proper adjectives (5\%);
- First-person pronoun, I (2\%).

Analysis:

- Mostly noun phrases (96\%):

```
Apple II
World War I
Mayor William H. Hudnut III
International Business Machines Corp.
Alexandria, Va
```

- Some proper adjectives (5\%);
- First-person pronoun, I (2\%).
- Yields more accurate dependency parsing constraints than either markup or punctuation (for WSJ).

Experiments:

(CoNLL 2006/7)

- Data:

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...
- Model:

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...
- Model:
- DBM-1
(Spitkovsky et al., 2012)

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...
- Model:
- DBM-1
(Spitkovsky et al., 2012)
- first dependency-and-boundary model (see EMNLP)

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...
- Model:
- DBM-1
(Spitkovsky et al., 2012)
- first dependency-and-boundary model (see EMNLP)
- Training:

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...
- Model:
- DBM-1
(Spitkovsky et al., 2012)
- first dependency-and-boundary model (see EMNLP)
- Training:
- vanilla EM

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...
- Model:
- DBM-1
(Spitkovsky et al., 2012)
- first dependency-and-boundary model (see EMNLP)
- Training:
- vanilla EM
- controls: uniform Viterbi init
(Cohen and Smith, 2010)

Experiments:

(CoNLL 2006/7)

- Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...
- Model:
- DBM-1
(Spitkovsky et al., 2012)
- first dependency-and-boundary model (see EMNLP)
- Training:
- vanilla EM
- controls: uniform Viterbi init
(Cohen and Smith, 2010)
- capitalization: constrained sampling of initial parse trees

Results:

Results:

- 2^{+}increase in accuracy

Results:

- $\mathbf{2}^{+}$increase in accuracy (on average, $42.8 \rightarrow 45$)

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$) - over a state-of-the-art baseline

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline - with various different constraints

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference
- and also in combination with punctuation

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference
- and also in combination with punctuation
- but, most of the gain is from just two languages...

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference
- and also in combination with punctuation
- but, most of the gain is from just two languages...
- Italian (+11) and Greek (+18)

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference
- and also in combination with punctuation
- but, most of the gain is from just two languages...
- Italian $(+11)$ and Greek $(+18)$
- worst impact on English (-0.02)

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference
- and also in combination with punctuation
- but, most of the gain is from just two languages...
- Italian $(+11)$ and Greek $(+18)$
- worst impact on English (-0.02), so much for inspiration...

Results:

- 2^{+}increase in accuracy (on average, $42.8 \rightarrow 45$)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference
- and also in combination with punctuation
- but, most of the gain is from just two languages...
- Italian $(+11)$ and Greek $(+18)$
- worst impact on English (-0.02), so much for inspiration...
- still, virtually no harm - even in the worst case!

Conclusion:

Conclusion:

- informative signal, but requires further investigation

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!
- miscellaneous observations:

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!
- miscellaneous observations:
- transitions between scripts

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!
- miscellaneous observations:
- transitions between scripts
^ e.g., for Arabic, CJK, numerals, etc.

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!
- miscellaneous observations:
- transitions between scripts
* e.g., for Arabic, CJK, numerals, etc.
- interaction with punctuation / "operator" precedence

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!
- miscellaneous observations:
- transitions between scripts
» e.g., for Arabic, CJK, numerals, etc.
- interaction with punctuation / "operator" precedence
* e.g., Alexandria, Va

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!
- miscellaneous observations:
- transitions between scripts
» e.g., for Arabic, CJK, numerals, etc.
- interaction with punctuation / "operator" precedence
* e.g., Alexandria, Va vs. Kawasaki Heavy Industries Ltd., Mitsubishi Heavy Industries Ltd. and ...

Conclusion:

- informative signal, but requires further investigation
- very preliminary results...
- cues may be more useful as features!
- miscellaneous observations:
- transitions between scripts
» e.g., for Arabic, CJK, numerals, etc.
- interaction with punctuation / "operator" precedence
* e.g., Alexandria, Va vs. Kawasaki Heavy Industries Ltd., Mitsubishi Heavy Industries Ltd. and ...
- properties of first (and last) words

Thanks!

No questions at this time...

