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@ relevant to unsupervised learning (less rope to hang self)
— inherently underconstrained problems...
— in general, steer at the “right” regularities in data
— specifically, useful for grammar (parser) induction
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— fewer iterations to reach a good grammar
— better agreement with qualitative judgments
@ problem: requires supervision (worst case — parse trees)

@ how to make it work, in the absence of a treebank?

» more, partially annotated corpora:
— English POS chunking (Chen and Lee, 1995)
— Japanese clause splitting (Inui and Kotani, 2001)

» our approach:
— would like to scale up to the web anyway
— use what’s at hand (Verne, 1873; 1972)
— HTML structure

@ solution: mark-up! Phileas Fogg
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@ natural language pre-processing (NLPP?):
— stripping out HTML is an ugly chore...
— instead of rushing to discard it, try polishing!
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© linguistic analysis of a single blog

— is there a connection between syntax and mark-up?
— yes... (but what is it? and is it useful?)

© proposed parsing constraints, refined from mark-up

© experimental results for unsupervised dependency parsing
— parsed the web
— but you don’t have to...
— best results with just the blog
— ... web news also state-of-the-art

@ minor yet recurring theme: less is more
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— model: Dependency Model with Valence (DMV)
[POS tags] (Klein and Manning, 2004)

— learning engine: Viterbi EM (not Inside-Outside)
[CoNLL] (Spitkovsky et al., 2010)

— methodology: experimental design (hundreds of runs)
[ACL] (Spitkovsky et al., 2010)
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— a little over 1M tokens
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http://google.com/en

(Brants, 2000)

http://news.google.com/

http://danielpipes.org/

* Charniak-parsed (Charniak and Johnson, 2005)
* Stanford-tagged (Toutanova et al., 2003)

© WSJ — just over 1M tokens

(Marcus et al., 1993)

© Brown — under 400K tokens (Francis and Kucera, 1979)

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up

ACL (2010-07-14)

8/33


http://google.com/en
http://news.google.com/
http://danielpipes.org/

Linguistic Analysis

Syntax of Mark-Up: POS Sequences <a, b, i, u>

%
NNP NNP 16.1
NNP 8.3
NNP NNP NNP 5.4
NN 5.4
JJ NN 2.6
DT NNP NNP 1.8
NNS 1.8
J] 1.5
VBD 1.3
DT NNP NNP NNP 1.2
JJ NNS 1.1
NNP NN 1.0
NN NN 1.0
VBN 0.8
NNP NNP NNP NNP 0.8
50.0
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Syntax of Mark-Up: Dominating Non-Terminals

%

NP 74.5
VP 12.9
S 6.8
PP 1.6
ADJP 0.9
FRAG | 0.8
ADVP 0.5
SBAR | 0.5
PRN 0.2
NX 0.2
99.0
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Linguistic Analysis

Syntax of Mark-Up: Constituent Productions

%
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NP — DT NNP NNP 1.6
S — NP VP 1.4
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NP — DT JJ NN 1.1
NP — NNS 1.0

NP — 13 NN 0.8

NP — NP NP 0.8
35.3
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Syntax of Mark-Up: Common Dependencies

..., but [s [yp the <asToronto Star|[vp reports [yp this]
lpp in the softest possible way|</as,[s stating ...|]]

v v N YN
DT NNP NNP VBZ DT IN DT JJS JJ NN

2N
DT NNP VBZ

reR
“the <a>Star reports</a>”
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Linguistic Analysis

Syntax of Mark-Up: Head-Outward Spawns

%
NNP 24.4

NN 8.1

DT >~ NNP 6.1
DT - NN 5.9
NNS 4.5
NNPS 1.4
VBG 1.3
NNP__ WNP—NN | 1.2
VBD 1.0
IN 1.0
VBN 1.0
DT 33 NN 0.9
VBZ 0.9
POS ™~ NNP 0.9
J] 0.8
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Syntax of Mark-Up: Exception
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Syntax of Mark-Up: Exception

... [np @ 1994 <isNew Yorker</is article] ...
o

@ consequence of bare NPs
— ... and “head percolation” rules
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Syntax of Mark-Up: Summary

@ not just single words (lots of long noun phrases)
@ some verbs, adjectives, etc. (i.e., not just nouns)
@ apparent agreement with constituents

(]

and also with dependencies

— but is there enough mark-up?

©

11% of all sentences in the blog are annotated

@ 9% have multi-token bracketings
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Proposed Constraints: Constituents?

@ 48.0% agreement with Charniak’s trees, e.g.,

. in [yp<as[np |</as[pp of perhaps the

most astonishing PC item | have yet stumbled upon]].

@ these are rough diamonds...

@ many disagreements due to treebank idiosyncrasies:
— bare NPs (internal structure)
— N-bars (missing determiners)

@ ... but we’ll polish them anyway!
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Proposed Constraints: Dependencies!

@ a more stylistically-forgiving framework
o start with the strictest possible constraint
@ then slowly relax it

@ every example demonstrating a softer constraint
doubles as a counter-example against all previous
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Proposed Constraints

Proposed Constraints:

Strict

o seal mark-up into attachments, e.g.,

e

As author of <is

The Satanic Verses

</is, | ...
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Proposed Constraints

Proposed Constraints:

Strict

o seal mark-up into attachments, e.g.,

r—

As author of <is

The Satanic Verses

</is, | ...

— just 35.6% agreement with head-percolated trees

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up

ACL (2010-07-14)

19 /33



Proposed Constraints: Loose

Spitkovsky et al. (Stanford & Google)

Profiting from Mark-Up
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Proposed Constraints

Proposed Constraints: Loose

o allow bracketed head word external dependents, e.g.,

]
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Toronto Star

</i> reports ...

— already 87.5% agreement with head-percolated trees
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Proposed Constraints

Proposed Constraints: Sprawl

o allow all bracketed words external dependents, e.g.,

[
... the <a>

T
Toronto Star reports ...

</a> ...

— now 95.1% agreement with head-percolated trees
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Proposed Constraints: Tear

o fracture by same-side external heads, e.g.,

. concession ... has raised eyebrows among those

waiting [pp for <a5| Fox News

1[pp

in Canada

|</as.

\k_J///
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Proposed Constraints: Tear

o fracture by same-side external heads, e.g.,

. concession ... has raised eyebrows among those

waiting [pp for <a5| Fox News

[pp

in Canada

|</a>.

&///

— finally, 98.9% agreement with head-percolated trees
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Proposed Constraints: Summary

o remaining 1.1% mostly due to parser errors...
... found one (very rare) true negative disagreement

@ a suite of highly (88%, 95%, 99%) accurate constraints,
. of varying degrees of informativeness

o first two can easily guide Viterbi training!
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Experimental Results

Experimental Results: Dependency Accuracy (%)

Incarnation

WSJ10

WSJ>

(Cohen and Smith, 2009)

Brown100

(Spitkovsky et al., 2010)
(Headden et al., 2009)
BLOG | |
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Experimental Results: Dependency Accuracy (%)

Incarnation WSJ10 | WSJ*°
(Cohen and Smith, 2009) | 62.0 42.2 | Brownl00
(Spitkovsky et al., 2010) | 57.1 45.0 43.6
(Headden et al., 2009) | 68.8
BLOG | 69.3 504 | 533 |
0.5 5.4 9.7

@ state-of-the-art results

@ linguistic constraints help with the task!
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Experimental Results: Dependency Accuracy (%)

| WSJ10 | WSJ> | Brown100
69.3 ‘ 50.4 ‘ 53.3

BLOG
NEWS
WEB
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Experimental Results: Dependency Accuracy (%)
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| WSJ10 | WSJ> | Brown100

BLOG 69.3 50.4 53.3
NEWS 67.3 50.1 51.6
WEB 64.1 46.3 46.9

(]

no need to manually clean data!

nevertheless, less is more...

(]

(]

loose constraint consistently delivers best results

(]

requires domain adaptation (re-training on WSJ)

(]

perhaps bigger gains if lexicalized?
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Experimental Results: Why Didn't the Web Help?

@ language identification, sentence-breaking

@ boiler-plate, POS-tagging:

POS Sequence | WEB Count
Sample web sentence, chosen uniformly at random.

1 | DT NNS VBN i 82,858,487
All rights reserved.

2 | NNP NNP NNP i 65,889,181
Yuasa et al.

3 | NN IN TO VB RB i 31,007,783
Sign in to YouTube now!

4 | NN IN IN PRP$ JJ NNl 31,007,471
Sign in with your Google Account!

@ ambiguous noun phrases: “click here” and “print post”
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Conclusion

Summary

@ strong connection between mark-up and syntax
o state-of-the-art unsupervised dependency parsing

@ other parsing applications:
— supervised parsing (via self-training)
— constituent parsing (via discriminative features)

— balanced punctuation? (e.g., quotes and parens)
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Potential

@ another motivating example:
[ne [vp Libyan ruler] <as[yp Mu‘ammar al-Qaddafi]</a>]
— internal structure of a compound
(Vadas and Curran, 2007)

— lower-level tokenization signal

http://nlp.stanford.edu:8080/parser/

(NP (ADJP (NP (JJ Libyan) (NN ruler))
(JJ Mu))
(**) (NN ammar) (NNS al-Qaddafi))
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Potential

@ other structured tasks in NLP:
— NE-tagging
— NP-chunking
— CJK-segmentation
— sentence-breaking

. and so forth!

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14)

29 /33



Open Questions:

Spitkovsky et al. (Stanford & Google)

Profiting from Mark-Up



Open Questions:

@ does this generalize to other genres?

Spitkovsky et al. (Stanford & Google)

Profiting from Mark-Up



Conclusion

Open Questions:

@ does this generalize to other genres?

@ does this generalize to other languages?

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up

ACL (2010-07-14)

30 /33



Conclusion

Open Questions:

@ does this generalize to other genres?
@ does this generalize to other languages?

@ what would be the impact of lexicalization?

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14)

30 /33



Conclusion

Open Questions:

@ does this generalize to other genres?

@ does this generalize to other languages?

@ what would be the impact of lexicalization?

@ are there broader NLP implications?
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@ and the best (blog) model

http://cs.stanford.edu/~valentin/
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Proposed Constraints: Exception

@ remaining 1.1% mostly due to parser errors...

@ a (very rare) true negative disagreement:

The French broadcasting authority, <asCSA, banned
... Al-Manar</a> satellite television from ...
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