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— inherently underconstrained problems...
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— improved time complexity per iteration
— fewer iterations to reach a good grammar
— better agreement with qualitative judgments

problem: requires supervision (worst case — parse trees)

how to make it work, in the absence of a treebank?
◮ more, partially annotated corpora:

— English POS chunking (Chen and Lee, 1995)

— Japanese clause splitting (Inui and Kotani, 2001)
◮ our approach:

— would like to scale up to the web anyway
— use what’s at hand (Verne, 1873; 1972)

Phileas Fogg

— HTML structure

solution: mark-up!
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suggestive example:

..., whereas McCain is secure on the topic, Obama
<a>[VP worries about winning the pro-Israel vote]</a>.

intuition:
diamonds
in the
rough

natural language pre-processing (NLPP?):
— stripping out HTML is an ugly chore...
— instead of rushing to discard it, try polishing!

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 5 / 33
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1 linguistic analysis of a single blog

— is there a connection between syntax and mark-up?
— yes... (but what is it? and is it useful?)

2 proposed parsing constraints, refined from mark-up

3 experimental results for unsupervised dependency parsing
— parsed the web
— but you don’t have to...
— best results with just the blog
— ... web news also state-of-the-art

minor yet recurring theme: less is more
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— model: Dependency Model with Valence (DMV)
[POS tags] (Klein and Manning, 2004)

— learning engine: Viterbi EM (not Inside-Outside)
[CoNLL] (Spitkovsky et al., 2010)

— methodology: experimental design (hundreds of runs)
[ACL] (Spitkovsky et al., 2010)
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— TnT-tagged (Brants, 2000)
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— about 30B tokens
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— a little over 1M tokens
— manually cleaned up (for analysis)

⋆ Charniak-parsed (Charniak and Johnson, 2005)
⋆ Stanford-tagged (Toutanova et al., 2003)

4 WSJ — just over 1M tokens (Marcus et al., 1993)
5 Brown — under 400K tokens (Francis and Kucera, 1979)
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Linguistic Analysis

Syntax of Mark-Up: POS Sequences <a, b, i, u>

%
NNP NNP 16.1
NNP 8.3

NNP NNP NNP 5.4
NN 5.4
JJ NN 2.6

DT NNP NNP 1.8
NNS 1.8
JJ 1.5
VBD 1.3

DT NNP NNP NNP 1.2
JJ NNS 1.1
NNP NN 1.0
NN NN 1.0
VBN 0.8

NNP NNP NNP NNP 0.8
50.0
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Linguistic Analysis

Syntax of Mark-Up: Dominating Non-Terminals

%
NP 74.5
VP 12.9
S 6.8
PP 1.6
ADJP 0.9
FRAG 0.8
ADVP 0.5
SBAR 0.5
PRN 0.2
NX 0.2

99.0
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Syntax of Mark-Up: Common Constituents

..., but [S [NP the <a>Toronto Star][VP reports [NP this]
[PP in the softest possible way]</a>,[S stating ...]]]
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S → NP VP 1.4
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Linguistic Analysis

Syntax of Mark-Up: Common Dependencies

..., but [S [NP the <a>Toronto Star][VP reports [NP this]
[PP in the softest possible way]</a>,[S stating ...]]]

DT NNP NNP VBZ DT IN DT JJS JJ NN

DT NNP VBZ

“the <a>Star reports</a>”

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 13 / 33



Linguistic Analysis

Syntax of Mark-Up: Head-Outward Spawns

%
NNP 24.4
NN 8.1

DT NNP 6.1
DT NN 5.9
NNS 4.5
NNPS 1.4
VBG 1.3

NNP NNP NN 1.2
VBD 1.0
IN 1.0
VBN 1.0

DT JJ NN 0.9
VBZ 0.9

POS NNP 0.9
JJ 0.8

59.4
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Linguistic Analysis

Syntax of Mark-Up: Exception

... [NP a 1994 <i>New Yorker</i> article] ...
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Linguistic Analysis

Syntax of Mark-Up: Exception

... [NP a 1994 <i>New Yorker</i> article] ...

consequence of bare NPs
— ... and “head percolation” rules
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Linguistic Analysis

Syntax of Mark-Up: Summary

not just single words (lots of long noun phrases)
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Linguistic Analysis

Syntax of Mark-Up: Summary

not just single words (lots of long noun phrases)

some verbs, adjectives, etc. (i.e., not just nouns)

apparent agreement with constituents

and also with dependencies

— but is there enough mark-up?

11% of all sentences in the blog are annotated

9% have multi-token bracketings

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 16 / 33
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Proposed Constraints: Constituents?
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Proposed Constraints

Proposed Constraints: Constituents?

48.0% agreement with Charniak’s trees, e.g.,

... in [NP<a>[NP an analysis ]</a>[PP of perhaps the
most astonishing PC item I have yet stumbled upon]].

these are rough diamonds...

many disagreements due to treebank idiosyncrasies:
— bare NPs (internal structure)
— N-bars (missing determiners)

... but we’ll polish them anyway!

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 17 / 33



Proposed Constraints

Proposed Constraints: Dependencies!

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 18 / 33



Proposed Constraints

Proposed Constraints: Dependencies!

a more stylistically-forgiving framework

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 18 / 33



Proposed Constraints

Proposed Constraints: Dependencies!

a more stylistically-forgiving framework

start with the strictest possible constraint

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 18 / 33



Proposed Constraints

Proposed Constraints: Dependencies!

a more stylistically-forgiving framework

start with the strictest possible constraint

then slowly relax it

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 18 / 33



Proposed Constraints

Proposed Constraints: Dependencies!

a more stylistically-forgiving framework

start with the strictest possible constraint

then slowly relax it

every example demonstrating a softer constraint
doubles as a counter-example against all previous
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Proposed Constraints

Proposed Constraints: Strict

seal mark-up into attachments, e.g.,

As author of <i> The Satanic Verses </i>, I ...

— just 35.6% agreement with head-percolated trees
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Proposed Constraints

Proposed Constraints: Loose
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Proposed Constraints

Proposed Constraints: Sprawl

allow all bracketed words external dependents, e.g.,

... the <a> Toronto Star reports ... </a> ...

— now 95.1% agreement with head-percolated trees

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 21 / 33



Proposed Constraints

Proposed Constraints: Tear

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 22 / 33



Proposed Constraints

Proposed Constraints: Tear

fracture by same-side external heads

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 22 / 33



Proposed Constraints

Proposed Constraints: Tear

fracture by same-side external heads, e.g.,

... concession ... has raised eyebrows among those

waiting [PP for <a> Fox News ][PP in Canada ]</a>.

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 22 / 33



Proposed Constraints

Proposed Constraints: Tear

fracture by same-side external heads, e.g.,

... concession ... has raised eyebrows among those

waiting [PP for <a> Fox News ][PP in Canada ]</a>.

— finally, 98.9% agreement with head-percolated trees

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 22 / 33



Proposed Constraints

Proposed Constraints: Summary

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 23 / 33



Proposed Constraints

Proposed Constraints: Summary

remaining 1.1% mostly due to parser errors...

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 23 / 33



Proposed Constraints

Proposed Constraints: Summary

remaining 1.1% mostly due to parser errors...
... found one (very rare) true negative disagreement

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 23 / 33



Proposed Constraints

Proposed Constraints: Summary

remaining 1.1% mostly due to parser errors...
... found one (very rare) true negative disagreement

a suite of highly (88%, 95%, 99%) accurate constraints

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 23 / 33



Proposed Constraints

Proposed Constraints: Summary

remaining 1.1% mostly due to parser errors...
... found one (very rare) true negative disagreement

a suite of highly (88%, 95%, 99%) accurate constraints,
... of varying degrees of informativeness

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 23 / 33



Proposed Constraints

Proposed Constraints: Summary

remaining 1.1% mostly due to parser errors...
... found one (very rare) true negative disagreement

a suite of highly (88%, 95%, 99%) accurate constraints,
... of varying degrees of informativeness

first two can easily guide Viterbi training!
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Experimental Results

Experimental Results: Dependency Accuracy (%)
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(Spitkovsky et al., 2010)
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Incarnation WSJ10 WSJ∞

(Cohen and Smith, 2009) 62.0 42.2 Brown100
(Spitkovsky et al., 2010) 57.1 45.0 43.6
(Headden et al., 2009) 68.8

BLOG 69.3 50.4 53.3
+0.5 +5.4 +9.7

state-of-the-art results

linguistic constraints help with the task!
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Experimental Results: Dependency Accuracy (%)

WSJ10 WSJ∞ Brown100
BLOG 69.3 50.4 53.3
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WSJ10 WSJ∞ Brown100
BLOG 69.3 50.4 53.3
NEWS 67.3 50.1 51.6
WEB 64.1 46.3 46.9

no need to manually clean data!

nevertheless, less is more...

loose constraint consistently delivers best results

requires domain adaptation (re-training on WSJ)

perhaps bigger gains if lexicalized?
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language identification, sentence-breaking

boiler-plate, POS-tagging:

POS Sequence WEB Count

Sample web sentence, chosen uniformly at random.

1 DT NNS VBN 82,858,487
All rights reserved.

2 NNP NNP NNP 65,889,181
Yuasa et al.

3 NN IN TO VB RB 31,007,783
Sign in to YouTube now!

4 NN IN IN PRP$ JJ NN 31,007,471
Sign in with your Google Account!

ambiguous noun phrases: “click here” and “print post”
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Conclusion

Summary

strong connection between mark-up and syntax

state-of-the-art unsupervised dependency parsing

other parsing applications:

— supervised parsing (via self-training)

— constituent parsing (via discriminative features)

— balanced punctuation? (e.g., quotes and parens)
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another motivating example:

[NP [NP Libyan ruler] <a>[NP Mu‘ammar al-Qaddafi]</a>]

— internal structure of a compound
(Vadas and Curran, 2007)

— lower-level tokenization signal

http://nlp.stanford.edu:8080/parser/

(NP (ADJP (NP (JJ Libyan) (NN ruler))
(JJ Mu))

(“ ‘) (NN ammar) (NNS al-Qaddafi))
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Conclusion

Potential

other structured tasks in NLP:

— NE-tagging
— NP-chunking
— CJK-segmentation
— sentence-breaking

... and so forth!
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Open Questions:

does this generalize to other genres?

does this generalize to other languages?

what would be the impact of lexicalization?

are there broader NLP implications?
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What We Make Available:

all of our cleaned up annotations of the blog

a complete analysis of every annotated sentence

and the best (blog) model

http://cs.stanford.edu/˜valentin/
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Conclusion

Thanks!

Questions?

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 32 / 33



Conclusion

Proposed Constraints: Exception

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 33 / 33



Conclusion

Proposed Constraints: Exception

remaining 1.1% mostly due to parser errors...

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 33 / 33



Conclusion

Proposed Constraints: Exception

remaining 1.1% mostly due to parser errors...

a (very rare) true negative disagreement:

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 33 / 33



Conclusion

Proposed Constraints: Exception

remaining 1.1% mostly due to parser errors...

a (very rare) true negative disagreement:

The French broadcasting authority, <a>CSA, banned
... Al-Manar</a> satellite television from ...
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