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Example Raw Text

Example: Raw Word Stream

ALTHOUGH IT PROBABLY HAS REDUCED THE
LEVEL OF EXPENDITURES FOR SOME

PURCHASERS UTILIZATION MANAGEMENT
LIKE MOST OTHER COST CONTAINMENT
STRATEGIES DOESN’T APPEAR TO HAVE

ALTERED THE LONG-TERM RATE OF
INCREASE IN HEALTH-CARE COSTS THE

INSTITUTE OF MEDICINE AN AFFILIATE OF
THE NATIONAL ACADEMY OF SCIENCES
CONCLUDED AFTER A TWO-YEAR STUDY
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Example Unformatted Text

Example:

formatting (missing structural cues):
— e.g., punctuation and capitalization

raw word streams often difficult even for humans
— e.g., transcribed utterances (Kim and Woodland, 2002)
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Example Unlexicalized Tokens

Example:

IN PRP RB VBZ VBN DT NN IN NNS IN DT
NNS NN NN IN RBS JJ NN NN NNS VBZ RB
VB TO VB VBN DT JJ NN IN NN IN JJ NNS
DT NNP IN NNP DT NN IN DT NNP NNP IN

NNPS VBD IN DT JJ NN
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[SBAR Although it probably has reduced the level of
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[SBAR Although it probably has reduced the level of
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management] —

Spitkovsky et al. (Stanford & Google) Punctuation: Making a Point CoNLL (2011-06-23) 5 / 25



Example Formatted Text
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management] — [PP like most other cost
containment strategies] —
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Example Formatted Text

Example:

[SBAR Although it probably has reduced the level of
expenditures for some purchasers], [NP utilization

management] — [PP like most other cost
containment strategies] — [VP doesn’t appear to

have altered the long-term rate of increase in
health-care costs], [NP the Institute of Medicine],

[NP an affiliate of the National Academy of

Sciences],
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Example Formatted Text

Example:

[SBAR Although it probably has reduced the level of
expenditures for some purchasers], [NP utilization

management] — [PP like most other cost
containment strategies] — [VP doesn’t appear to

have altered the long-term rate of increase in
health-care costs], [NP the Institute of Medicine],

[NP an affiliate of the National Academy of

Sciences], [VP concluded after a two-year study].
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Intuition:
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Intuition Strong Cues

Intuition:

punctuation is a strong structural cue
— demarcates separable fragments

we will make simplifying independence assumptions
— (unreasonably) strong in training

less crude in inference
— (reasonably) weak in final decoding
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Intuition Strong Assumption

Intuition:

strong constraint
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Intuition Strong Assumption

Intuition:

strong constraint: (head ← head) in training

word head , head word word ,

head word word word word word word word .
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Intuition Strong Assumption

Intuition:

strong constraint: (head ← head) in training

Other countries , including West Germany ,

may have a hard time justifying continued membership .
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Intuition Weak Assumption

Intuition:

weak constraint
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Intuition Weak Assumption

Intuition:

weak constraint: (head ← external word) in inference

IFI also has nonvoting preferred shares ,

which are quoted on the Milan stock exchange .
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Linguistic Analysis Constituents

Linguistic Analysis:

punctuation and syntax are related
(Nunberg, 1990; Briscoe, 1994; Jones 1994; Doran, 1998, inter alia)
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Linguistic Analysis Constituents

Linguistic Analysis:

punctuation and syntax are related
(Nunberg, 1990; Briscoe, 1994; Jones 1994; Doran, 1998, inter alia)

49.4% of inter-punctuation fragments are constituents

lowest dominating non-terminals:
%

S 32.5
NP 27.2
VP 13.3
PP 10.1
SBAR 6.7
ADVP 3.3
QP 2.5
SINV 2.0
ADJP 1.0

98.5
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Linguistic Analysis:
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Linguistic Analysis Strong Dependencies

Linguistic Analysis:

strong (in training), e.g.,

... arrests followed a “ Snake Day ” at Utrecht ...
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Linguistic Analysis Strong Dependencies

Linguistic Analysis:

strong (in training), e.g.,

... arrests followed a “ Snake Day ” at Utrecht ...

— already 74.0% agreement with head-percolated trees
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Linguistic Analysis Weak Dependencies

Linguistic Analysis:
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Linguistic Analysis Weak Dependencies

Linguistic Analysis:
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Linguistic Analysis Weak Dependencies

Linguistic Analysis:

weak (in inference), e.g.,

Maryland Club also distributes tea , which ...

— now 92.9% agreement with head-percolated trees
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Linguistic Analysis:
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Linguistic Analysis:

generalization:
— no path from the root may enter a fragment twice

Spitkovsky et al. (Stanford & Google) Punctuation: Making a Point CoNLL (2011-06-23) 12 / 25



Linguistic Analysis Violations

Linguistic Analysis:

generalization:
— no path from the root may enter a fragment twice
— 95.0% agreement with head-percolated trees

Spitkovsky et al. (Stanford & Google) Punctuation: Making a Point CoNLL (2011-06-23) 12 / 25



Linguistic Analysis Violations

Linguistic Analysis:

generalization:
— no path from the root may enter a fragment twice
— 95.0% agreement with head-percolated trees

simple violations:

Spitkovsky et al. (Stanford & Google) Punctuation: Making a Point CoNLL (2011-06-23) 12 / 25



Linguistic Analysis Violations

Linguistic Analysis:

generalization:
— no path from the root may enter a fragment twice
— 95.0% agreement with head-percolated trees

simple violations: “seamless” quotations

Her recent report classifies the stock as a “hold.”

Spitkovsky et al. (Stanford & Google) Punctuation: Making a Point CoNLL (2011-06-23) 12 / 25



Linguistic Analysis Violations

Linguistic Analysis:

generalization:
— no path from the root may enter a fragment twice
— 95.0% agreement with head-percolated trees

simple violations: “seamless” quotations and even lists

Her recent report classifies the stock as a “hold.”

The company said its directors , management and

subsidiaries will remain long-term investors and ...
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Motivation

Motivation: “Profiting from Markup”
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Motivation

Motivation: “Profiting from Markup”
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Motivation
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Motivation

Motivation: “Profiting from Markup”

..., whereas McCain is secure on the topic, Obama
<a>[VP worries about winning the pro-Israel vote]</a>.

“Capitalizing on Punctuation”
— more common (particularly in long sentences)
— more uniform (better coverage of constructs)
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The Problem Input/Output

Problem: Unsupervised Learning of Parsing
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The Problem Input/Output

Problem: Unsupervised Learning of Parsing

Input: Raw Text

... By most measures, the nation’s industrial sector is now
growing very slowly — if at all. Factory payrolls fell in
September. So did the Federal Reserve ...
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| | | | | |
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Input: Raw Text (Sentences, Tokens and POS-tags)
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The Problem Input/Output

Problem: Unsupervised Learning of Parsing

NN NNS VBD IN NN ♦
| | | | | |

Factory payrolls fell in September .

Input: Raw Text (Sentences, Tokens and POS-tags)

... By most measures, the nation’s industrial sector is now
growing very slowly — if at all. Factory payrolls fell in
September. So did the Federal Reserve ...

Output: Syntactic Structures (and a Probabilistic Grammar)
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Scoring: Directed Dependency Accuracy
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Methodology Scoring
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Factory payrolls fell in September .

Directed score: 3
5 = 60%
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Methodology Scoring

Scoring: Directed Dependency Accuracy

NN NNS VBD IN NN ♦
| | | | | |

Factory payrolls fell in September .

Directed score: 3
5 = 60% (right/left-branching baselines: 2

5 = 40%).
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Methodology Model

DMV: Dependency Model with Valence
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Methodology Model

DMV: Dependency Model with Valence

a head-outward model, with word classes
and valence/adjacency (Klein and Manning, 2004)

h

a1 a2

Spitkovsky et al. (Stanford & Google) Punctuation: Making a Point CoNLL (2011-06-23) 16 / 25



Methodology Model

DMV: Dependency Model with Valence

a head-outward model, with word classes
and valence/adjacency (Klein and Manning, 2004)

h

a1 a2

Spitkovsky et al. (Stanford & Google) Punctuation: Making a Point CoNLL (2011-06-23) 16 / 25



Methodology Model

DMV: Dependency Model with Valence

a head-outward model, with word classes
and valence/adjacency (Klein and Manning, 2004)

h

a1 a2

STOP
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Methodology Model

DMV: Dependency Model with Valence

a head-outward model, with word classes
and valence/adjacency (Klein and Manning, 2004)

h

a1 a2

STOP

P(th) =
∏

dir∈{L,R}




PSTOP(ch, dir,

adj
︷︸︸︷

1n=0)

n∏

i=1

P(tai ) PATTACH(ch, dir, cai )

(1− PSTOP(ch, dir,

adj
︷︸︸︷

1i=1))






n=|args(h,dir)|
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Methodology Learning

Learning: Viterbi EM

well-suited to long sentences,
which are more punctuation-rich

(Spitkovsky et al., CoNLL 2010)
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Methodology Learning

Learning: Viterbi EM

well-suited to long sentences,
which are more punctuation-rich

(Spitkovsky et al., CoNLL 2010)

fast, simple and easily admits constraints
(Spitkovsky et al., ACL 2010)
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Constraints

Constraints: Parser Induction

the model, i.e., projective trees (Klein and Manning, 2004)

— Dependency Model with Valence (DMV)
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Constraints

Constraints: Parser Induction

the model, i.e., projective trees (Klein and Manning, 2004)

— Dependency Model with Valence (DMV)

(((List (the fares (for ((flight) (number 891)))))) .)

partial bracketings (Pereira and Schabes, 1992)

– synchronous grammars (Alshawi and Douglas, 2000)
– linear-time parsing (Seginer, 2007)
– skewness of trees (Seginer, 2007)
– Zipfian distribution of words (Seginer, 2007)
– sparse posterior regularization (Ganchev et al., 2009)

– web markup-induced constraints (Spitkovsky et al., 2010)

– semantic cues (Naseem and Barzilay, 2011)
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Experimental Results Unlexicalized

Experimental Results: Unlexicalized

directed dependency accuracies
for baselines, inference, training and an oracle:

WSJ∞ (Section 23, all sentences)
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Experimental Results Unlexicalized

Experimental Results: Unlexicalized

directed dependency accuracies
for baselines, inference, training and an oracle:

WSJ∞ (Section 23, all sentences)
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Experimental Results: Multi-Lingual
further evaluation against CoNLL 2006/7 data sets
— results generalize across languages:

Arabic 2006
’7
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Bulgarian ’6
Catalan ’7
Czech ’6

’7
Danish ’6
Dutch ’6
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Japanese ’6
Portuguese ’6
Slovenian ’6
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Swedish ’6
Turkish ’6

’7
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Inference Only
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’7 +0.9
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Experimental Results: Multi-Lingual
further evaluation against CoNLL 2006/7 data sets
— results generalize across languages:

Inference Only Training & Inference
Arabic 2006 +0.1 +1.1

’7 +0.9 +2.6
Basque ’7 +0.8 +0.6
Bulgarian ’6 +1.1 +1.6
Catalan ’7 +0.8 +0.9
Czech ’6 +0.9 +3.0

’7 +1.0 +2.7
Danish ’6 +0.9 +0.2
Dutch ’6 +1.0 +3.0
English ’7 +1.3 +2.8
German ’6 +0.8 +1.6
Greek ’7 +0.5 +0.7
Hungarian ’7 +0.4 +1.4
Italian ’7 +0.1 -0.8
Japanese ’6 +0.0 +0.1
Portuguese ’6 +0.7 +0.8
Slovenian ’6 +2.0 +2.8
Spanish ’6 +0.8 +0.8
Swedish ’6 +0.5 +0.8
Turkish ’6 +0.1 +1.0

’7 +0.2 +0.1

Average: +0.7 +1.3
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Conclusion Thoughts

Thoughts:

extend existing parsers
— no need to retrain models
— supervised systems?

would prosody aid with induction from speech?
— “as words” breaks n-grams (Kahn et al., 2005)
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Conclusion Thanks! Questions?

Thanks!

Punctuation. It works...

Any questions?
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