Viterbi Training Improves Unsupervised Dependency Parsing

Valentin I. Spitkovsky

with **Hiyan Alshawi** (Google Inc.) **Daniel Jurafsky** (Stanford University) and **Christopher D. Manning** (Stanford University)

- 12

*ロ> *個> *国> *国>

- 12

<ロ> <同> <同> < 回> < 回>

- faster, simpler and more accurate

3

- faster, simpler and more accurate
- easy state-of-the-art results

3

()

< A

- faster, simpler and more accurate
- easy state-of-the-art results

Interpretation

3

글 🕨 🔺 글 🕨

- faster, simpler and more accurate
- easy state-of-the-art results

Interpretation

- machine learning and linguistic perspectives

3

∃ ► < ∃ ►</p>

- faster, simpler and more accurate
- easy state-of-the-art results
- Interpretation
 - machine learning and linguistic perspectives
 - practical insights (some theoretical underpinning)

医下子 医下

- faster, simpler and more accurate
- easy state-of-the-art results

Interpretation

- machine learning and linguistic perspectives
- practical insights (some theoretical underpinning)

Core Issue

医下子 医下

- faster, simpler and more accurate
- easy state-of-the-art results

Interpretation

- machine learning and linguistic perspectives
- practical insights (some theoretical underpinning)

Core Issue

- provably wrong objective functions

- faster, simpler and more accurate
- easy state-of-the-art results

Interpretation

- machine learning and linguistic perspectives
- practical insights (some theoretical underpinning)

Core Issue

- provably wrong objective functions
- theoretical insights (mathematically sound)

(E)

(日) (同) (三) (三)

3

Input: Raw Text

... By most measures, the nation's industrial sector is now growing very slowly — if at all. Factory payrolls fell in September. So did the Federal Reserve ...

A B > A B >

• Input: Raw Text (Sentences, Tokens and POS-tags)

... By most measures, the nation's industrial sector is now growing very slowly — if at all. Factory payrolls fell in September. So did the Federal Reserve ...

• Input: Raw Text (Sentences, Tokens and POS-tags)

... By most measures, the nation's industrial sector is now growing very slowly — if at all. Factory payrolls fell in September. So did the Federal Reserve ...

• **Output:** Syntactic Structures (and a Probabilistic Grammar)

4 B K 4 B K

3

(日) (同) (三) (三)

• our scope is a very specific problem

3

(日) (同) (三) (三)

- our scope is a very specific problem
- but the high-level ideas may generalize

3

• = • • = •

- ∢ 🗇 ▶

- our scope is a *very* specific problem
- but the high-level ideas may generalize

• Classic EM: "focus across the board" (hard to see the trees for the forest)

- our scope is a very specific problem
- but the high-level ideas may generalize
- Classic EM: "focus across the board"

(hard to see the trees for the forest)

• Viterbi EM: zoom in on likeliest tree

- 3

<ロ> <同> <同> < 回> < 回>

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Directed score: $\frac{3}{5} = 60\%$

3

Directed score: $\frac{3}{5} = 60\%$ (right/left-branching baselines: $\frac{2}{5} = 40\%$).

- 3

(日) (同) (三) (三)

3

(日) (同) (三) (三)

a head-outward model, with word classes and valence/adjacency (Klein and Manning, 2004)

- 4 同 2 4 日 2 4 日 2

a head-outward model, with word classes and valence/adjacency (Klein and Manning, 2004)

- 4 同 2 4 日 2 4 日 2

 a head-outward model, with word classes and valence/adjacency (Klein and Manning, 2004)

- 4 同 2 4 日 2 4 日 2

Learning: EM, via inside-outside re-estimation

3

• • = • • = •

< fi
 < fi
 < i
 < i

 < i
 < i
• sentences $\{s\}$

3

• • = • • = •

- 一司

• sentences $\{s\}$, legal parse trees $t \in T(s)$

- 3

• • = • • = •

• sentences $\{s\}$, legal parse trees $t \in T(s)$, and a gold t^*

- B

()

- sentences $\{s\}$, legal parse trees $t \in T(s)$, and a gold t^*
- non-convex objective very sensitive to initialization

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

- sentences $\{s\}$, legal parse trees $t \in T(s)$, and a gold t^*
- non-convex objective very sensitive to initialization
- maximizing the probability of data (sentence strings):

$$\widehat{ heta}_{\mathsf{UNS}} = rg\max_{ heta} \prod_{s} \underbrace{\sum_{t \in \mathcal{T}(s)} \mathbb{P}_{ heta}(t)}_{\mathbb{P}_{ heta}(s)}$$

(ロ) (同) (三) (三) (三) (○) (○)

- sentences $\{s\}$, legal parse trees $t \in T(s)$, and a gold t^*
- non-convex objective very sensitive to initialization
- maximizing the probability of data (sentence strings):

$$\widehat{ heta}_{\mathsf{UNS}} = rg\max_{ heta} \prod_{s} \underbrace{\sum_{t \in \mathcal{T}(s)} \mathbb{P}_{ heta}(t)}_{\mathbb{P}_{ heta}(s)}$$

• supervised objective would be convex (counting):

$$\hat{ heta}_{\mathsf{SUP}} = rg\max_{ heta} \prod_{s} \mathbb{P}_{ heta}(t^*(s))$$

WSJ

Standard Corpus: WSJk

æ

イロト イポト イヨト イヨト

Standard Corpus: WSJk

• The Wall Street Journal section of the Penn Treebank Project (Marcus et al., 1993)

3

()

- 一司

- The Wall Street Journal section of the Penn Treebank Project (Marcus et al., 1993)
 - ... stripped of punctuation, etc.

- The Wall Street Journal section of the Penn Treebank Project (Marcus et al., 1993)
 - ... stripped of punctuation, etc.
 - ... rid of sentences left with more than k POS tags;

WSI

- The Wall Street Journal section of the Penn Treebank Project (Marcus et al., 1993)
 - ... stripped of punctuation, etc.
 - ... rid of sentences left with more than k POS tags;
 - ... and converted to reference dependencies $\{t^*\}$, using "head percolation rules" (Collins, 1999).

WSI

- The Wall Street Journal section of the Penn Treebank Project (Marcus et al., 1993)
 - ... stripped of punctuation, etc.
 - ... rid of sentences left with more than k POS tags;
 - ... and converted to reference dependencies $\{t^*\}$, using "head percolation rules" (Collins, 1999).
- Training: traditionally, WSJ10 (Klein, 2005);

WSI

Standard Corpus: WSJk

- The Wall Street Journal section of the Penn Treebank Project (Marcus et al., 1993)
 - ... stripped of punctuation, etc.
 - ... rid of sentences left with more than k POS tags;
 - ... and converted to reference dependencies $\{t^*\}$, using "head percolation rules" (Collins, 1999).
- Training: traditionally, WSJ10 (Klein, 2005);
- Evaluation: Section 23 of WSJ[∞] (all sentences).

· • @ • • E • • E • E

WSJ

Standard Corpus: WSJk

Spitkovsky et al. (Stanford & Google)

Viterbi EM

CoNLL (2010-07-15) 9 / 26

WSJ

Standard Corpus: WSJk

Spitkovsky et al. (Stanford & Google)

Viterbi EM

CoNLL (2010-07-15) 9 / 26

◆ロ > ◆母 > ◆臣 > ◆臣 > ● 目 ● の Q @

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - の Q ()

◆ロ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

◆□ > ◆□ > ◆三 > ◆三 > ● ○ ○ ○ ○

Viterbi EM

Viterbi EM: Results!

イロト イポト イヨト イヨト 3

Viterbi EM: Results!

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Viterbi EM

Viterbi EM: Results!

Results Viterbi EM

State-of-the-Art

æ

Section 23 of WSJ^{∞}

Right-Branching Baseline

(Klein and Manning, 2004)

32%

3

▲圖 → ▲ 臣 → ▲ 臣 →

Section 23 of WSJ^{∞}

Right-Branching Baseline

(Klein and Manning, 2004) 32%

DMV with Classic EM

(Klein and Manning, 2004) 34% (Spitkovsky et al., 2010) 45%

3

A B > A B >

Section 23 of WSJ $^{\infty}$

Right-Branching Baseline		
(Klein and Manning, 2004)	32%	
DMV with Classic EM		
(Klein and Manning, 2004)	34%	
(Spitkovsky et al., 2010)	45%	
DMV with Viterbi EM		
with Smoothing	<mark>45</mark> %	

3

・ロト ・回ト ・ヨト ・ヨト

Section 23 of WSJ^{∞}

Right-Branching Baseline (Klein and Manning, 2004)	32%
DMV with Classic EM (Klein and Manning, 2004) (Spitkovsky et al., 2010)	34% 45%
DMV with Viterbi EM with Smoothing + Clever Initialization	45% <mark>48</mark> %

э

Section 23 o	of WSJ∞	Brown100	
Right-Branching Baseline (Klein and Manning, 2004)	32%		
DMV with Classic EM (Klein and Manning, 2004) (Spitkovsky et al., 2010)	34% 45%	43%	
DMV with <mark>Viterbi EM</mark> with Smoothing + Clever Initialization	45% 48%	48% 51%	

CoNLL (2010-07-15) 12 / 26

æ

Section 23 o	f WSJ∞	Brown100	
Right-Branching Baseline (Klein and Manning, 2004)	32%		
DMV with Classic EM	210/		
(Kiein and Manning, 2004) (Spitkovsky et al., 2010)	54 <i>%</i> 45%	43%	
DMV with Viterbi EM			
with Smoothing	45%	48%	(+5%)
+ Clever Initialization	48%	<mark>51</mark> %	. ,

æ

Section 23 of	f WSJ∞	Brown100	
Right-Branching Baseline (Klein and Manning, 2004)	32%		
DMV with Classic EM			
(Klein and Manning, 2004)	34%		
(Spitkovsky et al., 2010)	45%	43%	
DMV with Viterbi EM			
with Smoothing	45%	48%	(+5%)
+ Clever Initialization	48%	<mark>51</mark> %	(+ 3%)

æ

Interpretation

Interpretation: Why Does Viterbi EM Work?

3

イロト イポト イヨト イヨト

Interpretation: Why Does Viterbi EM Work?

• in theory, Viterbi is a quick-and-dirty approximation

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Interpretation: Why Does Viterbi EM Work?

- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...

3

A B F A B F
- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...
- in practice, EM emulates supervised learning:

- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...
- in practice, EM emulates supervised learning:

$$s \to \{t\} = T(s)$$

- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...
- in practice, EM emulates supervised learning:

$$s \rightarrow \{t\} = T(s)$$

Classic EM:
$$w_t = \mathbb{P}_{\theta}(t \mid s)$$

- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...
- in practice, EM emulates supervised learning:

$$s \rightarrow \{t\} = T(s)$$

Classic EM:
$$w_t = \mathbb{P}_{\theta}(t \mid s)$$

• clearly, this is redistribution of wealth mass

4 B K 4 B K

- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...
- in practice, EM emulates supervised learning:

$$s \rightarrow \{t\} = T(s)$$

Classic EM:
$$w_t = \mathbb{P}_{\theta}(t \mid s)$$

clearly, this is redistribution of wealth mass
 — also, resembles an omniscient central planner

A B > A B >

- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...
- in practice, EM emulates supervised learning:

$$s \rightarrow \{t\} = T(s)$$

Classic EM:
$$w_t = \mathbb{P}_{\theta}(t \mid s)$$

 clearly, this is redistribution of wealth mass
 — also, resembles an omniscient central planner (knows the true value of everything at all times)

A B F A B F

- in theory, Viterbi is a quick-and-dirty approximation
- in theory, Communism works...
- in practice, EM emulates supervised learning:

$$s \rightarrow \{t\} = T(s)$$

Classic EM:
$$w_t = \mathbb{P}_{\theta}(t \mid s)$$

clearly, this is redistribution of wealth mass

 also, resembles an omniscient central planner
 (knows the true value of everything at all times)

 could work, given a very powerful model θ...

A B F A B F

3

イロト イポト イヨト イヨト

• our model is quite weak (e.g., doesn't handle agreement)

3

A B > A B >

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...

()

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...
 - each entitled to non-trivial support by the distribution

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...
 each entitled to non-trivial support by the distribution
- at small scales, this is not a problem (short sentences)

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...
 each entitled to non-trivial support by the distribution
- at small scales, this is not a problem (short sentences)
 only so many possible parses → few free-loaders

(*) *) *) *)

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...
 each entitled to non-trivial support by the distribution
- at small scales, this is not a problem (short sentences) — only so many possible parses \rightarrow few free-loaders
- eventually, exponentially many trees (unwashed masses)

· • E • • E • E

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...
 each entitled to non-trivial support by the distribution
- at small scales, this is not a problem (short sentences) — only so many possible parses \rightarrow few free-loaders
- eventually, exponentially many trees (unwashed masses)

result: a dog of a probability distribution...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...
 each entitled to non-trivial support by the distribution
- at small scales, this is not a problem (short sentences) only so many possible parses \rightarrow few free-loaders
- eventually, exponentially many trees (unwashed masses)

result: a dog of a probability distribution...

- our model is quite weak (e.g., doesn't handle agreement)
- reserves a lot of mass for ludicrous parse trees...
 each entitled to non-trivial support by the distribution
- at small scales, this is not a problem (short sentences) only so many possible parses \rightarrow few free-loaders
- eventually, exponentially many trees (unwashed masses)

result: a dog of a probability distribution...

... wagged by its very long tail

3

イロト イポト イヨト イヨト

• Viterbi EM is powered by greed (much like Capitalism)

3

- Viterbi EM is powered by greed (much like Capitalism)
- does not require ability to properly value all parse trees

(E)

- Viterbi EM is powered by greed (much like Capitalism)
- does not require ability to properly value all parse trees
- so long as it can spot a decent one (winner-take-all)

- Viterbi EM is powered by greed (much like Capitalism)
- does not require ability to properly value all parse trees
- so long as it can spot a decent one (winner-take-all)
- different (weaker?) requirement on models: (like IR)

- Viterbi EM is powered by greed (much like Capitalism)
- does not require ability to properly value all parse trees
- so long as it can spot a decent one (winner-take-all)
- different (weaker?) requirement on models: (like IR) — θ needs to be just discriminative enough! (ranking)

(*) *) *) *)

- Viterbi EM is powered by greed (much like Capitalism)
- does not require ability to properly value all parse trees
- so long as it can spot a decent one (winner-take-all)
- different (weaker?) requirement on models: (like IR) — θ needs to be just discriminative enough! (ranking)
- at small scales, data are too sparse (markets are illiquid)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Viterbi EM is powered by greed (much like Capitalism)
- does not require ability to properly value all parse trees
- so long as it can spot a decent one (winner-take-all)
- different (weaker?) requirement on models: (like IR) — θ needs to be just discriminative enough! (ranking)
- at small scales, data are too sparse (markets are illiquid)
- improves with more data (statistics become efficient)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Viterbi EM is powered by greed (much like Capitalism)
- does not require ability to properly value all parse trees
- so long as it can spot a decent one (winner-take-all)
- different (weaker?) requirement on models: (like IR) — θ needs to be just discriminative enough! (ranking)
- at small scales, data are too sparse (markets are illiquid)
- improves with more data (statistics become efficient)
 really, what we want from unsupervised learners!

(ロ) (型) (三) (三) (三) (2)

э

• Viterbi EM: focus on the individual best parse trees

э

()

• Viterbi EM: focus on the individual best parse trees — given a decent estimate,

makes rapid progress (the rich get richer)

(E)

• Viterbi EM: focus on the individual best parse trees — given a decent estimate,

makes rapid progress (the rich get richer)

• Classic EM: integrates over the collective forests

4 B 6 4 B 6

• Viterbi EM: focus on the individual best parse trees — given a decent estimate,

makes rapid progress (the rich get richer)

Classic EM: integrates over the collective forests

 given a bad (uniform) estimate,
 makes little progress (all trees remain equally poor)

• Viterbi EM: focus on the individual best parse trees — given a decent estimate,

makes rapid progress (the rich get richer)

 Classic EM: integrates over the collective forests
 given a bad (uniform) estimate, makes little progress (all trees remain equally poor)

 given a great (supervised) estimate, cuts down the better trees (Dekulakization)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Interpretation: Connections

э

イロト イポト イヨト イヨト

Interpretation: Connections

 "learning by doing" — (unsupervised) self-training (Clark et al., 2003; Ng and Cardie, 2003; McClosky et al., 2006)

3

(*) * (*) *)

Interpretation: Connections

- "learning by doing" (unsupervised) self-training
 - (Clark et al., 2003; Ng and Cardie, 2003; McClosky et al., 2006)
 - relevance to understanding language acquisition?

A B > A B >
- "learning by doing" (unsupervised) self-training
 - (Clark et al., 2003; Ng and Cardie, 2003; McClosky et al., 2006)
 - relevance to understanding language acquisition?
 - human probabilistic parsing models massively pruned (Jurafsky, 1996; Chater et al., 1998; Lewis and Vasishth, 2005)

- "learning by doing" (unsupervised) self-training (Clark et al., 2003; Ng and Cardie, 2003; McClosky et al., 2006)
 — relevance to understanding language acquisition?
 — human probabilistic parsing models massively pruned (Jurafsky, 1996; Chater et al., 1998; Lewis and Vasishth, 2005)
- synchronizing approximation across learning and inference — it's a parser, not a language model! (Wainwright, 2006)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- "learning by doing" (unsupervised) self-training (Clark et al., 2003; Ng and Cardie, 2003; McClosky et al., 2006)
 — relevance to understanding language acquisition?
 — human probabilistic parsing models massively pruned (Jurafsky, 1996; Chater et al., 1998; Lewis and Vasishth, 2005)
- synchronizing approximation across learning and inference — it's a parser, not a language model! (Wainwright, 2006)
- annealing of objective functions (Smith and Eisner, 2004) — $w_t \propto \mathbb{P}_{\theta}(t \mid s)^{\beta}$, $\beta \in [0, 1]$ (from Uniform to Classic EM)

(ロ) (同) (三) (三) (三) (○) (○)

- "learning by doing" (unsupervised) self-training (Clark et al., 2003; Ng and Cardie, 2003; McClosky et al., 2006)
 — relevance to understanding language acquisition?
 — human probabilistic parsing models massively pruned (Jurafsky, 1996; Chater et al., 1998; Lewis and Vasishth, 2005)
- synchronizing approximation across learning and inference — it's a parser, not a language model! (Wainwright, 2006)
- annealing of objective functions (Smith and Eisner, 2004) — $w_t \propto \mathbb{P}_{\theta}(t \mid s)^{\beta}$, $\beta \in [0, 1]$ (from Uniform to Classic EM) — Viterbi EM: $\lim_{\beta \to \infty}$

(ロ) (同) (三) (三) (三) (○) (○)

э

イロト イポト イヨト イヨト

• supervised objective (convex):

$$\hat{ heta}_{\mathsf{SUP}} = rg\max_{ heta} \prod_{s} \mathbb{P}_{ heta}(t^*(s))$$

3

A B F A B F

- ∢ ∩ ¬ >

• supervised objective (convex):

$$\hat{ heta}_{\mathsf{sup}} = rg\max_{ heta} \prod_{s} \mathbb{P}_{ heta}(t^*(s))$$

• unsupervised objective (non-convex):

$$\hat{ heta}_{\mathsf{UNS}} = rg\max_{ heta} \prod_{s} \underbrace{\sum_{t \in \mathcal{T}(s)} \mathbb{P}_{ heta}(t)}_{\mathbb{P}_{ heta}(s)}$$

3

() <) <)
 () <)
 () <)
 () <)
</p>

• supervised objective (convex):

$$\hat{ heta}_{\mathsf{sup}} = rg\max_{ heta} \prod_{s} \mathbb{P}_{ heta}(t^*(s))$$

• unsupervised objective (non-convex):

$$\hat{ heta}_{\mathsf{UNS}} = rg\max_{ heta} \prod_{s} \underbrace{\sum_{t \in \mathcal{T}(s)} \mathbb{P}_{ heta}(t)}_{\mathbb{P}_{ heta}(s)}$$

• another unsupervised objective (also non-convex):

$$\hat{ heta}_{\mathsf{VIT}} = rg\max_{ heta} \prod_{s} \max_{t \in \mathcal{T}(s)} \mathbb{P}_{ heta}(t)$$

æ

<ロ> <同> <同> < 回> < 回>

• classic unsupervised parsers:

3

- classic unsupervised parsers:
 - train with respect to sentence strings

(learning)

э

- classic unsupervised parsers:
 - train with respect to sentence strings
 - parse with respect to one-best trees

(learning) (inference)

- classic unsupervised parsers:
 - train with respect to sentence strings
 - parse with respect to **one-best** trees
 - judged against external references

(learning) (inference) (evaluation)

- classic unsupervised parsers:
 - train with respect to sentence strings
 - parse with respect to **one-best** trees
 - judged against external references
- the true generative model θ^* :

(learning) (inference) (evaluation)

< 三→ < 三→

- classic unsupervised parsers:
 - train with respect to sentence strings
 - parse with respect to **one-best** trees
 - judged against external references
- the true generative model θ^* :
 - may not yield the most discriminating parser

(learning) (inference) (evaluation)

- classic unsupervised parsers:
 - train with respect to sentence strings
 - parse with respect to **one-best** trees
 - judged against external references
- the true generative model θ^* :
 - may not yield the most discriminating parser
 - may assign suboptimal mass to strings

(learning) (inference) (evaluation)

A B > A B >

- classic unsupervised parsers:
 - train with respect to sentence strings
 - parse with respect to **one-best** trees
 - judged against external references
- the true generative model θ^* :
 - may not yield the most discriminating parser
 - may assign suboptimal mass to strings
- Viterbi EM fixes one of these ...

()

(learning) (inference) (evaluation)

- classic unsupervised parsers:
 - train with respect to sentence strings
 - parse with respect to **one-best** trees
 - judged against external references
- the true generative model θ^* :
 - may not yield the most discriminating parser
 - may assign suboptimal mass to strings
- Viterbi EM fixes one of these ...
 - ... but both flavors of EM
 - walk away from the supervised optimum

() <) <)
 () <)
 () <)
 () <)
</p>

(learning) (inference) (evaluation) **Objective Functions**

<u>Reminder</u>: Accuracy vs. $\theta^* \neq \hat{\theta}_{\text{\tiny SUP}}$

3

イロン 不同 とくほう イロン

maximizing likelihood may degrade accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)

3

• maximizing likelihood may degrade accuracy

(Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)

• simple example: optimize the wrong model

(e.g., make incorrect independence assumptions)

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

 maximizing likelihood may degrade accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)
 simple example: optimize the wrong model (e.g., make incorrect independence assumptions)
 fitting the (supervised) DMV to contrived symmetries:

· • E • • E • E

- maximizing likelihood may degrade accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)
 simple example: optimize the wrong model
 - (e.g., make incorrect independence assumptions)
- fitting the (supervised) DMV to contrived symmetries:

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- maximizing likelihood may degrade accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)
- simple example: optimize the wrong model

(e.g., make incorrect independence assumptions)

• fitting the (supervised) DMV to contrived symmetries:

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- maximizing likelihood may degrade accuracy
 - (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)
- simple example: optimize the wrong model

(e.g., make incorrect independence assumptions)

• fitting the (supervised) DMV to contrived symmetries:

(iv)
$$\underline{\hat{a}}$$
 \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a}

• expected accuracy for $\hat{\theta}_{\text{SUP}}$: 40%

- maximizing likelihood may degrade accuracy
 - (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)
- simple example: optimize the wrong model

(e.g., make incorrect independence assumptions)

• fitting the (supervised) DMV to contrived symmetries:

(iv)
$$\underline{\hat{a}}$$
 \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a}

• expected accuracy for $\hat{\theta}_{SUP}$: 40% (20% for exact trees)

・ロト ・同ト ・ヨト ・ヨト - ヨ

- maximizing likelihood may degrade accuracy
 - (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994)
- simple example: optimize the wrong model

(e.g., make incorrect independence assumptions)

• fitting the (supervised) DMV to contrived symmetries:

(iv)
$$\underline{\hat{a}}$$
 \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a} \hat{a}

• expected accuracy for $\hat{\theta}_{sup}$: 40% (20% for exact trees) — yet could achieve 50% (for both) deterministically **Objective Functions**

More Subtle:
$$\theta^* = \hat{\theta}_{_{\sf SUP}}$$
 vs. $\hat{\theta}_{_{\sf UNS}}$ vs. $\hat{\theta}_{_{\sf VIT}}$

Spitkovsky et al. (Stanford & Google)

・ロト ・日・・日・・日・・ つくの

More Subtle:
$$\theta^* = \hat{\theta}_{\text{sup}}$$
 vs. $\hat{\theta}_{\text{uns}}$ vs. $\hat{\theta}_{\text{vit}}$

• this time, an organic example:

э

→ ∃ → → ∃ →

< 17 >

More Subtle:
$$heta^* = \hat{ heta}_{_{ ext{SUP}}}$$
 vs. $\hat{ heta}_{_{ ext{UNS}}}$ vs. $\hat{ heta}_{_{ ext{VIT}}}$

• this time, an organic example:

Objective Functions

More Subtle:
$$\theta^* = \hat{\theta}_{_{\sf SUP}}$$
 vs. $\hat{\theta}_{_{\sf UNS}}$ vs. $\hat{\theta}_{_{\sf VIT}}$

Spitkovsky et al. (Stanford & Google)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへぐ

Objective Functions

More Subtle:
$$heta^* = \hat{ heta}_{_{ ext{sup}}}$$
 vs. $\hat{ heta}_{_{ ext{uns}}}$ vs. $\hat{ heta}_{_{ ext{vir}}}$

• — the right model

æ

イロン イロン イヨン イヨン

More Subtle:
$$\theta^* = \hat{\theta}_{\text{\tiny SUP}}$$
 vs. $\hat{\theta}_{\text{\tiny UNS}}$ vs. $\hat{\theta}_{\text{\tiny VIT}}$

• — the right model, DMV factors the parameters

A B F A B F

- ∢ 🗇 ▶

э

More Subtle:
$$\theta^* = \hat{\theta}_{\text{sup}}$$
 vs. $\hat{\theta}_{\text{uns}}$ vs. $\hat{\theta}_{\text{vit}}$

• — the right model, DMV factors the parameters

- no unwarranted independence assumptions

3

A B > A B >

$\underline{\text{More Subtle}}: \ \theta^* = \hat{\theta}_{\text{\tiny SUP}} \text{ vs. } \hat{\theta}_{\text{\tiny UNS}} \text{ vs. } \hat{\theta}_{\text{\tiny VIT}}$

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)

$\underline{\text{More Subtle}}: \ \theta^* = \hat{\theta}_{\text{\tiny SUP}} \ \text{vs.} \ \hat{\theta}_{\text{\tiny UNS}} \ \text{vs.} \ \hat{\theta}_{\text{\tiny VIT}}$

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* : — assigns zero probability to the truth

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :
 - assigns zero probability to the truth
 - attains higher likelihood on both unsupervised metrics

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :
 - assigns zero probability to the truth
 - attains higher likelihood on both unsupervised metrics
 - has the same expected (but lower variance) accuracy

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :
 - assigns zero probability to the truth
 - attains higher likelihood on both unsupervised metrics
 - has the same expected (but lower variance) accuracy
 - and is a fixed point for both flavors of EM

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :
 - assigns zero probability to the truth
 - attains higher likelihood on both unsupervised metrics
 - has the same expected (but lower variance) accuracy
 - and is a fixed point for both flavors of EM
 - ... "fun" exercise, left to the readers! :)

(김희) 김 말에 귀엽이 말.

<u>More Subtle</u>: $\theta^* = \hat{\theta}_{_{\text{SUP}}}$ vs. $\hat{\theta}_{_{\text{UNS}}}$ vs. $\hat{\theta}_{_{\text{VIT}}}$

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :
 - assigns zero probability to the truth
 - attains higher likelihood on both unsupervised metrics
 - has the same expected (but lower variance) accuracy
 - and is a fixed point for both flavors of EM
 - ... "fun" exercise, left to the readers! :)

• Classic EM known for local deterministic attractors

(김희) 김 말에 귀엽이 말.

<u>More Subtle</u>: $\theta^* = \hat{\theta}_{_{\text{SUP}}}$ vs. $\hat{\theta}_{_{\text{UNS}}}$ vs. $\hat{\theta}_{_{\text{VIT}}}$

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :
 - assigns zero probability to the truth
 - attains higher likelihood on both unsupervised metrics
 - has the same expected (but lower variance) accuracy
 - and is a fixed point for both flavors of EM
 - ... "fun" exercise, left to the readers! :)
- Classic EM known for local deterministic attractors
 Viterbi EM suggested as a remedy (de Marcken, 1995)

(E)

- — the right model, DMV factors the parameters
 - no unwarranted independence assumptions
 - exact calculations (no numerical instabilities)
 - issue persists with infinite data
- can again find a more deterministic $\tilde{\theta}$ than θ^* :
 - assigns zero probability to the truth
 - attains higher likelihood on both unsupervised metrics
 - has the same expected (but lower variance) accuracy
 - and is a fixed point for both flavors of EM
 - ... "fun" exercise, left to the readers! :)
- Classic EM known for local deterministic attractors
 - Viterbi EM suggested as a remedy (de Marcken, 1995)
 - but problem with objectives not confined to EM!

-2

イロン イロン イヨン イヨン

• need stronger models and better objective functions

3

• = • • = •

- ∢ 🗗 ▶

need stronger models and better objective functions
 — but this pulls us back towards central planning...

3

A B F A B F

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined

(E)

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained
- alternative: introduce application-specific constraints

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained
- alternative: introduce application-specific constraints

 encourage equilibria that share our values (regulation!)

(E)

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained
- alternative: introduce application-specific constraints

 encourage equilibria that share our values (regulation!)
- partial bracketings

(Pereira and Schabes, 1992)

- 4 同 2 4 回 2 4 U

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained
- alternative: introduce application-specific constraints

 encourage equilibria that share our values (regulation!)
- partial bracketings (Pereira and Schabes, 1992)
- **Synchronous grammars induction** (Alshawi and Douglas, 2000)

イロト イポト イヨト イヨト 二日

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained
- alternative: introduce application-specific constraints

 encourage equilibria that share our values (regulation!)
- partial bracketings (Pereira and Schabes, 1992)
 synchronous grammars induction (Alshawi and Douglas, 2000)
 linear-time parsing, skewness, Zipf's Law... (Seginer, 2007)

(ロ) (型) (三) (三) (三) (2)

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained
- alternative: introduce application-specific constraints

 encourage equilibria that share our values (regulation!)
- partial bracketings (Pereira and Schabes, 1992)
 synchronous grammars induction (Alshawi and Douglas, 2000)
 linear-time parsing, skewness, Zipf's Law... (Seginer, 2007)
 sparse posterior regularization (Ganchev et al., 2009)

(ロ) (同) (三) (三) (三) (○) (○)

- need stronger models and better objective functions
 but this pulls us back towards central planning...
- grammar induction is inherently underdetermined
- in general, unsupervised learning is underconstrained
- alternative: introduce application-specific constraints

 encourage equilibria that share our values (regulation!)
- partial bracketings (Pereira and Schabes, 1992)
 synchronous grammars induction (Alshawi and Douglas, 2000)
 linear-time parsing, skewness, Zipf's Law... (Seginer, 2007)
 sparse posterior regularization (Ganchev et al., 2009)
 mining structure from web mark-up (Spitkovsky et al., 2010)

(日) (圖) (문) (문) (문)

• Viterbi EM well-suited to unsupervised parsing

3

A B F A B F

- ∢ 🗗 ▶

• Viterbi EM well-suited to unsupervised parsing

• faster to run

3

A B F A B F

- ∢ 🗗 ▶

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)

3

()

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)

()

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)
- scales better

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)
- scales better
 - efficiently handles larger data sets

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)
- scales better
 - efficiently handles larger data sets
 - performs gracefully with more complex data

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)
- scales better
 - efficiently handles larger data sets
 - performs gracefully with more complex data
- simpler algorithm

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)
- scales better
 - efficiently handles larger data sets
 - performs gracefully with more complex data
- simpler algorithm
 - easier to code up, debug, and understand...

・ 同 ト ・ ヨ ト ・ ヨ ト

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)
- scales better
 - efficiently handles larger data sets
 - performs gracefully with more complex data
- simpler algorithm
 - easier to code up, debug, and understand...
 - invites more flexible modeling techniques!

・ロト ・同ト ・ヨト ・ヨト - ヨ

- Viterbi EM well-suited to unsupervised parsing
- faster to run
 - no outside charts (each iteration is faster)
 - quicker to converge (4-10x fewer iterations)
- scales better
 - efficiently handles larger data sets
 - performs gracefully with more complex data
- simpler algorithm
 - easier to code up, debug, and understand...
 - invites more flexible modeling techniques!

• achieves state-of-the-art results!

Questions?

Spitkovsky et al. (Stanford & Google)

æ

<ロ> <同> <同> < 回> < 回>