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Abstract. Reflecting an increased need for stochastic parse selection models over hand-built
linguistic grammars and a lack of appropriately detailed training material, we present the
Linguistic Grammars On-Line (LinGO) Redwoods initiative, a seed activity in the design and
development of a new type of treebank. LinGO Redwoods aims at the development of a novel
treebanking methodology, (i) rich in nature and dynamic in both (ii) the ways linguistic data
can be retrieved from the treebank in varying granularity and (iii) the constant evolution and
regular updating of the treebank itself, synchronized to the development of ideas in syntactic
theory. Starting in June 2001, the project has been working to build the foundations for this
new type of treebank, develop a basic set of tools required for treebank construction and
maintenance, and construct an initial set of 10,000 annotated trees to be distributed together
with the tools under an open-source license.
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1. Background

From machine translation to speech recognition and information extrac-
tion and retrieval engines, a wide range of applications demand increasing
accuracy and robustness from natural language processing. Meeting these
demands for precise linguistic analysis will require hand-built, in-depth
grammars of natural language. Among others, Head-Driven Phrase Struc-
ture Grammar (hpsg; Pollard and Sag, 1994) has been one of the predom-
inant paradigms for building such grammars. The Linguistic Grammars
On-Line (LinGO) Project at CSLI has been conducting research and devel-
opment in hpsg implementation since 1994. Jointly with international part-
ners – primarily at Saarbrücken (Germany), Cambridge, Edinburgh, and
Sussex (UK), and Tokyo (Japan) – the LinGO initiative has developed
a broad-coverage, precise hpsg implementation of English (the LinGO
English Resource Grammar, erg; Flickinger, 2000), a framework for
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semantic composition in large-scale computational grammars (Minimal
Recursion Semantics, MRS; Copestake et al., 1999, 2001), and an advanced
grammar development environment (the lkb system; Copestake, 1992,
2002; Malouf et al., 2002). Through contributions from collaborating part-
ners, a pool of open-source hpsg resources has developed that now includes
broad-coverage grammars for several languages, a common profiling and
benchmarking environment (Oepen and Callmeier, 2000), and an indus-
trial-strength C++ run-time engine for hpsg grammars (Callmeier, 2000).
LinGO resources are in use world-wide for teaching, research, and applica-
tion building. Because of their wide distribution and common acceptance,
the hpsg framework and LinGO resources provide a good anchor point for
the Redwoods treebanking initiative introduced here.1

2. Combining Linguistic and Stochastic Approaches

For the past decade or more, symbolic, linguistically-oriented methods
(like those pursued within the hpsg framework) and statistical or machine
learning approaches to NLP have typically been perceived as incompati-
ble or even competing paradigms; the former, more traditional approaches
are often referred to as ‘deep’ NLP, in contrast to the comparatively
recent branch of language technology focusing on ‘shallow’ (text) process-
ing methods. Shallow processing techniques have produced useful results
in many classes of applications, but have not met the full range of needs
for NLP, particularly where precise interpretation is important, or where
the variety of linguistic expression is large relative to the amount of train-
ing data available. On the other hand, deep approaches to NLP have only,
recently, achieved broad enough grammatical coverage and sufficient pro-
cessing efficiency to allow the use of hpsg-type systems in certain types of
real-world applications, and fully-automated, deep grammatical analysis of
unrestricted text remains an unresolved challenge.

In particular, applications of analytical grammars for natural language
parsing or generation require the use of sophisticated statistical tech-
niques for resolving ambiguities. While precise linguistic grammars tend to
assign a relatively small number of analyses to an average-length string
(typically dozens, sometimes hundreds, rarely thousands) and fare well in
rejecting ungrammatical input, attempts at encoding preferences of gram-
matical analyses manually have failed in practice. One common technique,
the inclusion of sortal constraints on arguments of semantic relations, e.g.
animacy on subjects of agentive predicates (Müller and Kasper, 2000), risks
contaminating the grammar with non-linguistic knowledge about real-world
regularities or properties of a specific domain; and computers and projects
die too, after all. Another traditional approach, annotating the core gram-
mar with heuristic preferences or hand-constructed measures of ‘likelihood’
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for a given domain (see, for example, Kiefer et al., 1999; King et al., 2000),
has been found severely limited in its scalability, very time-consuming and
error-prone, and impossible to port across domains. In short, grammarians
should not have to express a pseudo-analytical preference between the strict
transitive or ditransitive uses of sell in examples like the following:

(1) Do you sell IBM laptops?
(2) Do you sell IBM ice cream?

Although resolving ambiguities of this type generally would seem to
require world and domain knowledge and suitable inference capabilities, it
is to be expected that a stochastic model of, say, word to word relations
alone will be able to approximate the solution well.

We observe general consensus on the necessity for bridging activities,
combining symbolic and stochastic approaches to NLP. At the same time,
the transfer of hpsg resources into industry – where a typical applica-
tion will expect to consume only one or a small number of results from
linguistic analysis – has amplified the need for general parse ranking, dis-
ambiguation, and robust recovery techniques which all require suitable
stochastic models for hpsg processing. While there is active research in
stochastic parsing in a number of frameworks, hpsg still exhibits a lack
of appropriately rich and dynamic language corpora. Likewise, stochastic
parsing has so far been focused on IE-type applications and typically lacks
any depth of semantic interpretation. The Redwoods initiative is designed
to fill in this gap.

3. Why Another (Type of) Treebank?

Most probabilistic parsing research – including, for example, work in the
tradition of Collins (1997) and Charniak (1997) – is based on branching
process models (Harris, 1963). An important recent advance in this area
has been the application of log-linear models (Agresti, 1990) to modeling
linguistic systems. These models can deal with the many interacting depen-
dencies and the immense structural complexity of constraint-based or uni-
fication-based theories of syntax (Johnson et al., 1999).

While several medium- to large-scale treebanks exist for English (and
some for other major languages), pre-existing publicly available resources –
as for example the widely recognized Penn Treebank (ptb; Marcus et al.,
1993), the German TiGer Corpus (Skut et al., 1997), the Prague Depen-
dency Treebank (Hajic, 1998), or the Dutch Alpino Dependency Bank (van
der Beek et al., 2002) – exhibit the following limitations: (i) each resource
has chosen to focus on a single stratum of linguistic description, either
topological (phrase structure) or tectogrammatical (dependency structure),
(ii) the depth of linguistic information recorded in these treebanks is com-
paratively shallow (limited syntax, little or no semantics), (iii) the design
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and format of linguistic representation in the treebank hard-wires a small,
predefined range of ways in which information can be extracted from the
treebank, and (iv) representations in existing treebanks are static and over
the (often decade-long) evolution of a large-scale treebank tend to fall
behind advances in formal linguistics and grammatical representation.

Conversely, a hand-built precision grammar like the LinGO erg encodes
linguistic distinctions at various descriptive levels and in a granularity
much finer than is found in existing annotated corpora. A treebank like
the ptb, for example, failing to distinguish syntactic arguments from ‘free’
modifiers, will not provide sufficient detail to resolve complement – adjunct
ambiguities (e.g. in Pack your suitcase in the car! where the prepositional
phrase can either be the directional target or general location of the pack-
ing activity) which are analyzed in the erg. Likewise, limiting linguistic
description to dependency information only potentially blurs the structural
difference in subject–object ambiguities commonly exhibited by verb-second
languages: the Norwegian utterance Kari ser Gyrd. (‘Kari sees Gyrd.’),
for example, has a second analysis as a topicalized structure (with Gyrd
doing the seeing), but topicalization, presumably, is not reflected at the
tectogrammatical level; hence, looking at dependency structures only, it
would be impossible for stochastic models to acquire a preference for
non-topicalized structures.

Research on the definition and acquisition of stochastic models that can
be used in conjunction with broad-coverage hpsg grammars like the LinGO
erg requires annotated corpora that provide an adequate match of avail-
able information and linguistic granularity to the grammars. The availabil-
ity of even a medium-sized treebank would allow us to begin exploring the
use of these models for probabilistic disambiguation of hpsg grammars. At
the same time, other researchers have started work on stochastic hpsg (or
are about to), some pursuing unsupervised approaches, but in many cases
using the same grammar or at least the same descriptive formalism and
grammar engineering environment. The availability of a reasonably large,
hand-disambiguated hpsg treebank is expected to greatly facilitate compa-
rability of results and models obtained by various groups and, eventually,
to help define a common evaluation metric.

4. LinGO Redwoods – A Rich and Dynamic Treebank

In response to the demand for stochastic parse selection models over hpsg
grammars and the lack of suitable training material, the LinGO Labora-
tory at CSLI has started work on a novel type of treebank for English,
dubbed LinGO Redwoods.2 Some important innovative aspects of the Red-
woods approach to treebanking are (i) its anchoring of all linguistic data
captured in the treebank in the hpsg framework and the publicly available
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LinGO English Resource Grammar, (ii) the organization of the annotation
process and subsequent update of the treebank around elementary lin-
guistic properties (called discriminant, see Section 4.1 below), and (iii) its
provision of tools for the extraction of various user-defined representations.
Unlike in existing treebanks, there is no need to define a (new) form of
grammatical representation specific to the treebank. Instead, the treebank
records complete syntacto-semantic analyses as defined by the LinGO erg
and provides tools to extract many different types of linguistic information
at greatly varying granularity. In this respect, the Redwoods treebank is
rich in linguistic information and dynamic in both how the content is pre-
sented to users and how it is maintained over time.

4.1. The source of ambiguity: basic discriminants

The Redwoods annotation environment is configured from two pre-existing
pieces of software, viz. (i) a tree comparison tool (similar in kind to the
SRI Cambridge TreeBanker; Carter, 1997) that is part of the lkb grammar
development system and (ii) the [incr tsdb()] profiling environment (essen-
tially a specialized database recording fine-grained parsing results obtained
from a hpsg system; Oepen and Callmeier, 2000a). Thus, the treebank is
constructed as an extension of the existing [incr tsdb()] data model and
tools, providing annotators with a way of selecting the preferred analysis
for a string efficiently and recording the resulting preference and all deci-
sions made in the database.

The tree comparison tool presents annotators, one sentence at a time,
with the full set of analyses produced by the grammar together with a con-
densed view of where the ambiguity, lexical and phrasal, that gives rise to
this set of analyses originates. Put simply, the full set of analyses reflects
the cross product of a series of more local choices – alternation between
lexical entries or alternatives for modifier attachment, for example – of
which some are independent of each other while others may mutually inter-
act. The tool extracts elementary linguistic properties – called discriminants
– that correspond to local ambiguity and uses the inference rules of Carter
(1997) to determine the smallest possible set of discriminants that fully dis-
ambiguates the parse forest. When presented with individual local proper-
ties as they indicate choice points in assigning the linguistic analysis to the
token sentence, annotators can quickly navigate through the parse forest
and identify the correct or preferred analysis in the current context (or, in
rare cases, end up rejecting all analyses proposed by the grammar). Using
the discriminant-based approach to tree comparison, and given the elemen-
tary nature of each decision, annotators need little expert knowledge of
the underlying grammar, but instead decide on a range of properties that
distinguish competing analyses and are relatively easy to judge.
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For each discriminant, annotators can choose whether they require the
indicated property in the intended analysis (i.e. positively select a discri-
minant) or disallow it (i.e. negatively reject a discriminant). Each annota-
tor decision reduces the set of active analyses – trimming down the parse
forest – as for positive decisions only trees that have the indicated prop-
erty remain available, whereas with negative decisions all trees with the
rejected property can be excluded. As the set of active analyses is incremen-
tally reduced, so is the set of discriminants: discriminants from the original
set that either have no remaining active parse or are compatible with all
remaining parses can be suppressed from the annotator display, as decid-
ing on these properties will not further disambiguate the parse forest.

While the general Redwoods approach makes no implicit commitment
as to the exact nature of discriminants, it is important to maintain a fine
balance between, on the one hand, sufficient information for effective and
full disambiguation and, on the other hand, locality and simplicity of indi-
vidual decisions.3

While working with the LinGO English Resource Grammar, we are
using the following four types of elementary properties, of which the first
two only apply to phrases and words, respectively, while the latter two can
be extracted from either a lexical or non-lexical constituent.

– constituents use of a particular construction (i.e. a rule of the gram-
mar) over a specific substring of the input;

– lexical items use of a particular lexical entry (identified by its lexical
type or ‘part of speech’) for a specific input token;

– semantics appearance of a particular key relation (primary predicate)
on a specific constituent; and

– labeling assignment of a particular abbreviatory phrase structure node
label to a specific constituent.

Obviously, this set of discriminants already creates potential for redun-
dancy as, for example, lexical alternation will often be reflected at both
the lexical type and semantic levels, so that annotators may identify the
intended lexical item through two (apparently) independent discriminants.
Again, striking the right balance between expository parsimony and infor-
mational benefit provided to annotators is an empirical problem; the Red-
woods tools offer a number of switches to selectively enable or exclude
redundant types of discriminants, so that expert annotators can choose
to operate on a maximally concise set of decisions while novice anno-
tators can allow themselves additional discriminants which they may be
more comfortable deciding on. However, in either mode our discriminant-
based disambiguation approach is different from the context variables asso-
ciated to packed ambiguity in lfg f-structure (as implemented by the Xerox
Linguistic Environment; King et al., 2000), since a packed f-structure can
only present a reasonably compact summary of all information in the
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Figure 1. Screenshot of Redwoods treebanking environment: the window on the left
presents the full set of analyses as labeled phrase structure trees (often too numer-
ous to fit on a single page), and the window on the right shows the minimal set
of discriminating properties, based on either a particular lexical item (with an ‘ le’
suffix), semantic relation (a ‘ rel’ suffix), or syntactic construction (in all capitals)
applied to a specific substring to form a constituent.

parse forest while a set of elementary discriminants reduces the informa-
tion presented to annotators to the basic amount of structure required to
completely disambiguate the input sentence.

Figure 1 presents the Redwoods annotation environment. For a second-
year Stanford undergraduate in linguistics, our approach to parse selection
through minimal discriminators turned out to be not at all hard to learn
and required less training in specifics of the grammatical analyses delivered
by the LinGO grammar than could have been expected. After 3–4 weeks
in hands-on training, the annotator was able to disambiguate at a rate of
about 2000 sentences per week; annotator throughput is enhanced by the
ability of the treebanking environment to only partially disambiguate a sen-
tence and flag it for later completion, say where annotators do not have
sufficient knowledge readily available to fully disambiguate.
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For each sentence, not only the resulting preference(s) (or, in rare cases,
the conclusion that no correct analysis was available) but also all deci-
sions made by annotators are recorded in the [incr tsdb()] database. Thus,
annotator decisions are available as first class data for the semi-auto-
mated treebank update procedure introduced in Section 4.4. In a nutshell,
semi-automatic updating of the treebank for an enhanced version of the
underlying grammar can be achieved by re-applying the recorded disambig-
uating decisions to a new version of the corpus obtained from re-running
the parser on the original data set.

4.2. Representations and transformation of information

Internally, the [incr tsdb()] database records analyses in three different for-
mats, viz. (i) as a derivation tree composed of identifiers of lexical items
and grammar rules (constructions) used to construct the analysis, (ii) as
a traditional phrase structure tree labeled with an inventory of some 50
atomic labels (of the type ‘S’, ‘NP’, ‘VP’ et al.), and (iii) as an underspec-
ified MRS meaning representation. While (ii) will in many cases be sim-
ilar to the representation found in the Penn Treebank, (iii) subsumes the
functor – argument (or tectogrammatical) structure as is advocated in the
Prague Dependency Treebank or the German TiGer corpus. Most impor-
tantly, however, representation (i) provides all the information required to
reconstruct the full hpsg analysis (e.g. using the corresponding version of
the hpsg grammar and one of the open-source hpsg processing environ-
ments, e.g. the lkb or pet, which already have been interfaced to [incr
tsdb()]).

Using the latter approach, users of the treebank are enabled to extract
information in whatever representation they require, simply by reconstruct-
ing the full analysis and adapting the existing mappings – e.g. the node
labeling facilities of the lkb – to their needs.4 Figures 2 through 4 depict
the internal Redwoods encoding and two export representations – labeled
constituent trees providing traditional phrase structure and elementary
dependency graphs corresponding to functional structure, respectively –
derived from existing conversion routines. Labeled phrase structure trees
result from reconstructing a derivation (using the relevant grammar) and
matching a user-defined set of underspecified feature structure ‘templates’
against the hpsg feature structure at each node in the tree. In the same
spirit, one could apply a set of tree rewrite rules on select parts of the der-
ivation tree (before or after the labeling) in order to map the tree topology
into a specific target format, for example, collapsing recursive applications
of the head – complement construction on verbal heads in order to convert
a binary-branching into a flat verb phrase.
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Figure 2. Native Redwoods representation for the sentence Are we going to meet
on Tuesday? (taken from the current development corpus): the derivation tree is
labeled with unique identifiers for grammar rules and lexical entries used to form
this analysis.

The elementary dependency graph, on the other hand, is an abstrac-
tion from the full MRS meaning representation associated with each full
analysis; informally, elementary dependencies correspond to the type of tec-
togrammatical representations found in the Prague Dependency Treebank
and the German TiGer or Dutch Alpino corpora and, likewise, resemble
the basic ‘grammatical’ relations suggested for parser evaluation by Caroll
et al. (1998). Given a rich body of MRS manipulation and conversion soft-
ware, it is relatively straightforward to adapt the type and form of elemen-
tary dependencies to user needs or include further information from the
full semantic structure (scope constraints, for example).

For evaluation purposes, the existing [incr tsdb()] facilities for com-
paring across competence and performance profiles can be deployed to
gauge results of a (stochastic) parse disambiguation system, essentially
using the preferences recorded in the treebank as a ‘gold standard’ target
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Figure 3. Derived Redwoods representation: phrase structure trees are labeled with
user-defined, parameterizable category abbreviations (currently some 57 feature
structure templates in the October 2002 version of the LinGO erg).

3:{
3:int rel[SOA e2: meet v rel]

e2: meet v rel[ARG1 x4:pron rel]
1:def rel[BV x4:pron rel]

e14: on temp rel[ARG e2: meet v rel, ARG3 x12:dofw rel]
2:def np rel[BV x12:dofw rel]

x12:dofw rel[NAMED :tuesday]
}

Figure 4. Another derived Redwoods encoding: an elementary dependency graph
extracted from MRS meaning representation associated with the underlying deriva-
tion tree. The nodes are comprised of MRS relations, of which most are contributed
by lexical entries but also allowing for semantic contributions from non-lexical ele-
ments in the full hpsg derivation (e.g. the representation of illocutionary force by
virtue of MRS messages). Arcs of the dependency graph are labeled by uninter-
preted MRS role labels (ARG1, SOA et al.) which could be assigned user-level
interpretations as, for example, thematic roles relative to the lexicon and various
MRS relation types.
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for comparison. While the concept of a meta-treebank of the type proposed
here has been explored in earlier research (e.g. the AMALGAM project
at Leeds University in the UK; Atwell, 1996), previous approaches to the
dynamic mapping of treebank representations have built on a static, finite
set of hand-constructed mappings.

4.3. Scope and current state of play

Starting in June 2001, the project decided to initially explore domains for
which (i) sufficient amounts of real-world data were readily available, (ii)
the LinGO erg could be expected to exhibit broad and accurate cover-
age, and (iii) a lot of labor had been expended earlier in constructing
(and maintaining) hand-built parse selection heuristics. Accordingly, the
first 12,000 trees to be hand-annotated in Redwoods format are taken from
transcribed face-to-face dialogues in an appointment scheduling and travel
arrangement domain, viz. a representative sample of the data produced
in the VerbMobil Wahlster, 2000 machine translation project. Corpora of
some 50,000 such utterances are publicly available and have already been
studied among researchers world-wide in the field.

Table I summarizes the current Redwoods annotation status, reflect-
ing three consecutive development phases. Of a total of some 12,000
hand-segmented turns in dialogues recorded on four CDs, some 3600
are flagged as fragment (incomplete) utterances and close to 700 as sim-
ply ungrammatical. Corpora containing strongly ungrammatical input are
generally problematic for the Redwoods approach, as it makes the basic
assumptions that (i) the underlying linguistic grammar is precise and
maintains a sharp (and therefore idealized) distinction between well-formed
vs. ill-formed utterances and (ii) the treebank is entirely constructed from
analyses provided by the grammar, such that the grammar and associated
tools can be used to extract syntacto-semantic information. Fragmentary,
non-sentence utterances also present a practical problem, though not in
principle: although the LinGO erg includes facilities to accept strings like
Wednesday, in the afternoon? or Monday and Tuesday of next week. (essen-
tially, through relaxation of the grammar start symbol), enabling this frag-
ment mode also generates a large number of spurious analyses for full
sentences – accepting each imperative as a possible verb phrase fragment,
for example. For the early Redwoods development phase it was therefore
decided to exclude both fragments and ungrammatical utterances from the
annotation (but not the corpus, of course). Although one immediate conse-
quence of this decision is that complete linguistic information is only avail-
able for a subset of the corpus (which may limit its utility for certain users),
using the corpus as training material for stochastic disambiguation models
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is not hindered, as there is, of course, no parse selection problem for utter-
ances with no analysis in the LinGO erg.5

As shown in Table I, the Redwoods treebank has undergone three revi-
sion stages to date, dubbed 1st, 2nd, and 3rd Growth, respectively. Where
the first two versions both use the June 2001 version of the LinGO erg, the
most recent 3rd Growth version reflects a much later version of the gram-
mar, viz. the erg as of October 2002 (see Section 4.4 below). Of the 8049

Table I. Redwoods development status as of January 2003: four sets of transcribed
and hand-segmented dialogues have been annotated

all parses active = 0 active = 1 active > 1
� ‖ × � ‖ × � ‖ × � ‖ ×

1st Growth
VM6 2422 7·7 32·9 218 8·0 9·7 1910 7·0 7·5 80 10·0 23·8
VM13 1984 8·5 37·9 175 8·5 9·9 1491 7·2 7·5 85 9·9 22·1
VM31 1726 6·2 22·4 164 7·9 8·0 1360 6·6 5·9 61 10·1 14·5
VM32 608 7·4 25·6 51 10·7 54·4 549 7·9 19·0 7 10·4 20·6
Total 6740 7·5 31·0 608 8·3 13·0 5310 7·1 8·3 233 10·0 20·7

2nd Growth
VM6 2422 7·7 32·9 234 8·6 24·7 2088 7·6 31·2 100 11·0 89·2
VM13 1984 8·5 37·8 204 9·5 43·7 1670 7·9 24·6 110 10·9 76·0
VM31 1726 6·1 22·4 190 9·0 41·6 1465 7·0 19·3 71 10·2 35·2
VM32 608 7·4 25·6 51 10·7 54·4 552 7·9 23·0 5 12·2 27·2
Total 6740 7·5 31·0 679 9·1 37·4 5775 7·6 25·5 286 10·8 69·6

3rd Growth
VM6 2706 7·7 46·7 216 9·4 63·5 2484 8·3 43·5 6 15·8 757·8
VM13 2279 8·5 61·9 248 10·8 80·5 2028 8·7 59·5 3 15·5 198·0
VM31 1967 6·2 27·9 216 10·1 95·9 1746 7·5 30·8 5 8·4 20·8
VM32 697 7·5 53·2 16 11·8 57·7 681 8·4 53·2 0 0·0 0·0
Total 7649 7·5 47·0 696 10·2 79·5 6939 8·2 45·9 14 12·9 388·2

The columns are, from left to right, the total number of sentences (excluding
fragments) for which the LinGO grammar has at least one analysis (‘�’), aver-
age length (‘‖’), and structural ambiguity (‘×’), followed by the last four met-
rics broken down for the following subsets: sentences (i) for which the annotator
rejected all analyses (no active trees), (ii) where annotation resulted in exactly one
preferred analysis (one active tree), and (iii) where full disambiguation was not
accomplished through the first round of annotation (more than one active tree).
Around six per cent of massively ambiguous sentences had not been annotated in
the 1st Growth release and, of the four data sets, only VM32 had been double-
checked by an expert grammarian and (almost) completely disambiguated; there-
fore it exhibits a somewhat higher degree of phrasal ambiguity in the ‘active = 1’
subset.
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grammatical sentences in the four data sets, the grammar has coverage (i.e.
derives at least one analysis) for around 84 and 95% (in the June 2001
and October 2002 versions, respectively) of the corpus. The relatively short
string length – less than eight words per sentence, on average – reflects the
spoken dialogue nature of the corpus, while the average ambiguity rate of
31 analyses per sentence (47 in the 3rd Growth) in part is a function of
sentence length, of course, but also confirms the expectation that a hand-
built precision grammar like the LinGO erg exhibits a radically different
ambiguity rate than, say, grammars derived from the Penn Treebank.

The main differences between the first two Redwoods releases are best
seen in the column labeled ‘active = 1’ in Table I, i.e. the part of the corpus
for which annotation resulted in full disambiguation (which, presumably,
is also the subset of the available data that is immediately most relevant
to experimentation with stochastic parse selection models; see Toutanova
and Manning, 2002). While in the 1st Growth release a residue of some
6% of massively ambiguous items was left unannotated, the 2nd Growth
version included annotations for all sentences, resulting in larger average
ambiguity per sentence across the board; at the same time, a relatively large
number of items still had to be left partially disambiguated (the ‘active >

1’ column) in the 2nd Growth, mostly because of a deficiency in the June
2001 version of the LinGO erg that interacts badly with the Redwoods
discriminants philosophy.6 Conversely, moving to a greatly enhanced gram-
mar in October 2002, the 3rd Growth recovers most of the items left par-
tially resolved earlier – which tend to be highly ambiguous – and also adds
grammatical coverage; part of the increased overall coverage, however, is
achieved by allowing the parser to explore a larger search space (such that
fewer items are rejected due to resource limitations) which, in turn, tends
to add more highly ambiguous sentences into the active part of the corpus.
When comparing across identical subsets of the 2nd and 3rd Growth ver-
sions (as is shown in Table II of Section 4.4 below), in fact, it is revealed
that ambiguity has not increased nearly as drastically as might be sug-
gested by the overall average. In a sense, a fairly small number of massively
ambiguous outliers in the distribution inflates the (arithmetic) averages in
Table I; therefore, we are optimistic that the parse selection problem has
not been made drastically more difficult in more recent Redwoods versions.

While annotation of further data, specifically in fragment utterances,
and inter-annotator cross-validation continue, the current development
snapshot (both 1st and 3rd Growth) of the treebank is publicly available
already. Work on stochastic parse selection models for the Redwoods tree-
bank is underway, so far obtaining an exact match parse selection accuracy
of above 80% from a combination of methods applied to the Redwoods
derivation trees and elementary dependency graphs (see Figures 2 and 4,
respectively); details on Redwoods parse selection results are reported by
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Table II. Quantitative assessment of grammar evolution between June 2001
(underlying the 1st and 2nd Growth versions of Redwoods) and October
2002 (3rd Growth)

Jun-01 Oct-02 �

Appropriate features 148 149 −6% +7%
Type hierarchy (excluding lexicon) 3062 3895 +27%
Grammar rules (including lexical rules) 86 94 −11% +26%
Lexical types (‘parts of speech’) 400 580 +45%
Semantic relations (‘predicates’) 5406 6162 +14%
Lexical entries 8135 9954 +22%
Lines of source (excluding lexicon) 25847 32199 +25%

The column labeled � indicates the differential of change, where two
values indicate that part of the original was eliminated while, at the same
time, new objects were added. The apparently stable absolute numbers of
appropriate features, for example, are misleading in that the two sets only
intersect in 137 elements, i.e. nine original features were replaced by ten new
features.

Toutanova and Manning (2002) and Open et al. (2002). For a follow-up
phase of the Redwoods initiative, we have moved into a different domain
and text genre – annotating an 8000-item e-commerce email corpus –
and also consider more formal, edited text taken from newspaper text or
another widely available on-line source.

4.4. Treebank maintenance and evolution

Among the most challenging research aspects of the Redwoods initiative
was the search for a methodology for automated updates of the treebank,
in order to keep track with the continuous evolution of the underlying
linguistic framework and of the LinGO English Resource Grammar. We
believe that we have found an innovative procedure that – again crucially
building on the notion of elementary linguistic discriminators – allows us
to maintain the treebank in synchronization with ongoing grammar devel-
opment work, with minimal manual effort. In fact, our semi-automatic
update procedure helps grammarians to identify and isolate effects of
changes made in the grammar and, thus, could be integrated into the
regular grammar engineering and regression test routines.

Generally speaking, the update procedure attempts to carry forward the
disambiguating decisions made by annotators from one (older) version of
the base corpus to a newer version (obtained by re-parsing the data with
a revised grammar). As annotator decisions on elementary discriminants
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disambiguate (often) isolated local regions of alternation – and do so by
virtue of (mostly) independent syntacto-semantic properties – even in the
presence of major changes in the grammar there is reason to expect that
at least some of the disambiguating decisions can be re-used. Furthermore,
whenever annotators toggle a discriminant, the software determines the set
of decisions entailed by the decision just made, i.e. negative discriminants
that are incompatible with the remaining set of active parses or positive
discriminants that are known to be equivalent to the one just toggled.
These entailed decisions are recorded at annotation time as well and – in
conjunction with the small amount of redundancy already present in the
use of partly overlapping discriminants already (see the discussion in Sec-
tion 4.1 above) – make the record keeping of ‘disambiguating potential’
highly redundant.

A complete, semi-automated update cycle for the Redwoods treebank
proceeds along the following steps:

(1) corpus preparation using the new grammar, obtain a new ‘target’ cor-
pus by running the parser on it and recording all derivations in the
[incr tsdb()] database;

(2) automated update for each item in the new corpus, extract the set of
discriminants and intersect it with recorded decisions for this sentence
in the earlier corpus;

(3) manual resolution a user-supplied predicate decides, for each item,
whether the automated update was successful and complete; the
remaining items require further annotator inspection and manual
disambiguation.

After close to a decade of work on the LinGO erg, it can be assumed that
the basic phrase structure inventory and granularity of lexical distinctions
have stabilized to a certain degree. However, it is not guaranteed (i) that
one set of discriminants will always fully disambiguate a more recent set of
analyses for the same utterance (as the grammar may introduce additional
distinctions, i.e. more ambiguity), (ii) nor that all recorded discriminants
will have a matching property in the new corpus (i.e. where the grammar
has recast or simply collapsed distinctions), (iii) nor that (seemingly) suc-
cessfully re-playing a history of disambiguating decisions will necessarily
identify the correct, preferred analysis for all sentences. While the third
observation suggests that, in principle, one might arrive at a dis-preferred
parse even when all recorded discriminants match the new corpus and yield
the expected number of active parses (typically one), this seems to be of
no concern in practice: the grammar would have to deliberately rename
and systematically swap elementary properties to achieve such an effect.
Likewise, the second source of potential mismatches in the update cycle
(viz. item (ii) from the list) is mitigated to a certain extent through the
overlap (redundancy) in the recorded decisions. Finally, the first concern
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(item (i) above) directly relates to information that should usually be
highly relevant to the grammar writing when assessing the impact of recent
changes made to the grammar.

To gauge the practical feasibility of our update procedure, we analyzed
records obtained during the update cycle that resulted in the Redwoods 3rd
Growth version. For this exercise to be a strong measure of how much of
the disambiguating information can be retained across grammar changes,
we let close to eighteen months pass before attempting the first update.
Between June 2001 and October 2002, the LinGO erg was very actively
used in building a commercial product (for automated email response) and
adapted from the original VerbMobil domain to e-commerce and finan-
cial transaction emails. Accordingly, the ‘distance’ between the two versions
of the grammar used in the treebank update reported here is exception-
ally large. Table II attempts to compile a summary of changes made to
the grammar between June 2001 and October 2002; although it is in gen-
eral hard to quantify grammar evolution and compare across grammar ver-
sions, some of the measures reported in Table II immediately pertain to
the type of information used in Redwoods discriminants: the inventory of
grammar rules, lexical types, and semantic relations determines the range
of elementary properties used in the Redwoods approach. Between the two
versions of the LinGO erg in question, we observe differentials of 37, 45,
and 14%, respectively, for these three central measures. Clearly, the scope
of the update problem is much bigger in this scenario than would usually
be expected, if one were to keep the treebank in line with the grammar at
least a few times each year, say (as illustrated below in a second, smaller
experiment).

Practical update results are summarized in Table III, showing a number
of relevant measures. The update procedure itself provided important feed-
back to the grammarian that resulted in a series of three engineering cycles
iterating the update procedure and further revisions to the grammar as
a response to observations made during the update cycle; this micro-level
experimentation was carried out on two of the four dialogues, while the
remaining two were only updated once the grammarian had converged on
the final version of the LinGO erg for the 3rd Growth treebank. The direct
transition from the June 2001 to the October 2002 version is depicted in
the upper half of Table III (labeled ‘VM13+31’) and shows that close to
60% of the (ambiguous) sentences in the corpus required no manual inter-
vention, i.e. no additional annotator decisions to fully disambiguate the
parse forest after the application of recorded discriminants from the earlier
corpus. This surprising result comes despite the fact that roughly half of
the discriminants had to be discarded during the update because they no
longer had a corresponding property in the target parse forest. For the
remainder of the data set a slightly smaller percentage of the recorded
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Table III. Quantitative summary of semi-automated update process on ambiguous
items: the table reflects the amount of manual intervention for two distinct update
scenarios, viz. one update after 18 months of grammar evolution and a second
after three weeks (labeled ‘VM13+31’ and ‘VM6+32’, respectively)

original matches update final

Aggregate Items in out yes no in out new in out
� φ φ φ φ φ φ φ φ φ

VM13+31
new = 0 1421 1·1 23·6 8·1 8·5 1·0 13·9 0·0 1·0 13·9
new = 1 708 1·1 38·1 6·9 9·8 2·2 29·6 1·0 1·0 30·8
new ≥ 2 273 1·3 61·5 12·1 15·2 4·2 72·0 2·8 1·0 75·2
Total 2402 1·1 32·2 8·2 9·6 1·8 25·1 0·6 1·0 25·9

VM6+32
new = 0 2195 1·0 72·2 17·2 1·0 1·0 69·3 0·0 1·0 69·3
new = 1 73 1·0 31·9 11·7 1·4 2·2 116·0 1·0 1·0 117·3
new ≥ 2 20 1·0 192·6 13·3 0·8 16·7 297·5 2·9 1·0 313·2
Total 2288 1·0 72·0 17·0 1·1 1·2 72·8 0·1 1·0 73·0

Each data set is aggregated by the number of manual decisions (the parameter
new recorded by the software) required in the update for full disambiguation of
the new corpus, where ‘new = 0’ indicates a fully-automated update. The columns
are, from left to right, the total number of items in each aggregate, average num-
ber of active (‘in’) and rejected (‘out’) parses in the original corpus, average num-
ber of discriminants that were successfully carried over (‘yes’) or had to be dis-
carded (‘no’), in and out parses in the new corpus after applying the discrimants,
average number of additional (manual) annotator decisions, and the ultimate num-
ber of in and out parses.

decisions could be re-used (for an overall average re-use ratio of 46%), but
still the vast majority of items, on average, did not require more than a
single additional decision from annotators to achieve complete disambig-
uation. This appears to, in part, be due to the stable average ambiguity
rate across the two data sets (see also the discussion of Table I above) even
though – given the fairly drastic revisions in the grammar – no two deri-
vations would yield an exact match. The lower part of Table III (labeled
‘VM6+32’), finally, seems to confirm the power of our discriminant-based
update procedure in that – this time across two grammar versions that are
only three weeks apart from each other – the full cycle on 2288 ambigu-
ous items required a total of 130 additional annotator decisions. Given the
full integration of the update procedure and annotation environment, we
conjecture that a full treebank update (across reasonably similar grammar
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versions) can be completed in a matter of minutes or hours and should
become part of the standard regression testing and release cycle for the
LinGO erg.

5. Related Work

To the best of our knowledge, no prior research has been conducted
exploring both the linguistic depth, flexibility in available information,
and dynamic nature of treebanks as proposed presently. Earlier work on
building corpora of hand-selected analyses relative to an existing broad-
coverage grammar was carried out at Xerox PARC, SRI Cambridge, and
Microsoft Research; as all these resources are tuned to proprietary gram-
mars and analysis engines, the resulting treebanks are not publicly avail-
able, nor have reported research results been reproducible. Yet, especially in
the light of the successful LinGO open-source repository, it seems vital that
both the treebank and associated processing schemes and stochastic models
be made widely available.

An on-going initiative at Rijksuniversiteit Groningen (NL) is devel-
oping a bank of dependency structures (Mullen et al., 2001; van der
Beek et al., 2002), as they are derived from an hpsg-like grammar of
Dutch (Bouma et al., 2001). While the general approach resembles the
Redwoods initiative (specifically the discriminator-based method used in
selecting trees from the set of analyses proposed by the grammar; the lkb
tree selection tool was originally developed by Malouf, after all), there
are three important differences. First, the Groningen decision to compose
the treebank from dependency structures commits the resulting resource
to a single stratum of representation, tectogrammatical structure essen-
tially, and thus eliminates some of the flexibility in extracting various
types of linguistic structure that the Redwoods architecture affords. Sec-
ond, and in a similar vein, recording dependency structures means that the
(stochastic) disambiguation component has to consider two syntactically
different analyses equivalent whenever they project identical dependency
structures; hence, there is a mismatch of granularity between the disambig-
uated treebank structures and the primary structures (i.e. derivation trees)
constructed by the grammar. Finally, the Groningen initiative is making the
assumption that the dependency structures, once they are stored in the tree-
bank, are correct and do not change over time (or as an effect of grammar
evolution); disambiguating decisions made by annotators are not recorded
in the treebank, nor does the project expect to dynamically update the tree-
bank with future revisions of the underlying grammar.

Another closely related approach is the work reported by Dipper, 2000,
essentially the application of a broad-coverage lfg grammar for German to
constructing tectogrammatical structures for the TiGer corpus. While many
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of the basic assumptions about the value of a systematic, broad-coverage
grammar for treebank construction are shared, the strategy followed by
Dipper (2000) exhibits the same limitations as the Groningen initiative:
the TiGer target representation, still, is mono-stratal and the approach to
hand-disambiguation and subsequent transfer of result structures into the
TiGer corpus loses the linkage to the original analyses and basic properties
used in the disambiguation, and hence the potential for dynamic adapta-
tion of the data or automatic updates.

Finally, for the BulTreeBank initiative at Sofia (Bulgaria) and Tübingen
(Germany) which, in turn, appears to share a number of goals with our
work, it is too early yet to draw a technical comparison (Simov et al.,
2002).
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Notes
1 All LinGO resources – the software, grammars, and preliminary Redwoods versions –
are available for public download from ‘http://lingo.stanford.edu/’.
2 The general Redwoods methodology is, of course, language-independent, and LinGO
collaborators in Germany, Japan, and Norway have already started the construction of
Redwoods-style treebanks for their languages (termed Eiche, Hinoki, and Bjørk, respec-
tively).
3 It might even turn out that a dynamic inventory of discriminants with increasing com-
plexity will benefit the annotation process. In particular, for highly ambiguous items, it
may be feasible to reduce the parse forest in an initial annotation phase by means of
unlabeled ‘bracketing’ discriminants only (which, in turn, could be seeded from a reliable
phrase boundary detector if such a tool was available) and only in a later annotation
phase increase discriminant granularity to the degree required for full disambiguation.
Another scenario we are exploring involves a successive reduction of the packed parse
forest itself, i.e. the unfolding and disambiguation of packing nodes, as they correspond
to local ambiguity.
4 Pre-existing, external software packages like the freely available Tree Processor (see
‘http://www.cis.upenn.edu/∼dchiang/treep.html’) might supply other candi-
date mapping tools, although unlike the lkb this approach would not have direct access
to the type system underlying the.
5 Work on filling in Redwoods annotations for the fragment utterances is underway now
as a separate annotation cycle. Given the availability of grammaticality and fragment
annotations in the base corpus, a similar approach could be pursued to include analy-
ses for ungrammatical utterances: the LinGO erg, when used in connection with the pet
parser Callmeier, 2000, also provides devices to process ill-formed input and, using spe-
cialized ‘robustness’ rules, also derive analyses for such utterances.
6 The problem in the grammar was that, for nominal heads with multiple optional
complements, the grammar would admit spurious ambiguity as to whether all optional
complements were explicitly discharged through recursive applications of the same non-
branching rule or not. Given the inventory of discriminants sketched in Section 4.1 above,
(spurious) ambiguity of this type cannot be resolved straightforwardly.
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