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   Abstract  

This paper presents results for a maximum-
entropy-based part of speech tagger, which 
achieves superior performance principally 
by enriching the information sources used 
for tagging. In particular, we get improved 
results by incorporating these features: 
(i) more extensive treatment of capitaliza-
tion for unknown words; (ii) features for the 
disambiguation of the tense forms of verbs; 
(iii) features for disambiguating particles 
from prepositions and adverbs. The best 
resulting accuracy for the tagger on the 
Penn Treebank is 96.86% overall, and 
86.91% on previously unseen words. 

Introduction1 

There are now numerous systems for automatic 
assignment of parts of speech (“tagging”), 
employing many different machine learning 
methods. Among recent top performing methods 
are Hidden Markov Models (Brants 2000), 
maximum entropy approaches (Ratnaparkhi 
1996), and transformation-based learning (Brill 
1994). An overview of these and other 
approaches can be found in Manning and 
Schütze (1999, ch. 10). However, all these 
methods use largely the same information 
sources for tagging, and often almost the same 
features as well, and as a consequence they also 
offer very similar levels of performance. This 
stands in contrast to the (manually-built) EngCG 
tagger, which achieves better performance by 
using lexical and contextual information sources 
and generalizations beyond those available to 
such statistical taggers, as Samuelsson and 
Voutilainen (1997) demonstrate. 

                                                      
1 We thank Dan Klein and Michael Saunders for 
useful discussions, and the anonymous reviewers for 
many helpful comments. 

This paper explores the notion that automat-
ically built tagger performance can be further 
improved by expanding the knowledge sources 
available to the tagger. We pay special attention 
to unknown words, because the markedly lower 
accuracy on unknown word tagging means that 
this is an area where significant performance 
gains seem possible.  

We adopt a maximum entropy approach 
because it allows the inclusion of diverse 
sources of information without causing frag-
mentation and without necessarily assuming 
independence between the predictors. A maxi-
mum entropy approach has been applied to part-
of-speech tagging before (Ratnaparkhi 1996), 
but the approach’s ability to incorporate non-
local and non-HMM-tagger-type evidence has 
not been fully explored. This paper describes the 
models that we developed and the experiments 
we performed to evaluate them.  

1 The Baseline Maximum Entropy Model 

We started with a maximum entropy based 
tagger that uses features very similar to the ones 
proposed in Ratnaparkhi (1996). The tagger 
learns a loglinear conditional probability model 
from tagged text, using a maximum entropy 
method.  

The model assigns a probability for every 
tag t in the set Τ  of possible tags given a word 
and its context h, which is usually defined as the 
sequence of several words and tags preceding 
the word. This model can be used for estimating 
the probability of a tag sequence t1…tn given a 
sentence w1…wn : 
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As usual, tagging is the process of assigning the 
maximum likelihood tag sequence to a string of 
words. 

The idea of maximum entropy modeling is 
to choose the probability distribution p that has 
the highest entropy out of those distributions 



that satisfy a certain set of constraints. The 
constraints restrict the model to behave in 
accordance with a set of statistics collected from 
the training data. The statistics are expressed as 
the expected values of appropriate functions 
defined on the contexts h and tags t.  In particu-
lar, the constraints demand that the expectations 
of the features for the model match the 
empirical expectations of the features over the 
training data. 

For example, if we want to constrain the 
model to tag make as a verb or noun with the 
same frequency as the empirical model induced 
by the training data, we define the features: 
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Some commonly used statistics for part of 
speech tagging are:  how often a certain word 
was tagged in a certain way; how often two tags 
appeared in sequence or how often three tags 
appeared in sequence. These look a lot like the 
statistics a Markov Model would use. However, 
in the maximum entropy framework it is 
possible to easily define and incorporate much 
more complex statistics, not restricted to n-gram 
sequences. 

The constraints in our model are that the 
expectations of these features according to the 
joint distribution p are equal to the expectations 
of the features in the empirical (training data) 
distribution p~ : ),(),( ),(~),( thfEthfE ithpithp = . 

Having defined a set of constraints that our 
model should accord with, we proceed to find 
the model satisfying the constraints that maxi-
mizes the conditional entropy of p . The intu-
ition is that such a model assumes nothing apart 
from that it should satisfy the given constraints. 

Following Berger et al. (1996), we approxi-
mate ),( thp , the joint distribution of contexts 

and tags, by the product of )(~ hp , the empirical 
distribution of histories h, and the conditional 
distribution )|( htp : )|()(~),( htphpthp ⋅≈ . 
Then for the example above, our constraints 
would be the following, for { }2,1∈j : 
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This approximation is used to enable 
efficient computation. The expectation for a fea-
ture f is: 
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where H is the space of possible contexts h 
when predicting a part of speech tag t. Since the 
contexts contain sequences of words and tags 
and other information, the space H is huge. But 
using this approximation, we can instead sum 
just over the smaller space of observed contexts 
X in the training sample, because the empirical 
prior )(~ hp  is zero for unseen contexts h: 

∑
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The model that is a solution to this 
constrained optimization task is an exponential 
(or equivalently, loglinear) model with the para-
metric form: 
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where the denominator is a normalizing term 
(sometimes referred to as the partition function). 
The parameters •j correspond to weights for the 
features fj.  

We will not discuss in detail the characteris-
tics of the model or the parameter estimation 
procedure used – Improved Iterative Scaling. 
For a more extensive discussion of maximum 
entropy methods, see Berger et al. (1996) and 
Jelinek (1997).  However, we note that our pa-
rameter estimation algorithm directly uses equa-
tion (1). Ratnaparkhi (1996: 134) suggests use 
of an approximation summing over the training 
data, which does not sum over possible tags: 
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However, we believe this passage is in error: 
such an estimate is ineffective in the iterative 
scaling algorithm. Further, we note that expecta-
tions of the form (1) appear in Ratnaparkhi 
(1998: 12). 

1.1 Features in the Baseline Model 

In our baseline model, the context available 
when predicting the part of speech tag of a word 
wi in a sentence of words {w1… wn} with tags 
{t1… tn} is {ti-1 ti-2 wi wi+1}. The features that 
define the constraints on the model are obtained 
by instantiation of feature templates as in 
Ratnaparkhi (1996). Special feature templates 
exist for rare words in the training data, to 
increase the model’s prediction capacity for 
unknown words.   



The actual feature templates for this model 
are shown in the next table. They are a subset of 
the features used in Ratnaparkhi (1996).  
 

No. Feature Type Template 
1. General wi=X & ti =T 
2. General ti-1=T1 & ti=T 
3. General ti-1=T1 & ti-2=T2 & ti=T 
4. General  wi+1=X & ti =T 
5. Rare Suffix of wi =S, 

|S|<5 & ti=T 
6. Rare Prefix of wi =P, 1<|P|<5  

& ti=T 
7. Rare wi contains a number 

& ti=T 
8. Rare wi contains an uppercase 

character & ti=T 
9. Rare wi contains a hyphen 

& ti=T 

Table 1 Baseline Model Features 

General feature templates can be instantiated by 
arbitrary contexts, whereas rare feature tem-
plates are instantiated only by histories where 
the current word wi is rare. Rare words are 
defined to be words that appear less than a 
certain number of times in the training data 
(here, the value 7 was used).  

In order to be able to throw out features that 
would give misleading statistics due to sparse-
ness or noise in the data, we use two different 
cutoff values for general and rare feature 
templates (in this implementation, 5 and 45 
respectively). As seen in Table 1 the features are 
conjunctions of a boolean function on the 
history h and a boolean function on the tag t. 
Features whose first conjuncts are true for more 
than the corresponding threshold number of 
histories in the training data are included in the 
model.  

The feature templates in Ratnaparkhi (1996) 
that were left out were the ones that look at the 
previous word, the word two positions before 
the current, and the word two positions after the 
current. These features are of the same form as 
template 4 in Table 1, but they look at words in 
different positions.  

Our motivation for leaving these features 
out was the results from some experiments on 
successively adding feature templates. Adding 
template 4 to a model that incorporated the 
general feature templates 1 to 3 only and the 
rare feature templates 5–8 significantly 
increased the accuracy on the development set – 
from 96.0% to 96.52%. The addition of a 
feature template that looked at the preceding 

word and the current tag to the resulting model 
slightly reduced the accuracy. 

1.2 Testing and Performance 

The model was trained and tested on the part-of-
speech tagged WSJ section of the Penn 
Treebank. The data was divided into contiguous 
parts: sections 0–20 were used for training, 
sections 21–22 as a development test set, and 
sections 23–24 as a final test set. The data set 
sizes are shown below together with numbers of 
unknown words. 
 

Data Set Tokens Unknown 
Words Training 1,061,768  

Development 116,206 3271 (2.81%) 

Test 111,221 2879 (2.59%) 

Table 2 Data Sizes 

The testing procedure uses a beam search to 
find the tag sequence with maximal probability 
given a sentence. In our experiments we used a 
beam of size 5. Increasing the beam size did not 
result in improved accuracy.  

The preceding tags for the word at the 
beginning of the sentence are regarded as 
having the pseudo-tag NA. In this way, the 
information that a word is the first word in a 
sentence is available to the tagger. We do not 
have a special end-of-sentence symbol. 

We used a tag dictionary for known words 
in testing. This was built from tags found in the 
training data but augmented so as to capture a 
few basic systematic tag ambiguities that are 
found in English. Namely, for regular verbs the 
-ed form can be either a VBD or a VBN and 
similarly the stem form can be either a VBP or 
VB. Hence for words that had occurred with 
only one of these tags in the training data the 
other was also included as possible for 
assignment.  

The results on the test set for the Baseline 
model are shown in Table 3. 
 

Model  Overall 
Accuracy 

Unknown Word 
Accuracy 

Baseline 96.72% 84.5%  

Ratnaparkhi 
(1996) 

96.63% 85.56% 

Table 3 Baseline model performance 

This table also shows the results reported in 
Ratnaparkhi (1996: 142) for convenience. The 
accuracy figure for our model is higher overall 



but lower for unknown words. This may stem 
from the differences between the two models’ 
feature templates, thresholds, and approxi-
mations of the expected values for the features, 
as discussed in the beginning of the section, or 
may just reflect differences in the choice of 
training and test sets (which are not precisely 
specified in Ratnaparkhi (1996)).  

The differences are not great enough to 
justify any definite statement about the different 
use of feature templates or other particularities 
of the model estimation. One conclusion that we 
can draw is that at present the additional word 
features used in Ratnaparkhi (1996) – looking at 
words more than one position away from the 
current – do not appear to be helping the overall 
performance of the models. 

1.3 Discussion of Problematic Cases 

A large number of words, including many of the 
most common words, can have more than one 
syntactic category. This introduces a lot of 
ambiguities that the tagger has to resolve. Some 
of the ambiguities are easier for taggers to 
resolve and others are harder. 

Some of the most significant confusions that 
the Baseline model made on the test set can be 
seen in Table 5. The row labels in Table 5 
signify the correct tags, and the column labels 
signify the assigned tags. For example, the num-
ber 244 in the (NN, JJ) position is the number of 
words that were NNs but were incorrectly 
assigned the JJ category. These particular confu-
sions, shown in the table, account for a large 
percentage of the total error (2652/3651 = 
72.64%). Table 6 shows part of the Baseline 
model’s confusion matrix for just unknown 
words. 

Table 4 shows the Baseline model’s overall 
assignment accuracies for different parts of 
speech. For example, the accuracy on nouns is 
greater than the accuracy on adjectives. The 
accuracy on NNPS (plural proper nouns) is a 
surprisingly low 41.1%.  

 
Tag Accuracy Tag Accuracy 
IN 97.3% JJ 93.0% 
NN 96.5% RB 92.2% 
NNP 96.2% VBN 90.4% 
VBD 95.2% RP 41.5% 
VB 94.0% NNPS 41.1% 
VBP 93.4%   

Table 4 Accuracy of assignments for different parts 
of speech for the Baseline model.   

Tagger errors are of various types. Some are the 
result of inconsistency in labeling in the training 
data (Ratnaparkhi 1996), which usually reflects 
a lack of linguistic clarity or determination of 
the correct part of speech in context. For 
instance, the status of various noun premodifiers 
(whether chief or maximum is NN or JJ, or 
whether a word in -ing is acting as a JJ or VBG) 
is of this type. Some, such as errors between 
NN/NNP/NNPS/NNS largely reflect difficulties 
with unknown words. But other cases, such as 
VBN/VBD and VB/VBP/NN, represent syste-
matic tag ambiguity patterns in English, for 
which the right answer is invariably clear in 
context, and for which there are in general good 
structural contextual clues that one should be 
able to use to disambiguate. Finally, in another 
class of cases, of which the most prominent is 
probably the RP/IN/RB ambiguity of words like 
up, out, and on, the linguistic distinctions, while 
having a sound empirical basis (e.g., see Baker 
(1995: 198–201), are quite subtle, and often 
require semantic intuitions. There are not good 
syntactic cues for the correct tag (and further-
more, human taggers not infrequently make 
errors). Within this classification, the greatest 
hopes for tagging improvement appear to come 
from minimizing errors in the second and third 
classes of this classification. 

In the following sections we discuss how we 
include additional knowledge sources to help in 
the assignment of tags to forms of verbs, 
capitalized unknown words, particle words, and 
in the overall accuracy of part of speech 
assignments. 

2 Improving the Unknown Words Model 

The accuracy of the baseline model is markedly 
lower for unknown words than for previously 
seen ones. This is also the case for all other 
taggers, and reflects the importance of lexical 
information to taggers: in the best accuracy 
figures published for corpus-based taggers, 
known word accuracy is around 97%, whereas 
unknown word accuracy is around 85%. 

In following experiments, we examined 
ways of using additional features to improve the 
accuracy of tagging unknown words. As previ-
ously discussed in Mikheev (1999), it is possible 
to improve the accuracy on capitalized words 
that might be proper nouns or the first word in a 
sentence, etc.  

 



 JJ   NN   NNP  NNPS  RB   RP   IN   VB   VBD   VBN  VBP  Total 
JJ     0 177 56  0  61  2  5  10  15 108  0  488 
NN    244  0 103  0  12  1  1  29  5  6  19  525 
NNP   107 106 0  132  5  0  7  5  1  2  0  427 
NNPS   1  0 110  0  0  0  0  0  0  0  0  142 
RB     72  21 7  0  0  16 138  1  0  0  0  295 
RP     0  0 0  0  39  0  65  0  0  0  0  104 
IN     11  0 1  0 169 103  0  1  0  0  0  323 
VB     17  64 9  0  2  0  1  0  4  7  85  189 
VBD    10  5 3  0  0  0  0  3  0 143  2  166 
VBN   101  3 3  0  0  0  0  3 108  0  1  221 
VBP    5  34 3  1  1  0  2  49  6  3  0  104 
Total 626 536 348 144 317 122 279 102 140 269 108 3651 

  Table 5 Confusion matrix of the Baseline model showing top confusion pairs overall  

 
 JJ NN NNP NNS NNPS VBN Total 

JJ 0 55 25 1 0 10 107 
NN 55 0 26 5 0 2 98 
NNP 20 41 0 5 4 0 87 
NNPS 0 0 10 11 0 0 23 
NNS 1 3 6 0 1 0 15 
VBN 12 1 1 0 0 0 20 
Total 109 121 98 33 7 19 448 

Table 6 Confusion matrix of the Baseline model for unknown words showing top confusion pairs 

 
 Baseline Model 1 

Capitalization 
Model 2 

Verb forms 
Model 3 
Particles 

Accuracy Test Set 96.72% 96.76% 96.83% 96.86% 

Unknown Words Accuracy Test Set 84.50% 86.76% 86.87% 86.91% 

Accuracy Development Set 96.53% 96.55% 96.58% 96.62% 

Unknown Words Accuracy Development Set 85.48% 86.03% 86.03% 86.06% 

Table 7 Accuracies of all models on the test and development sets 

 
 Baseline Model 1 

Capitalization 
Model 2 

Verb Forms 
Model 3 

Particles 
1. Current word 15,832 15,832 15,837 15,927 
2. Previous tag 1,424 1,424 1,424 1,424 
3. Previous two tags 16,124 16,124 16,124 16,124 
4. Next word 80,075 80,075 80,075 80,075 
5. Suffixes 3,361 3,361 3,361 3,387 
6. Prefixes 5,311 0 0 0 
7. Contains uppercase character 34 34 34 34 
8. Contains number 7 7 7 7 
9. Contains hyphen 20 20 20 20 
10. Capitalized and mid. sentence 0 33 33 33 
11. All letters uppercase 0 30 30 30 
12. VBP|VB feature 0 0 2 2 
13. VBD|VBN feature 0 0 3 3 
14. Particles, type 1 0 0 0 9 
15. Particles, type 2 0 0 0 2,178 
Total 122,188 116,940 116,960 118,944 

Table 8 Number of features of different types 



For example, the error on the proper noun 
category (NNP) accounts for a significantly 
larger percent of the total error for unknown 
words than for known words. In the Baseline 
model, of the unknown word error 41.3% is due 
to words being NNP and assigned to some other 
category, or being of other category and 
assigned NNP. The percentage of the same type 
of error for known words is 16.2%. 

The incorporation of the following two 
feature schemas greatly improved NNP 
accuracy: 

(1) A feature that looks at whether all the letters 
of a word are uppercase. The feature that 
looked at capitalization before (cf. Table 1, 
feature No. 8) is activated when the word 
contains an uppercase character. This turns 
out to be a notable distinction because, for 
example, in titles in the WSJ data all words 
are in all uppercase, and the distribution of 
tags for these words is different from the 
overall distribution for words that contain 
an uppercase character.  

(2) A feature that is activated when the word 
contains an uppercase character and it is not 
at the start of a sentence. These word tokens 
also have a different tag distribution from 
the distribution for all tokens that contain an 
uppercase character.  

Conversely, empirically it was found that the 
prefix features for rare words were having a net 
negative effect on accuracy.  We do not at 
present have a good explanation for this 
phenomenon. 

The addition of the features (1) and (2) and 
the removal of the prefix features considerably 
improved the accuracy on unknown words and 
the overall accuracy. The results on the test set 
after adding these features are shown below: 
 

Overall Accuracy Unknown Word Accuracy 
96.76% 86.76% 

Table 9 Accuracy when adding capitalization fea-
tures and removing prefix features. 

Unknown word error is reduced by 15% as 
compared to the Baseline model. 

It is important to note that (2) is composed 
of information already ‘known’ to the tagger in 
some sense. This feature can be viewed as the 
conjunction of two features, one of which is 
already in the baseline model, and the other of 
which is the negation of a feature existing in the 

baseline model – since for words at the begin-
ning of a sentence, the preceding tag is the 
pseudo-tag NA, and there is a feature looking at 
the preceding tag. Even though our maximum 
entropy model does not require independence 
among the predictors, it provides for free only a 
simple combination of feature weights, and 
additional ‘interaction terms’ are needed to 
model non-additive interactions (in log-space 
terms) between features.  

3 Features for Disambiguating Verb Forms 

Two of the most significant sources of classifier 
errors are the VBN/VBD ambiguity and the 
VBP/VB ambiguity. As seen in Table 5, 
VBN/VBD confusions account for 6.9% of the 
total word error. The VBP/VB confusions are a 
smaller 3.7% of the errors. In many cases it is 
easy for people (and for taggers) to determine 
the correct form. For example, if there is a to 
infinitive or a modal directly preceding the 
VB/VBP ambiguous word, the form is certainly 
non-finite. But often the modal can be several 
positions away from the current position – still 
obvious to a human, but out of sight for the 
baseline model.  

To help resolve a VB/VBP ambiguity in 
such cases, we can add a feature that looks at 
the preceding several words (we have chosen 8 
as a threshold), but not across another verb, and 
activates if there is a to there, a modal verb, or a 
form of do, let, make, or help (verbs that 
frequently take a bare infinitive complement). 

Rather than having a separate feature look at 
each preceding position, we define one feature 
that looks at the chosen number of positions to 
the left. This both increases the scope of the 
available history for the tagger and provides a 
better statistic because it avoids fragmentation.  

We added a similar feature for resolving 
VBD/VBN confusions. It activates if there is a 
have or be auxiliary form in the preceding 
several positions (again the value 8 is used in 
the implementation). 

The form of these two feature templates was 
motivated by the structural rules of English and 
not induced from the training data, but it should 
be possible to look for “predictors” for certain 
parts of speech in the preceding words in the 
sentence by, for example, computing association 
strengths. 

The addition of the two feature schemas 
helped reduce the VB/VBP and VBD/VBN con-
fusions. Below is the performance on the test set 



of the resulting model when features for disam-
biguating verb forms are added to the model of 
Section 2. The number of VB/VBP confusions 
was reduced by 23.1% as compared to the base-
line. The number of VBD/VBN confusions was 
reduced by 12.3%. 
 

Overall Accuracy Unknown Word Accuracy 
96.83% 86.87%  

Table 10 Accuracy of the extended model 

4 Features for Particle Disambiguation 

As discussed in section 1.3 above, the task of 
determining RB/RP/IN tags for words like 
down, out, up is difficult and in particular 
examples, there are often no good local 
syntactic indicators. For instance, in (2), we find 
the exact same sequence of parts of speech, but 
(2a) is a particle use of on, while (2b) is a 
prepositional use. Consequently, the accuracy 
on the rarer RP (particles) category is as low as 
41.5% for the Baseline model (cf. Table 4). 

(2) a. Kim took on the monster. 
b. Kim sat on the monster. 

We tried to improve the tagger’s capability to 
resolve these ambiguities through adding infor-
mation on verbs’ preferences to take specific 
words as particles, or adverbs, or prepositions. 
There are verbs that take particles more than 
others, and particular words like out are much 
more likely to be used as a particle in the 
context of some verb than other words 
ambiguous between these tags. 

We added two different feature templates to 
capture this information, consisting as usual of a 
predicate on the history h, and a condition on 
the tag t. The first predicate is true if the current 
word is often used as a particle, and if there is a 
verb at most 3 positions to the left, which is 
“known” to have a good chance of taking the 
current word as a particle.  The verb-particle 
pairs that are known by the system to be very 
common were collected through analysis of the 
training data in a preprocessing stage. 

The second feature template has the form: 
The last verb is v and the current word is w and 
w has been tagged as a particle and the current 
tag is t. The last verb is the pseudo-symbol NA 
if there is no verb in the previous three 
positions.  

These features were some help in reducing 
the RB/IN/RP confusions. The accuracy on the 

RP category rose to 44.3%. Although the overall 
confusions in this class were reduced, some of 
the errors were increased, for example, the 
number of INs classified as RBs rose slightly. 
There seems to be still considerable room to 
improve these results, though the attainable 
accuracy is limited by the accuracy with which 
these distinctions are marked in the Penn 
Treebank (on a quick informal study, this 
accuracy seems to be around 85%). The next 
table shows the final performance on the test 
set. 
 

Overall Accuracy Unknown Word Accuracy 
96.86% 86.91%  

Table 11 Accuracy of the final model 

For ease of comparison, the accuracies of all 
models on the test and development sets are 
shown in Table 7. We note that accuracy is 
lower on the development set. This presumably 
corresponds with Charniak’s (2000: 136) obser-
vation that Section 23 of the Penn Treebank is 
easier than some others. Table 8 shows the 
different number of feature templates of each 
kind that have been instantiated for the different 
models as well as the total number of features 
each model has. It can be seen that the features 
which help disambiguate verb forms, which 
look at capitalization and the first of the feature 
templates for particles are a very small number 
as compared to the features of the other kinds. 
The improvement in classification accuracy 
therefore comes at the price of adding very few 
parameters to the maximum entropy model and 
does not result in increased model complexity. 

Conclusion 

Even when the accuracy figures for corpus-
based part-of-speech taggers start to look 
extremely similar, it is still possible to move 
performance levels up.  The work presented in 
this paper explored just a few information 
sources in addition to the ones usually used for 
tagging. While progress is slow, because each 
new feature applies only to a limited range of 
cases, nevertheless the improvement in accuracy 
as compared to previous results is noticeable, 
particularly for the individual decisions on 
which we focused.  

The potential of maximum entropy methods 
has not previously been fully exploited for the 
task of assignment of parts of speech. We incor-
porated into a maximum entropy-based tagger 



more linguistically sophisticated features, which 
are non-local and do not look just at particular 
positions in the text. We also added features that 
model the interactions of previously employed 
predictors. All of these changes led to modest 
increases in tagging accuracy.  

This paper has thus presented some initial 
experiments in improving tagger accuracy 
through using additional information sources. In 
the future we hope to explore automatically 
discovering information sources that can be 
profitably incorporated into maximum entropy 
part-of-speech prediction. 
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