
David McClosky, Mihai Surdeanu, Chris
Manning and many, many others

4/22/2011

* Previously known as BaselineNLProcessor

•  Part I: KBP task overview

•  Part II: Stanford CoreNLP

•  Part III: NFL Information Extraction

•  KBP is a bake-off (shared task) held yearly

•  Task: Given an entity, fill in values for various slots

•  Entities can be people or organizations

•  Slots are prespecified

•  Provenance (textual sources) must be provided

per:city_of_birth: Riverside
per:stateorprovince_of_birth: Iowa
per:date_of_birth: 2233

per:parents: George and Winona Kirk

per:schools_attended: Starfleet Academy

•  Inputs
•  Knowledge base

•  Entities, slot names and fillers
•  Source collection

•  Wikipedia, newswire text, broadcast news
•  Evaluation data from 2009, 2010

•  Queries (entities)
•  Slot names and fillers

•  Testing: Queries

•  Output
•  Slot name, filler, document ID (provenance)

per:parents: George and Winona Kirk
per:city_of_birth: Riverside
per:stateorprovince_of_birth: Iowa
per:date_of_birth: 2233
per:title: Captain

Type
List of people
City
State
Date
Title?
…

per:parents: George and Winona Kirk

per:parents: George Kirk

=?

per:parents: Winona Kirk

per:city_of_birth: Shi’Kahr
per:stateorprovince_of_birth: Iowa

•  Temporal slot filling:
•  per:spouse
•  per:title
•  org:top_employees/members
•  ...

•  Simple representation:
•  [T1, T2, T3, T4]

 = T1 ≤ start ≤ T2, T3 ≤ end ≤ T4
•  Any can be null to indicate a lack of constraint
•  Day resolution (YYYYMMDD)

new

per:title: Captain
[22650101, 22651231, 22700101, 22701231]

per:title: Captain
[22650101, 22651231, 22700101, 22701231]

Start is sometime during the year 2265

•  Part I: KBP task overview

•  Part II: Stanford CoreNLP

•  Part III: NFL Information Extraction

We’ve been working on a whole bunch of stuff:
•  Joint NLP models
•  Coreference (now in Stanford CoreNLP)
•  Supervised relation extraction (NFL)
•  Supervised event extraction (BioNLP)
•  Distantly supervised relation extraction (KBP)
•  Scenario templates and graph models in IE

This section describes our NLP pipeline,
common to many of these components.

http://nlp.stanford.edu/software/corenlp.shtml

•  Approach
•  How to use
• Command-line (shell, batch)
• Java interface

•  Quickly and painlessly get linguistic
annotations for a text

•  Hides variations across components behind
common API

•  Simple Java objects passed around (no XML,
UIMA, etc.)
•  But results can easily be written to XML, etc.

Annotator

Annotation

Annotator

…

Annotator

•  There are dependencies between Annotators  the pipeline ordering is important!
AnnotationPipeline

Store the input text as well as the output of each Annotator as values in
an Annotation Map.

Tokenization

Sentence Splitting

Part-of-speech Tagging

Morphological Analysis

Named Entity Recognition

Syntactic Parsing

NFL Relation Extraction

Coreference Resolution

Raw
text

E
xe

cu
tio

n
Fl

ow

Annotation
Object

Annotated
text

(tokenize)

(ssplit)

(pos)

(lemma)

(ner)

(parse)

(dcoref)

(nfl)

•  Approach
•  How to use
• Command-line (shell, batch)
• Java interface

•  java -cp classes:lib/xom.jar:lib/jgrapht.jar -Xmx6g
edu.stanford.nlp.pipeline.StanfordCoreNLP -props src/
edu/stanford/nlp/pipeline/StanfordCoreNLP.properties!

Example sentence: Stanford is located in California.!
Sentence #1 (6 tokens):!
[Word=Stanford Current=Stanford Tag=NNP Lemma=Stanford NER=ORGANIZATION] !
[Word=is Current=is Tag=VBZ Lemma=be NER=O] !
[Word=located Current=located Tag=VBN Lemma=locate NER=O] !
[Word=in Current=in Tag=IN Lemma=in NER=O] !
[Word=California Current=California Tag=NNP Lemma=California NER=LOCATION] !
[Word=. Current=. Tag=. Lemma=. NER=O]!

(ROOT (S (NP (NNP Stanford))!
 (VP (VBZ is) (VP (VBN located) (PP (IN in) (NP (NNP California)))))!
 (. .)))!

nsubjpass(located-3, Stanford-1)!
auxpass(located-3, is-2)!
prep_in(located-3, California-5)!

•  java -cp classes:lib/xom.jar:lib/jgrapht.jar -Xmx6g
edu.stanford.nlp.pipeline.StanfordCoreNLP -props src/
edu/stanford/nlp/pipeline/StanfordCoreNLP.properties  
-file input.txt!

•  java -cp classes:lib/xom.jar:lib/jgrapht.jar -Xmx6g
edu.stanford.nlp.pipeline.StanfordCoreNLP -props src/
edu/stanford/nlp/pipeline/StanfordCoreNLP.properties  
-file inputdirectory –extension .xml!

•  java -cp classes:lib/xom.jar:lib/jgrapht.jar -Xmx6g
edu.stanford.nlp.pipeline.StanfordCoreNLP -props src/
edu/stanford/nlp/pipeline/StanfordCoreNLP.properties  
-file inputdirectory –outputDirectory somewhereElse  
-outputExtension .annotated –replaceExtension true  
-noClobber!

Annotator pipeline =!
 new StanfordCoreNLP(properties);!

Annotation annotation =!
 new Annotation(text);!

pipeline.annotate(annotation);!

•  tokenize – split text into tokens, PTB-style
•  cleanxml – remove specific XML tags
•  truecase – restore case (e.g. if all lowercase, etc.)
•  ssplit – sentence splitter
•  pos – add POS tags to tokens
•  lemma – add lemmas to tokens

•  ner – add named entity tags to tokens
•  regexner – add rule-based NER tags from regular

expressions
•  parse – add parse trees (Stanford Parser)
•  berkeleyparse, charniakparse –

Add parse trees from other parsers as well
•  dcoref – add coreference links
•  nfl (Machine Reading distribution only) – add NFL

entity and relation extraction mentions
•  time – add temporal annotations (coming later!)

coming soon

List<CoreMap> sentences = annotation.get(SentencesAnnotation.class);!
for (CoreMap sentence : sentences) {!
 // traversing the words in the current sentence!
 for (CoreLabel token: sentences.get(i).get(TokensAnnotation.class)) {!
 String word = token.get(TextAnnotation.class);!
 String pos = token.get(PartOfSpeechAnnotation.class);!
 String ne = token.get(NamedEntityTagAnnotation.class);!
 }!
 // this is the parse tree of the current sentence!
 Tree tree = sentence.get(TreeAnnotation.class);!
}!

// this is the coreference link graph!
List<Pair<IntTuple, IntTuple>> graph = annotation.get(CorefGraphAnnotation.class);!

List<CoreMap> sentences = annotation.get(SentencesAnnotation.class);!
for (CoreMap sentence : sentences) {!
 // traversing the words in the current sentence!
 for (CoreLabel token: sentences.get(i).get(TokensAnnotation.class)) {!
 String word = token.get(TextAnnotation.class);!
 String pos = token.get(PartOfSpeechAnnotation.class);!
 String ne = token.get(NamedEntityTagAnnotation.class);!
 }!
 // this is the parse tree of the current sentence!
 Tree tree = sentence.get(TreeAnnotation.class);!
}!

// this is the coreference link graph!
List<Pair<IntTuple, IntTuple>> graph = annotation.get(CorefGraphAnnotation.class);!

hash map with class objects as keys and custom value types

List<CoreMap> sentences = annotation.get(SentencesAnnotation.class);!
for (CoreMap sentence : sentences) {!
 // traversing the words in the current sentence!
 for (CoreLabel token: sentences.get(i).get(TokensAnnotation.class)) {!
 String word = token.get(TextAnnotation.class);!
 String pos = token.get(PartOfSpeechAnnotation.class);!
 String ne = token.get(NamedEntityTagAnnotation.class);!
 }!
 // this is the parse tree of the current sentence!
 Tree tree = sentence.get(TreeAnnotation.class);!
}!

// this is the coreference link graph!
List<Pair<IntTuple, IntTuple>> graph = annotation.get(CorefGraphAnnotation.class);!

hash map with class objects as keys and custom value types

CoreMap with additional properties (HasWord, HasTag, etc.)

List<CoreMap> sentences = annotation.get(SentencesAnnotation.class);!
for (CoreMap sentence : sentences) {!
 // traversing the words in the current sentence!
 for (CoreLabel token: sentences.get(i).get(TokensAnnotation.class)) {!
 String word = token.get(TextAnnotation.class);!
 String pos = token.get(PartOfSpeechAnnotation.class);!
 String ne = token.get(NamedEntityTagAnnotation.class);!
 }!
 // this is the parse tree of the current sentence!
 Tree tree = sentence.get(TreeAnnotation.class);!
}!

// this is the coreference link graph!
List<Pair<IntTuple, IntTuple>> graph = annotation.get(CorefGraphAnnotation.class);!

hash map with class objects as keys and custom value types

CoreMap with additional properties (HasWord, HasTag, etc.)

uniquely identify a word by <sentence position, token position>
(both offsets start at 0) [note: annotation will change soon…]

/** Simple annotator that recognizes locations stored in a gazetteer */!
public class GazetteerLocationAnnotator implements Annotator {!
 // this is the only method that must be implemented by an annotator!
 public void annotate(Annotation annotation) {!
 // traverse all sentences in this document (assumes that text already tokenized) !
 for (CoreMap sentence : annotation.get(SentencesAnnotation.class)) {!
 // loop over all tokens in sentence!
 List<CoreLabel> tokens = sentence.get(TokensAnnotation.class);!
 for (int start = 0; start < tokens.size(); start++) {!
 // assumes that the gazetteer returns the token index!
 // after the match or -1 otherwise!
 int end = Gazetteer.isLocation(tokens, start);!
 if (end > start) {!
 for (int i = start; i < end; i ++) {!
 tokens.get(i).set(NamedEntityTagAnnotation.class, "LOCATION");!
 }!
 }!
 }!
 }!
 }!
}!

•  Part I: KBP task overview

•  Part II: Stanford CoreNLP

•  Part III: NFL Information Extraction

•  Add “nfl” to the “annotators” property.
•  Construct and call the same way.
•  Interpreting output:

List<CoreMap> sentences = annotation.get(SentencesAnnotation.class);!
for (CoreMap sentence : sentences) {!
 List<EntityMention> entities =!
 sentence.get(MachineReadingAnnotations.EntityMentionsAnnotation.class);!
 List<RelationMention> relations =!
 sentence.get(MachineReadingAnnotations.RelationMentionsAnnotation.class);!
}!

Span and type

Entities and type

•  ExtractionObject:!
•  CoreMap getSentence()!
•  Span getExtent()!
•  String getType()!
•  Counter<String> getTypeProbabilities()!

•  EntityMention:!
•  int getSyntacticHeadTokenPosition()!
•  CoreLabel getSyntacticHeadToken()!

•  RelationMention:!
•  List<ExtractionObject> getArgs()!
•  List<String> getArgNames()!

•  Named entity recognition
•  Relation extraction

(Throughout: Lessons from adapting our IE system to NFL domain)

•  Named entity recognition
•  Relation extraction

(Throughout: Lessons from adapting our IE system to NFL domain)

•  Use NER system to classify each token as one of the NFL entity
types or “O” (other)

•  Contiguous tokens of the same type are combined into
EntityMentions!

•  Marginal probabilities on each token form the results of
getTypeProbabilities()

•  Extended the NFL team gazetteer with NFLGame entities
extracted from Dekang Lin’s distributional similarity dictionary:
•  seeds: win, loss, game
•  added: victory, triumph, shutout, defeat, lead, match, rout,

strikeout...
•  If a word sequence (partially) matches a gazetteer entry and it

includes the head of a NP  gazetteer label
•  If the generic NER labels a sequence as DATE  Date
•  If the generic NER labels a sequence as NUMBER and it is a

valid score and not followed by measurement unit  Score

Goal: maximize recall!

•  Harvested 1400+ sentences on NFL games from
sports.yahoo.com
•  “It was the third quarter of the Philadelphia Eagles' 38-10 rout of the

Carolina Panthers on Sunday and both franchises suddenly had big
worries about their veteran quarterbacks.”

•  Tagged corpus with rule-based NER, which maximized recall
•  Generated MTurk HITs from this data, using all possible

relations between the identified NEs
•  “Is it true that the Philadelphia Eagles scored 38 points in this

game?”  yes
•  “Is it true that the Philadelphia Eagles scored 10 points in this

game?”  no
•  Averaged annotations from four annotators for each HIT

•  MTurk helped only up to a point…
•  Why?

•  There was a bug in the rule-based NER used to generate
candidates

•  Turkers could not identify subtle mistakes, hence errors
propagated in the final MTurk corpus
•  “… the victory game against Dallas”
•  Is “victory” the best word to describe the game?  yes
•  Is “game” the best word to describe the game?  yes

•  Gazetteer used for team names, “game” entities
•  “Packers” should match “Green Bay Packers”
•  …but “Bay” shouldn’t.

•  Tokenizer wasn’t splitting scores (“37-7”)

•  Head finder needed adjustments
•  Heads of entities are critical features for both extraction tasks

•  Named entity recognition
•  Relation extraction

(Throughout: Lessons from adapting our IE system to NFL domain)

•  Logistic regression classifier
•  Positive datums: annotated relations in the corpus
•  Negative datums: all other possible combinations between existing

entities
•  Example:

•  “It was the third quarter of the Philadelphia Eagles' 38-10 rout of the
Carolina Panthers on Sunday and both franchises suddenly had big
worries about their veteran quarterbacks.”

•  Positive: teamScoringAll(“Philadelphia Eagles”, 38)
•  Negative: teamScoringAll (“Philadelphia Eagles”, 10)

•  Features:
•  info on the entities in the relation
•  syntactic path between entities (both dependencies and constituents)
•  surface path between entities
•  entities between the relation elements

•  Relation classifier is one-against-many
•  Can only predict one relation per pair of entities

•  NFL domain often violates this!
•  gameWinner(team, game)  teamInGame(team, game)

•  System also doesn’t understand domain semantics, e.g.:
•  Games have exactly one winner and one loser.
•  Teams with higher scores win.

•  Simple logical rules fill in some of these cases.

System Entity Mentions Relation Mentions
Baseline 73.7 49.7
+ gazetteer features 74.0 50.2
+ rule-based model for NFLTeam 75.5 53.2
+ improved head finding 76.1 57.9
+ basic inference 76.1 59.5

•  Work on TAC-KBP and MR-KBP

•  Use Stanford CoreNLP! 
 http://nlp.stanford.edu/software/corenlp.shtml

•  NFL system builds on top of CoreNLP

Questions?

