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Abstract

We propose a model of natural language inference which identifies valid inferences by their
lexical and syntactic features, without full semantic interpretation. We extend past work in
natural logic, which has focused on semantic containment and monotonicity, by incorporating
both semantic exclusion and implicativity. Our model decomposes an inference problem into
a sequence of atomic edits linking premise to hypothesis; predicts a lexical semantic relation
for each edit; propagates these relations upward through a semantic composition tree according
to properties of intermediate nodes; and joins the resulting semantic relations across the edit
sequence. A computational implementation of the model achieves 70% accuracy and 89% pre-
cision on the FraCaS test suite. Moreover, including this model as a component in an existing
system yields significant performance gains on the Recognizing Textual Entailment challenge.

1 Introduction

Natural language inference (NLI) is the problem of determining whether a natural language hy-
pothesis h can reasonably be inferred from a given premise p. For example:

(1) p: Every firm polled saw costs grow more than expected, even after adjusting for inflation.
h: Every big company in the poll reported cost increases.

A capacity for open-domain NLI is clearly necessary for full natural language understanding, and
NLI can also enable more immediate applications, such as semantic search and question answering.
Consequently, NLI has been the focus of intense research effort in recent years, centered around
the annual Recognizing Textual Entailment (RTE) competition (Dagan et al. 2005).

For a semanticist, the most obvious approach to NLI relies on full semantic interpretation: first,
translate p and h into some formal meaning representation, such as first-order logic (FOL), and then
apply automated reasoning tools to determine inferential validity. While the formal approach can
succeed in restricted domains, it struggles with open-domain NLI tasks such as RTE. For example,
the FOL-based system of Bos and Markert (2005) was able to find a proof for less than 4% of the
problems in the RTE1 test set. The difficulty is plain: truly natural language is fiendishly complex.
The formal approach faces countless thorny problems: idioms, ellipsis, paraphrase, ambiguity,
vagueness, lexical semantics, the impact of pragmatics, and so on. Consider for a moment the
difficulty of fully and accurately translating (1) to a formal meaning representation.

Yet (1) also demonstrates that full semantic interpretation is often not necessary to determining
inferential validity. To date, the most successful NLI systems have relied on surface representations
and approximate measures of lexical and syntactic similarity to ascertain whether p subsumes h
(Glickman et al. 2005, MacCartney et al. 2006, Hickl et al. 2006). However, these approaches
face a different problem: they lack the precision needed to properly handle such commonplace
phenomena as negation, antonymy, downward-monotone quantifiers, non-factive contexts, and the
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like. For example, if every were replaced by some or most throughout (1), the lexical and syntactic
similarity of h to p would be unaffected, yet the inference would be rendered invalid.

In this paper, we explore a middle way, by developing a model of what Lakoff (1970) called
natural logic, which characterizes valid patterns of inference in terms of syntactic forms which are
as close as possible to surface forms. For example, the natural logic approach might sanction (1)
by observing that: in ordinary upward monotone contexts, deleting modifiers preserves truth; in
downward monotone contexts, inserting modifiers preserves truth; and every is downward monotone
in its restrictor NP. Natural logic thus achieves the semantic precision needed to handle inferences
like (1), while sidestepping the difficulties of full semantic interpretation.

The natural logic approach has a very long history,1 originating in the syllogisms of Aristotle and
continuing through the medieval scholastics and the work of Leibniz. It was revived in recent times
by van Benthem (1988; 1991) and Sánchez Valencia (1991), whose monotonicity calculus explains
inferences involving semantic containment and inversions of monotonicity, even when nested, as
in Nobody can enter without a valid passport |= Nobody can enter without a passport. However,
because the monotonicity calculus lacks any representation of semantic exclusion, it fails to license
many simple inferences, such as Stimpy is a cat |= Stimpy is not a poodle.

Another model which arguably belongs to the natural logic tradition (though not presented as
such) was developed by Nairn et al. (2006) to explain inferences involving implicatives and factives,
even when negated or nested, as in Ed did not forget to force Dave to leave |= Dave left. While
the model bears some resemblance to the monotonicity calculus, it does not incorporate semantic
containment or explain interactions between implicatives and monotonicity, and thus fails to license
inferences such as John refused to dance |= John didn’t tango.

In this paper, we propose a new model of natural logic which extends the monotonicity calculus
to incorporate semantic exclusion, and partly unifies it with Nairn et al.’s account of implicatives.
We first define an inventory of basic semantic relations which includes representations of both
containment and exclusion (section 2). We then describe a general method for establishing the
semantic relation between a premise p and a hypothesis h. Given a sequence of atomic edits which
transforms p into h, we determine the lexical semantic relation generated by each edit (section 4);
project each lexical semantic relation into an atomic semantic relation, according to properties of
the context in which the edit occurs (section 5); and join atomic semantic relations across the edit
sequence (section 3). We have previously presented an implemented system based on this model
(MacCartney and Manning 2008); here we offer a detailed account of its theoretical foundations.

2 An inventory of semantic relations

The simplest formulation of the NLI task is as a binary decision problem: the relation between p
and h is to be classified as either entailment (p |= h) or non-entailment (p 6|= h). The three-way
formulation refines this by dividing non-entailment into contradiction (p |= ¬h) and compatibility
(p 6|= h∧p 6|= ¬h).2 The monotonicity calculus carves things up differently: it interprets entailment
as a semantic containment relation v analogous to the set containment relation ⊆, and thus

1For a useful overview of the history of natural logic, see van Benthem (2008). For recent work on theoretical
aspects of natural logic, see (Fyodorov et al. 2000, Sukkarieh 2001, van Eijck 2005).

2The first three RTE competitions used the binary formulation, while the three-way formulation was adopted for
RTE4. The three-way formulation was also employed in the FraCaS test suite (Cooper et al. 1996) and has been
investigated in depth by Condoravdi et al. (2003).
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permits us to distinguish forward entailment (p v h) from reverse entailment (p w h). Moreover,
it defines v for expressions of every semantic type, including not only complete sentences but
also individual words and phrases. Unlike the three-way formulation, however, it lacks any way
to represent contradiction (semantic exclusion). For our model, we want the best of both worlds:
a comprehensive inventory of semantic relations that includes representations of both semantic
containment and semantic exclusion.

Following Sánchez Valencia, we proceed by analogy with set relations. In a universe U , the set
of ordered pairs 〈x, y〉 of subsets of U can be partitioned into 16 equivalence classes, according to
whether each of the four sets x ∩ y, x ∩ y, x ∩ y, and x ∩ y is empty or non-empty.3 Of these 16
classes, nine represent degenerate cases in which either x or y is either empty or universal. Since
expressions having empty denotations (e.g., round square cupola) or universal denotations (e.g.,
exists) fail to divide the world into meaningful categories, they can be regarded as semantically
vacuous. Contradictions and tautologies may be common in logic textbooks, but they are rare in
everyday speech. Thus, in a practical model of informal natural language inference, we will rarely
go wrong by assuming the non-vacuity of the expressions we encounter.4 We therefore focus on the
remaining seven classes, which we designate as the set B of basic semantic relations.

symbol5 name example set theoretic definition6

x ≡ y equivalence couch ≡ sofa x = y
x @ y forward entailment crow @ bird x ⊂ y
x A y reverse entailment European A French x ⊃ y
x ∧ y negation human ∧ nonhuman x ∩ y = ∅ ∧ x ∪ y = U
x | y alternation cat | dog x ∩ y = ∅ ∧ x ∪ y 6= U
x ` y cover animal ` nonhuman x ∩ y 6= ∅ ∧ x ∪ y = U
x # y independence hungry # hippo (all other cases)

First, the semantic containment relations (v and w) of the monotonicity calculus are preserved,
but are factored into three mutually exclusive relations: equivalence (≡), (strict) forward entailment
(@), and (strict) reverse entailment (A). Next, we have two relations expressing semantic exclusion:
negation (∧), or exhaustive exclusion, which is analogous to set complement; and alternation (|),
or non-exhaustive exclusion. The next relation is cover (`), or non-exclusive exhaustion. Though
its utility is not immediately obvious, it is the dual under negation of the alternation relation.7

Finally, the independence relation (#) covers all other cases: it expresses non-equivalence, non-
3We use x to denote the complement of set x in universe U ; thus x ∩ x = ∅ and x ∪ x = U .
4Our model can easily be revised to accommodate vacuous expressions and relations between them, but then

becomes somewhat unwieldy. The assumption of non-vacuity is closely related to the assumption of existential
import in traditional logic. For a defense of existential import in natural language semantics, see (Böttner 1988).

5Selecting an appropriate symbol to represent each relation is a vexed problem. We sought symbols which (a) are
easily approximated by a single ASCII character, (b) are graphically symmetric iff the relations they represent are
symmetric, and (c) do not excessively abuse accepted conventions. The ∧ symbol was chosen to evoke the logically
similar bitwise XOR operator of the C programming language family; regrettably, it may also evoke the Boolean AND

function. The | symbol was chosen to evoke the Sheffer stroke commonly used to represent the logically similar Boolean
NAND function; regrettably, it may also evoke the Boolean OR function. The @ and A symbols were obviously chosen
to resemble their set-theoretic analogs, but a potential confusion arises because some logicians use the horseshoe ⊃
(with the opposite orientation) to represent material implication.

6Each relation in B obeys the additional constraints that ∅ ⊂ x ⊂ U and ∅ ⊂ y ⊂ U (i.e., x and y are non-vacuous).
7We describe relations R and S as duals under negation iff ∀x, y : 〈x, y〉 ∈ R⇔ 〈x, y〉 ∈ S. Thus @ and A are dual;

| and ` are dual; and ≡, ∧, and # are self-dual. The significance of this duality will become apparent in section 5.
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containment, non-exclusion, and non-exhaustion. Note that # is the least informative relation, in
that it places the fewest constraints on its arguments.8

Following Sánchez Valencia, we define the relations in B for all semantic types. For semantic
types which can be interpreted as characteristic functions of sets,9 the set-theoretic definitions can
be applied directly. The definitions can then be extended to other types by interpreting each type
as if it were a type of set. For example, propositions can be understood (per Montague) as denoting
sets of possible worlds. Thus two propositions stand in the | relation iff there is no world where
both hold (but there is some world where neither holds). Likewise, names can be interpreted as
denoting singleton sets, with the result that two names stand in the ≡ relation iff they refer to the
same entity, or the | relation otherwise.

By design, the relations in B are mutually exclusive, so that we can define a function β(x, y)
which maps every ordered pair of expressions10 to the unique relation in B to which it belongs.

3 Joining semantic relations

If we know that semantic relation R holds between x and y, and that semantic relation S holds
between y and z, then what is the semantic relation between x and z? The join of semantic relations
R and S, which we denote R on S,11 is defined by:

R on S
def= {〈x, z〉 : ∃y (〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S)}

Some joins are quite intuitive. For example, it is immediately clear that @ on @ = @, A on A
= A, ∧ on ∧ = ≡, and for any R, (R on ≡) = (≡ on R) = R. Other joins are less obvious, but still
accessible to intuition. For example, | on ∧ = @. This can be seen with the aid of Venn diagrams,
or by considering simple examples: fish | human and human ∧ nonhuman, thus fish @ nonhuman.

But we soon stumble upon an inconvenient truth: not every join yields a relation in B. For
example, if x | y and y | z, the relation between x and z is not determined. They could be
equivalent, or one might contain the other. They might be independent or alternative. All we can
say for sure is that they are not exhaustive (since both are disjoint from y). Thus, the result of
joining | and | is not a relation in B, but a union of such relations, specifically

⋃
{≡,@,A, |,#}.12

We will refer to (non-trivial) unions of relations in B as union relations.13 Of the 49 possible
joins of relations in B, 32 yield a relation in B, while 17 yield a union relation, with larger
unions conveying less information. Union relations can be further joined, and we can establish
that the smallest set of relations which contains B and is closed under joining contains just 16

8Two sets selected uniformly at random from 2U are overwhelmingly likely to belong to # (for large |U |).
9That is, all functional types whose final output is a truth value. If we assume a type system whose basic types

are e (entities) and t (truth values), then this includes most of the functional types encountered in semantic analysis:
e � t (common nouns, adjectives, and intransitive verbs), e � e � t (transitive verbs), (e � t) � (e � t) (adverbs),
(e� t)�(e� t)� t (binary generalized quantifiers), and so on.

10Assuming the expressions are non-vacuous, and belong to the same semantic type.
11In Tarskian relation algebra, this operation is known as relation composition, and is often represented by a semi-

colon: R ; S. To avoid confusion with semantic composition (section 5), we prefer to use the term join for this
operation, by analogy to the database JOIN operation (also commonly represented by on).

12We use this notation as shorthand for the union ≡ ∪ @ ∪ A ∪ | ∪ #. To be precise, the result of this join is not
identical with this union, but is a subset of it, since the union contains some pairs of sets (e.g. 〈U \ a, U \ a〉, for any
|a| = 1) which cannot participate in the | relation. However, the approximation makes little practical difference.

13Some union relations hold intrinsic interest. For example, in the three-way formulation of the NLI task described
in section 2, the three classes can be identified as

S
{≡, @},

S
{∧, |}, and

S
{A, `, #}.
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relations.14 One of these is the total relation, which contains all pairs of (non-vacuous) expressions.
This relation, which we denote •, is the black hole of semantic relations, in the sense that (a) it
conveys zero information about pairs of expressions which belong to it, and (b) joining a chain of
semantic relations will, if it contains any noise and is of sufficient length, lead inescapably to •.15

This tendency of joining to devolve toward less-informative semantic relations places an important
limitation on the power of the inference method described in section 7.

A complete join table for relations in B is shown below:16

on ≡ @ A ∧ | ` #
≡ ≡ @ A ∧ | ` #
@ @ @ ≡@A|# | | @∧|`# @|#
A A ≡@A`# A ` A∧|`# ` A`#
∧ ∧ ` | ≡ A @ #
| | @∧|`# | @ ≡@A|# @ @|#
` ` ` A∧|`# A A ≡@A`# A`#
# # @`# A|# # A|# @`# •

In an implemented model, the complexity introduced by union relations is easily tamed. Ev-
ery union relation which results from joining relations in B contains #, and thus can safely be
approximated by #. After all, # is already the least informative relation in B—loosely speaking,
it indicates ignorance of the relationship between two expressions—and further joining will never
serve to strengthen it. Our implemented model therefore has no need to represent union relations.

4 Lexical semantic relations

Suppose x is a compound linguistic expression, and let e(x) be the result of applying an atomic
edit e (the deletion, insertion, or substitution of a subexpression) to x. The semantic relation
β(x, e(x)) will depend on (1) the lexical semantic relation generated by e, which we label β(e),
and (2) other properties of the context x in which e is applied (to be discussed in section 5). For
example, suppose x is red car. If e is sub(car, convertible), then β(e) is A (because convertible is a
hyponym of car). On the other hand, if e is del(red), then β(e) is @ (because red is an intersective
modifier). Crucially, β(e) depends solely on the lexical items involved in e, independent of context.

How are lexical semantic relations determined? Ultimately, this is the province of lexical se-
mantics, which lies outside the scope of this work. However, the answers are fairly intuitive in most
cases, and we can make a number of useful observations.

Substitutions. The semantic relation generated by a substitution edit is simply the relation
between the substituted terms: β(sub(x, y)) = β(x, y). For open-class terms such as nouns, adjec-
tives, and verbs, we can often determine the appropriate relation by consulting a lexical resource
such as WordNet. Synonyms belong to the ≡ relation (sofa ≡ couch, forbid ≡ prohibit); hyponym-
hypernym pairs belong to the @ relation (crow @ bird, frigid @ cold, soar @ rise); and antonyms

14That is, the relations in B plus 9 union relations. Note that this closure fails to include most of the 120 possible
union relations. Perhaps surprisingly, the unions

S
{≡, @} and

S
{∧, |} mentioned in footnote 13 do not appear.

15In fact, computer experiments show that if relations are selected uniformly at random from B, it requires on
average just five joins to reach •.

16For compactness, we omit the union notation here; thus @|# stands for
S
{@, |, #}.
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and coordinate terms generally belong to the | relation (hot | cold, cat | dog).17 Proper nouns,
which denote individual entities or events, will stand in the ≡ relation if they denote the same en-
tity (USA ≡ United States), or the | relation otherwise (JFK | FDR). Pairs which cannot reliably
be assigned to another semantic relation will be assigned to the # relation (hungry # hippo). Of
course, there are many difficult cases, where the most appropriate relation will depend on subjective
judgments about word sense, topical context, and so on—consider, for example, the pair system
and approach. And some judgments may depend on world knowledge not readily available to an
automatic system. For example, plausibly skiing | sleeping, but skiing # talking.

Closed-class terms may require special handling. Substitutions involving generalized quantifiers
generate a rich variety of semantic relations: all ≡ every, every @ some, some ∧ no, no | every,
at least four ` at most six, and most # ten or more.18 Two pronouns, or a pronoun and a noun,
should ideally be assigned to the ≡ relation if it can determined from context that they refer to the
same entity, though this may be difficult for an automatic system to establish reliably. Prepositions
are somewhat problematic. Some pairs of prepositions can be interpreted as antonyms, and thus
assigned to the | relation (above | below), but many prepositions are used so flexibly in natural
language that they are best assigned to the ≡ relation (on [a plane] ≡ in [a plane] ≡ by [plane]).

Generic deletions and insertions. For deletion edits, the default behavior is to generate the
@ relation (thus red car @ car). Insertion edits are symmetric: by default, they generate the A
relation (sing A sing off-key). This heuristic can safely be applied whenever the affected phrase
is an intersective modifier, and can usefully be applied to phrases much longer than a single word
(car which has been parked outside since last week @ car). Indeed, this principle underlies most
current approaches the RTE task, in which the premise p often contains much extraneous content
not found in the hypothesis h. Most RTE systems try to determine whether p subsumes h: they
penalize new content inserted into h, but do not penalize content deleted from p.

Special deletions and insertions. However, some lexical items exhibit special behavior upon
deletion or insertion. The most obvious example is negation, which generates the ∧ relation (didn’t
sleep ∧ did sleep). Implicatives and factives (such as refuse to and admit that) constitute another
important class of exceptions, but we postpone discussion of them to section 6. Then there are non-
intersective adjectives such as former and alleged. These have various behavior: deleting former
seems to generate the | relation (former student | student), while deleting alleged seems to generate
the # relation (alleged spy # spy). We lack a complete typology of such cases, but consider this an
interesting problem for lexical semantics. Finally, for pragmatic reasons, we typically assume that
auxiliary verbs and punctuation marks are semantically vacuous, and thus generate the ≡ relation
upon deletion or insertion. When combined with the assumption that morphology matters little in
inference,19 this allows us to establish, e.g., that is sleeping ≡ sleeps and did sleep ≡ slept.

5 Semantic relations and semantic composition

How are semantic relations affected by semantic composition? In other words, how do the semantic
relations between compound expressions depend on the semantic relations between their parts?

17Note that most antonym pairs do not belong to the ∧ relation, since they typically do not exclude the middle.
18Some of these assertions assume the non-vacuity (section 2) of the predicates to which the quantifiers are applied.
19Indeed, the official definition of the RTE task explicitly specifies that tense be ignored.
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Say we have established the value of β(x, y), and let f be an expression which can take x or y as
an argument. What is the value of β(f(x), f(y)), and how does it depend on the properties of f?

The monotonicity calculus of Sánchez Valencia provides a partial answer. It explains the impact
of semantic composition on semantic relations≡, @, A, and # by assigning semantic functions to one
of three monotonicity classes: up, down, and non. If f has monotonicity up (the default), then the
semantic relation between x and y is projected through f without change: β(f(x), f(y)) = β(x, y).
Thus some parrots talk @ some birds talk. If f has monotonicity down, then @ and A are swapped.
Thus no carp talk A no fish talk. Finally, if f has monotonicity non, then @ and A are projected
as #. Thus most humans talk # most animals talk.

The monotonicity calculus also provides an algorithm for computing the effect on semantic
relations of multiple levels of semantic composition. Although Sánchez Valencia’s presentation of
this algorithm uses a complex scheme for annotating nodes in a categorial grammar parse, the
central idea can be recast in simple terms: propagate a lexical semantic relation upward through a
semantic composition tree, from leaf to root, while respecting the monotonicity properties of each
node along the path. Consider the sentence Nobody can enter without pants. A plausible semantic
composition tree for this sentence could be rendered as (nobody (can ((without pants) enter))).
Now consider replacing pants with clothes. We begin with the lexical semantic relation: pants
@ clothes. The semantic function without has monotonicity down, so without pants A without
clothes. Continuing up the semantic composition tree, can has monotonicity up, but nobody has
monotonicity down, so we get another reversal, and find that nobody can enter without pants @
nobody can enter without clothes.

While the monotonicity calculus elegantly explains the impact of semantic composition on the
containment relations (chiefly, @ and A), it lacks any account of the exclusion relations (∧ and |,
and, indirectly, `). To remedy this lack, we propose to generalize the concept of monotonicity to a
concept of projectivity. We categorize semantic functions into a number of projectivity signatures,
which can be seen as generalizations of both the three monotonicity classes of Sánchez Valencia
and the nine implication signatures of Nairn et al. (see section 6). Each projectivity signature is
defined by a map B 7→ B which specifies how each semantic relation is projected by the function.
(Binary functions can have different signatures for each argument.) In principle, there are up to 77

possible signatures; in practice, probably no more than a handful are realized by natural language
expressions. Though we lack a complete inventory of projectivity signatures, we can describe a few
important cases.

Negation. We begin with simple negation (not). Like most functions, it projects ≡ and #
without change (not happy ≡ not glad and isn’t swimming # isn’t hungry). As a downward
monotone function, it swaps @ and A (didn’t kiss A didn’t touch). But we can also establish
that it projects ∧ without change (not human ∧ not nonhuman) and swaps | and ` (not French
` not German and not more than 4 | not less than 6 ). Its projectivity signature is therefore
{≡:≡,@:A,A:@, ∧ : ∧, | :`,`: |,#:#}.

Intersective modification. Intersective modification has monotonicity up, but projects both ∧

and | as | (living human | living nonhuman and French wine | Spanish wine), and projects ` as #
(metallic pipe # nonferrous pipe). It therefore has signature {≡:≡,@:@,A:A, ∧ : |, | : |,`:#,#:#}.20

20At least for practical purposes. The projection of ∧ and | as | depends on the assumption of non-vacuity, and `
is actually projected as

S
{≡, @, A, |, #}, which we approximate by #, as described in section 3.
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Quantifiers. While semanticists are well acquainted with the monotonicity properties of common
quantifiers, how they project the exclusion relations may be less familiar. The following table
summarizes the projectivity signatures of the most common binary generalized quantifiers for each
argument position:

projectivity for 1st argument projectivity for 2nd argument
quantifier ≡ @ A ∧ | ` # ≡ @ A ∧ | ` #
some ≡ @ A `† # `† # ≡ @ A `† # `† #
no ≡ A @ | † # | † # ≡ A @ | † # | † #
every ≡ A @ | ‡ # | ‡ # ≡ @ A | † | † # #
not every ≡ @ A `‡ # `‡ # ≡ A @ `† `† # #

A few observations:
• All quantifiers (like most other semantic functions) project ≡ and # without change.
• The table confirms well-known monotonicity properties: no is downward-monotone in both

arguments, every in its first argument, and not every in its second argument.
• Relation | is frequently “blocked” by quantifiers (i.e., projected as #). Thus no fish talk #

no birds talk and someone was early # someone was late. A notable exception is every in
its second argument, where | is preserved: everyone was early | everyone was late. (Note the
similarity to intersective modification.)
• Because no is the negation of some, its projectivity signature can be found by projecting the

signature of some through the signature of not. Likewise for not every and every.
• Some results depend on assuming the non-vacuity of the other argument to the quantifier:

those marked with † assume it to be non-empty, while those marked with ‡ assume it to be
non-universal. Without these assumptions, # is projected.

Verbs. Verbs (and verb-like constructions) exhibit diverse behavior. Most verbs are upward-
monotone (though not all—see section 6), and many verbs project ∧, |, and ` as # (eats humans
# eats nonhumans, eats cats # eats dogs, and eats mammals # eats nonhumans). However, verbs
which encode functional relations seem to exhibit the same projectivity as intersective modifiers,
projecting ∧ and | as |, and ` as #.21 Categorizing verbs according to projectivity is an interesting
problem for lexical semantics, which may involve codifying some amount of world knowledge.

6 Implicatives and factives

Nairn et al. (2006) offer an elegant account of inferences involving implicatives and factives22 such
as manage to, refuse to, and admit that. Their model classifies such operators into nine implication
signatures, according to their implications—positive (+), negative (–), or null (◦)—in both positive
and negative contexts. Thus refuse to has implication signature –/◦, because it carries a negative
implication in a positive context (refused to dance implies didn’t dance), and no implication in a
negative context (didn’t refuse to dance implies neither danced nor didn’t dance).

21Consider the verbal construct is married to: is married to a German | is married to a non-German, is married to
a German | is married to an Italian, is married to a European # is married to a non-German. The AuContraire
system (Ritter et al. 2008) includes an intriguing approach to identifying such functional phrases automatically.

22We use “factives” as an umbrella term embracing counterfactives and nonfactives along with factives proper.
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Most of the phenomena observed by Nairn et al. can be explained within our framework by
specifying, for each implication signature, the relation generated when an operator of that signature
is deleted from (or inserted into) a compound expression, as shown in the following table:

signature β(del(·)) β(ins(·)) example
implicatives +/ – ≡ ≡ he managed to escape ≡ he escaped

(up) +/◦ @ A he was forced to sell @ he sold
◦/ – A @ he was permitted to live A he lived

implicatives – /+ ∧ ∧ he forgot to pay ∧ he paid
(down) – /◦ | | he refused to fight | he fought

◦/+ ` ` he hesitated to ask ` he asked
factives +/+ @ A he admitted that he knew @ he knew
(non) – / – | | he pretended he was sick | he was sick

◦/◦ # # he wanted to fly # he flew

This table invites several observations. First, as the examples make clear, there is room for
variation regarding the appearance of infinitive arguments, complementizers, passivization, and
morphology. An implemented model must tolerate such diversity.

Second, some of the examples may seem more intuitive when one considers their negations.
For example, deleting signature ◦/– generates A; under negation, this is projected as @ (he wasn’t
permitted to live @ he didn’t live). Likewise, deleting signature ◦/+ generates `; under negation,
this is projected as | (he didn’t hesitate to ask | he didn’t ask).

Third, a fully satisfactory treatment of the factives (signatures +/+, –/–, and ◦/◦) would
require an extension to our present theory. For example, deleting signature +/+ generates @;
yet under negation, this is projected not as A, but as | (he didn’t admit that he knew | he didn’t
know). The problem arises because the implication carried by a factive is not an entailment, but a
presupposition.23 As is well known, the projection behavior of presuppositions differs from that of
entailments (van der Sandt 1992). It seems likely that our model could be elaborated to account
for projection of presuppositions as well as entailments, but we leave this for future work.

We can further cement implicatives and factives within our model by specifying the monotonicity
class for each implication signature: signatures +/–, +/◦, and ◦/– have monotonicity up (force
to tango @ force to dance); signatures –/+, –/◦, and ◦/+ have monotonicity down (refuse to
tango A refuse to dance); and signatures +/+, –/–, and ◦/◦ (the propositional attitudes) have
monotonicity non (think tangoing is fun # think dancing is fun). We are not yet able to specify
the complete projectivity signature corresponding to each implication signature, but we can describe
a few specific cases. For example, implication signature –/◦ seems to project ∧ as | (refuse to stay
| refuse to go) and both | and ` as # (refuse to tango # refuse to waltz ).

7 Putting it all together

We now have the building blocks of a general method to establish the semantic relation between a
premise p and a hypothesis h. The steps are as follows:

23Of course, the implicatives may carry presuppositions as well (he managed to escape � it was hard to escape),
but these implications are not activated by a simple deletion, as with the factives.
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1. Find a sequence of atomic edits 〈e1, . . . , en〉 which transforms p into h: thus h = (en ◦ . . . ◦
e1)(p). For convenience, let us define x0 = p, xn = h, and xi = ei(xi−1) for i ∈ [1, n].

2. For each atomic edit ei:
(a) Determine the lexical semantic relation β(ei), as in section 4.
(b) Project β(ei) upward through the semantic composition tree of expression xi−1 to find

an atomic semantic relation β(xi−1, ei) = β(xi−1, xi), as in section 5.
3. Join atomic semantic relations across the sequence of edits, as in section 3:
β(p, h) = β(x0, xn) = β(x0, e1) on . . . on β(xi−1, ei) on . . . on β(xn−1, en)

However, this inference method has several important limitations, including the need to find
an appropriate edit sequence connecting p and h;24 the tendency of the join operation toward less
informative semantic relations, as described in section 3; and the lack of a general mechanism
for combining information from multiple premises.25 Consequently, the method has less deductive
power than first-order logic, and fails to sanction some fairly simple inferences, including de Mor-
gan’s laws for quantifiers. But the method neatly explains many inferences not handled by the
monotonicity calculus, including this example from section 1:

i xi ei β(ei) β(xi−1, ei) β(x0, xi)
0 Stimpy is a cat
1 Stimpy is a dog sub(cat, dog) | | |
2 Stimpy is not a dog ins(not) ∧ ∧ @
3 Stimpy is not a poodle sub(dog, poodle) A @ @

Here, x0 is transformed into x3 by a sequence of three edits. First, replacing cat with its coordinate
term dog generates |. Next, inserting not generates ∧, and | joined with ∧ yields @. Finally, replacing
dog with its hyponym poodle generates A. Because of the downward-monotone context created by
not, this is projected as @, and @ joined with @ yields @. Therefore, x0 entails x3.

For an example involving an implicative, consider:

i xi ei β(ei) β(xi−1, ei) β(x0, xi)
0 We were not permitted to smoke
1 We did not smoke del(permitted to) A @ @
2 We smoked del(not) ∧ ∧ |
3 We smoked Cuban cigars ins(Cuban cigars) A A |

Again, x0 is transformed into x3 by a sequence of three edits.26 First, deleting permitted to generates
A, according to its implication signature; but because not is downward-monotone, this is projected
as @. Next, deleting not generates ∧, and @ joined with ∧ yields |. Finally, inserting Cuban cigars
restricts the meaning of smoked, generating A, and | joined with A yields |. So x3 contradicts x0.

A more complex example is presented in (MacCartney and Manning 2008).
24The order of edits can be significant, if one edit affects the projectivity properties of the context for another edit.

In practice, we typically find that different edit orders lead to the same final result (albeit via different intermediate
steps), or at worst to a result which is compatible with, though less informative than, the desired result. But in
principle, edit sequences involving lexical items with unusual properties—not exhibited, so far as we are aware, by any
natural language expressions—could lead to incompatible results. Thus we lack any formal guarantee of soundness.

25However, some inferences can be enabled by auxiliary premises encoded as lexical semantic relations. For example,
men @ mortal can enable the classic syllogism Socrates is a man @ Socrates is mortal.

26We neglect edits involving auxiliaries and morphology, which simply yield the ≡ relation.
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8 Implementation and evaluation

The model of natural logic described here has been implemented in software as the NatLog system.
In previous work (MacCartney and Manning 2008), we have presented a description and evaluation
of NatLog; this section summarizes the main results. Natlog faces three primary challenges:

1. Finding an appropriate sequence of atomic edits connecting premise and hypothesis. NatLog
does not address this problem directly, but relies instead on edit sequences from other sources.
We have investigated this problem separately in (MacCartney et al. 2008).

2. Determining the lexical semantic relation for each edit. NatLog learns to predict lexical
semantic relations by using machine learning techniques and exploiting a variety of manually
and automatically constructed sources of information on lexical relations.

3. Computing the projection of each lexical semantic relation. NatLog identifies expressions with
non-default projectivity and computes the likely extent of their arguments in a syntactic parse
using hand-crafted tree patterns.

We have evaluated NatLog on two different test suites. The first is the FraCaS test suite (Cooper
et al. 1996), which contains 346 NLI problems, divided into nine sections, each focused on a specific
category of semantic phenomena. The goal is three-way entailment classification, as described in
section 2. On this task, NatLog achieves an average accuracy of 70%.27 In the section concerning
quantifiers, which is both the largest and the most amenable to natural logic, the system answers
all problems but one correctly. Unsurprisingly, performance is mediocre in four sections concerning
semantic phenomena (e.g., ellipsis) not relevant to natural logic and not modeled by the system.
But in the other five sections (representing about 60% of the problems), NatLog achieves accuracy
of 87%. What’s more, precision is uniformly high, averaging 89% over all sections. Thus, even
outside its areas of expertise, the system rarely predicts entailment when none exists.

The RTE3 test suite (Giampiccolo et al. 2007) differs from FraCaS in several important ways:
the goal is binary entailment classification; the problems have much longer premises and are more
“natural”; and the problems employ a diversity of types of inference—including paraphrase, tem-
poral reasoning, and relation extraction—which NatLog is not designed to address. Consequently,
the NatLog system by itself achieves mediocre accuracy (59%) on RTE3 problems. However, its
precision is comparatively high, which suggests a strategy of hybridizing with a broad-coverage
RTE system. We were able to show that adding NatLog as a component in the Stanford RTE
system (Chambers et al. 2007) led to accuracy gains of 4%.

9 Conclusion

The model of natural logic presented here is by no means a universal solution to the problem of
natural language inference. Many NLI problems hinge on types of inference not addressed by natural
logic, and the inference method we describe faces a number of limitations on its deductive power
(discussed in section 7). Moreover, there is further work to be done in fleshing out our account,
particularly in establishing the proper projectivity signatures for a broader range of quantifiers,
verbal constructs, implicatives and factives, logical connectives, and other semantic functions.

Nevertheless, we believe our model of natural logic fills an important niche. While approximate
methods based on lexical and syntactic similarity can handle many NLI problems, they are easily

27Our evaluation excluded multi-premise problems, which constitute about 44% of the test suite.
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confounded by inferences involving negation, antonymy, quantifiers, implicatives, and many other
phenomena. Our model achieves the logical precision needed to handle such inferences without
resorting to full semantic interpretation, which is in any case rarely possible. The practical value
of the model is demonstrated by its success in evaluations on the FraCaS and RTE3 test suites.
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