
NATURAL LANGUAGE INFERENCE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Bill MacCartney
June 2009

c© Copyright by Bill MacCartney 2009

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree
of Doctor of Philosophy.

(Christopher D. Manning) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree
of Doctor of Philosophy.

(Dan Jurafsky)

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree
of Doctor of Philosophy.

(Stanley Peters)

Approved for the University Committee on Graduate Studies.

iii

Abstract

Inference has been a central topic in artificial intelligence from the start, but while
automatic methods for formal deduction have advanced tremendously, comparatively
little progress has been made on the problem of natural language inference (NLI),
that is, determining whether a natural language hypothesis h can justifiably be in-
ferred from a natural language premise p. The challenges of NLI are quite different
from those encountered in formal deduction: the emphasis is on informal reasoning,
lexical semantic knowledge, and variability of linguistic expression. This dissertation
explores a range of approaches to NLI, beginning with methods which are robust but
approximate, and proceeding to progressively more precise approaches.

We first develop a baseline system based on overlap between bags of words. Despite
its extreme simplicity, this model achieves surprisingly good results on a standard NLI
evaluation, the PASCAL RTE Challenge. However, its effectiveness is limited by its
failure to represent semantic structure.

To remedy this lack, we next introduce the Stanford RTE system, which uses typed
dependency trees as a proxy for semantic structure, and seeks a low-cost alignment
between trees for p and h, using a cost model which incorporates both lexical and
structural matching costs. This system is typical of a category of approaches to NLI
based on approximate graph matching. We argue, however, that such methods work
best when the entailment decision is based, not merely on the degree of alignment,
but also on global features of the aligned 〈p, h〉 pair motivated by semantic theory.

Seeking still greater precision, we devote the largest part of the dissertation to
developing an approach to NLI based on natural logic. We present a new model of

iv

natural logic which extends the monotonicity calculus of van Benthem and Sánchez-
Valencia to incorporate semantic exclusion and implicativity. We define an expressive
set of entailment relations—including representations of both semantic containment
and semantic exclusion—and described the algebra of their joins. We then describe
a model of compositional entailment capable of determining the entailment relation
between two sentences connected by a sequence of edits. We introduce the concept
of projectivity signatures, which generalizes the concept of monotonicity classes to
cover the exclusion relations. And, we show how our framework can be used to explain
inferences involving implicatives and non-factives.

Next, we describe the NatLog system, a computational implementation of our
model of natural logic. NatLog is the first robust, general-purpose system for natural
logic inference over real English sentences. The NatLog system decomposes an infer-
ence problem into a sequence of atomic edits which transforms p into h; predicts a
lexical entailment relation for each edit using a statistical classifier; propagates these
relations upward through a syntax tree according to semantic properties of interme-
diate nodes; and joins the resulting entailment relations across the edit sequence. We
demonstrate the practical value of the NatLog system in evaluations on the FraCaS
and RTE test suites.

Finally, we address the problem of alignment for NLI, by developing a model of
phrase-based alignment inspired by analogous work in machine translation, including
an alignment scoring function, inference algorithms for finding good alignments, and
training algorithms for choosing feature weights.

v

Acknowledgments

To write a dissertation is a mighty undertaking, and I could not have reached the
finish line without the influence, advice, and support of many colleagues, friends, and
family. My thanks are due first and foremost to my advisor, Chris Manning, for being
willing to take me on as a student, and for being unfailingly generous with his time
and his support throughout my graduate career. Chris provided consistently good
advice, helped me to situate my work in a broader context, and gave me tremendous
freedom in pursuing my ideas, while always ensuring that I was making progress
toward some fruitful outcome. I will be forever grateful for his help.

I am deeply obliged to the other members of my dissertation committee for their
advice and encouragement. From Dan Jurafsky, I received a steady stream of positive
feedback that helped to keep my motivation strong. Stanley Peters was of great help
in working out various theoretical issues, and in making connections to the literature
of formal semantics. I am indebted to Johan van Benthem not only for his pioneering
work on the role of monotonicity in natural language inference—which was the direct
inspiration for my model of natural logic—but also for pushing me to consider the
theoretical implications of my work. Perceptive questions from Mike Genesereth also
helped greatly to sharpen my ideas.

I owe special thanks to David Beaver, who first brought my attention to the topic
of natural logic and the concept of monotonicity, and thereby set me on a path which
culminated in this dissertation.

The faculty, students, and visitors involved with the Stanford NLP Group have
provided a congenial and stimulating environment in which to pursue my studies.
I am particularly indebted to my frequent collaborators—including Marie-Catherine

vi

de Marneffe, Michel Galley, Teg Grenager, and many others—who shared my strug-
gles and helped to shape my thoughts. I am also grateful to past officemates Iddo
Lev, Roger Levy, Kristina Toutanova, Jeff Michels, and Dan Ramage for their warm
companionship and for countless fascinating conversations.

Finally, I offer my deepest thanks to my siblings—Leslie, Jim, and Doug—whose
love and support has sustained me; to my parents, Louis and Sharon, who instilled
in me the love of learning that has fueled all my efforts; and to Destiny, who believed
in me most when I believed in myself least.

vii

Contents

Abstract iv

Acknowledgments vi

1 The problem of natural language inference 1

1.1 What is natural language inference? 1
1.2 Applications of NLI . 3
1.3 NLI task formulations and problem sets 5

1.3.1 The FraCaS test suite . 6
1.3.2 Recognizing Textual Entailment (RTE) 8

1.4 Previous approaches to NLI . 10
1.4.1 Shallow approaches . 10
1.4.2 Deep approaches . 11

1.5 The natural logic approach to NLI 13
1.6 Overview of the dissertation . 14

2 The bag-of-words approach 16

2.1 A simple bag-of-words entailment model 17
2.1.1 Approach . 17
2.1.2 The lexical scoring function 18
2.1.3 Per-word alignment costs . 20
2.1.4 Total alignment costs . 21
2.1.5 Predicting entailment . 22

2.2 Experimental results . 24

viii

3 Alignment for natural language inference 28

3.1 NLI alignment vs. MT alignment . 29
3.2 The MSR alignment data . 30
3.3 The MANLI aligner . 32

3.3.1 A phrase-based alignment representation 32
3.3.2 A feature-based scoring function 34
3.3.3 Decoding using simulated annealing 35
3.3.4 Perceptron learning . 37

3.4 Evaluating aligners on MSR data . 38
3.4.1 A robust baseline: the bag-of-words aligner 39
3.4.2 MT aligners: GIZA++ and Cross-EM 39
3.4.3 The Stanford RTE aligner . 41
3.4.4 The MANLI aligner . 42

3.5 Using alignment to predict RTE answers 44
3.6 Conclusion . 45

4 The Stanford RTE system 46

4.1 Approaching a robust semantics . 47
4.2 System . 51

4.2.1 Linguistic analysis . 51
4.2.2 Alignment . 53
4.2.3 Entailment determination . 54

4.3 Feature representation . 55
4.4 Evaluation . 58
4.5 Conclusion . 60

5 Entailment relations 63

5.1 Introduction . 63
5.2 Representations of entailment . 64

5.2.1 Entailment as two-way classification 64
5.2.2 Entailment as three-way classification 65
5.2.3 Entailment as a containment relation 66

ix

5.2.4 The best of both worlds . 68
5.3 The 16 elementary set relations . 70

5.3.1 Properties of the elementary set relations 72
5.3.2 Cardinalities of the elementary set relations 75

5.4 From set relations to entailment relations 76
5.5 The seven basic entailment relations 77

5.5.1 The assumption of non-vacuity 78
5.5.2 Defining the relations in B . 78

5.6 Joining entailment relations . 80
5.6.1 “Nondeterministic” joins . 81
5.6.2 Computing joins . 82
5.6.3 Unions of the basic entailment relations 84

6 Compositional entailment 86

6.1 Lexical entailment relations . 88
6.1.1 Substitutions of open-class terms 88
6.1.2 Substitutions of closed-class terms 90
6.1.3 Generic deletions and insertions 91
6.1.4 Special deletions and insertions 92

6.2 Entailments and semantic composition 92
6.2.1 Semantic composition in the monotonicity calculus 93
6.2.2 Projectivity signatures . 93
6.2.3 Projectivity of logical connectives 94
6.2.4 Projectivity of quantifiers . 98
6.2.5 Projectivity of verbs . 99

6.3 Implicatives and factives . 100
6.3.1 Implication signatures . 100
6.3.2 Deletions and insertions of implicatives 101
6.3.3 Deletions and insertions of factives 102
6.3.4 Projectivity signatures of implicatives 104

6.4 Putting it all together . 105

x

6.5 Examples . 107
6.5.1 An example involving exclusion 107
6.5.2 Examples involving implicatives 108
6.5.3 Different edit orders . 111
6.5.4 Inability to handle de Morgan’s laws for quantifiers 111
6.5.5 A more complex example . 113

6.6 Is the inference method sound? . 117

7 The NatLog system 120

7.1 System architecture . 120
7.2 Linguistic analysis . 122
7.3 Alignment . 122
7.4 Predicting lexical entailment relations 124

7.4.1 Feature representation . 125
7.4.2 Classifier training . 131

7.5 Entailment projection . 133
7.5.1 Monotonicity marking . 134
7.5.2 Predicting projections . 135

7.6 Joining entailment relations . 136
7.7 An example of NatLog in action . 137
7.8 Evaluation on the FraCaS test suite 140

7.8.1 Characteristics of the FraCaS test suite 141
7.8.2 Experiments and results . 142
7.8.3 Discussion . 145

7.9 Evaluation on the RTE test suite . 148
7.9.1 Characteristics of the RTE test suite 148
7.9.2 Experiments and results . 149
7.9.3 Discussion . 151

8 Conclusions 152

8.1 Contributions of the dissertation . 152
8.2 The future of natural language inference 155

xi

List of Tables

1.1 High-level characteristics of the RTE problem sets. 9

2.1 Performance of the bag-of-words model 25
2.2 Comparable results from the first three RTE competitions 25

3.1 Performance of various aligners on the MSR RTE2 alignment data . . 40
3.2 Performance of various systems in predicting RTE2 answers 45

4.1 Performance of various systems on the RTE1 test suite 59
4.2 Learned weights for selected features 61

5.1 The 16 elementary set relations, in terms of set-theoretic constraints . 72
5.2 An example of computing the join of two relations in R 84
5.3 The join table for the seven basic entailment relations in B 85

6.1 Projectivity signatures for logical connectives 94
6.2 Projectivity signatures for various binary generalized quantifiers . . . 98
6.3 The nine implication signatures of Nairn et al. 101
6.4 Lexical entailment relations generated by edits involving implicatives 102
6.5 Monotonicity and projectivity properties of implicatives and factives . 104
6.6 Analysis of an inference involving semantic exclusion 108
6.7 Analysis of an inference involving an implicative 109
6.8 Analysis of another inference involving an implicative 109
6.9 Six analyses of the same inference, using different edit orders 110
6.10 Analysis of an example of de Morgan’s laws for quantifiers, first try . 112

xii

6.11 Analysis of an example of de Morgan’s laws for quantifiers, second try 113
6.12 Analysis of a more complex inference, first try 114
6.13 Analysis of a more complex inference, second try 115
6.14 Analysis of a more complex inference, third try 116

7.1 Examples of training problems for the lexical entailment model 132
7.2 An example of the operation of the NatLog model 138
7.3 Performance of various systems on the FraCaS test suite 143
7.4 Performance of NatLog on the FraCaS test suite, by section 144
7.5 Confusion matrix for NatLog on the FraCaS test suite 145
7.6 Performance of various systems on the RTE3 test suite 150

xiii

List of Figures

1.1 Some single-premise inference problems from the FraCaS test suite . . 7
1.2 Some multiple-premise inference problems from the FraCaS test suite 8

2.1 Possible features for the bag-of-words model 24

3.1 The MSR gold standard alignment for RTE2 problem 116 31
3.2 The MSR gold alignment for RTE2 problem 116, as phrase edits . . . 33
3.3 The manli-align algorithm . 36
3.4 The manli-learn algorithm . 37

4.1 Illustrative examples from the RTE1 development set 48
4.2 A typed dependency graph for problem 971 of figure 4.1 52
4.3 A sample alignment for problem 971 of figure 4.1 53

5.1 A comparison of three representations of entailment relations 68
5.2 The 16 elementary set relations, represented by Johnston diagrams . 71

7.1 Some monotonicity operator type definitions 134
7.2 Syntactic parses for the sentences in the James Dean example 138
7.3 Examples of errors made by NatLog on the FraCaS test suite. 146
7.4 Illustrative examples from the RTE3 development set 149

xiv

Chapter 1

The problem of natural language

inference

1.1 What is natural language inference?

Natural language inference (NLI) is the problem of determining whether a natural
language hypothesis h can reasonably be inferred from a natural language premise p.
Of course, inference has been a central topic in artificial intelligence (AI) from the
start, and over the last five decades, researchers have made tremendous progress in
developing automatic methods for formal deduction. But the challenges of NLI are
quite different from those encountered in formal deduction: the emphasis is on in-
formal reasoning, lexical semantic knowledge, and variability of linguistic expression,
rather than on long chains of formal reasoning. The following example may help to
illustrate the difference:

(1) p Several airlines polled saw costs grow more than expected,
even after adjusting for inflation.

h Some of the companies in the poll reported cost increases.

In the NLI problem setting, (1) is considered a valid inference, for the simple
reason that an ordinary person, upon hearing p, would likely accept that h follows.
Note, however, that h is not a strict logical consequence of p: for one thing, seeing

1

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 2

cost increases does not necessarily entail reporting cost increases—it is conceivable
that every company in the poll kept mum about increasing costs, perhaps for reasons
of business strategy. That the inference is nevertheless considered valid in the NLI
setting is a reflection of the informality of the task definition.

Although NLI involves recognizing an asymmetric relation of inferability between p
and h, an important special case of NLI is the task of recognizing a symmetric relation
of approximate semantic equivalence (that is, paraphrase) between p and h. (It is a
special case because, if we have a system capable of determining whether h can be
inferred from p, then we can detect semantic equivalence simply by running the system
both “forwards” and “backwards”.) Recognizing approximate semantic equivalence
between words is comparatively straightforward, using manually constructed thesauri
such as WordNet (Fellbaum et al. 1998) or automatically constructed thesauri such as
that of Lin (1998). But the ability to recognize when two sentences are saying more
or less the same thing is far more challenging, and if possible, could be of enormous
benefit to many language processing tasks. We describe a few potential applications
in the next section.

An intrinsic property of the NLI task definition is that the problem inputs are
expressed in natural language. Research on methods for automated deduction, by
contrast, typically assumes that the problem inputs are already expressed in some
formal meaning representation, such as the language of first-order logic. This fact
alone reveals how different the problem of NLI is from earlier work on logical infer-
ence, and places NLI squarely within the field of natural language processing (NLP):
in developing approaches to NLI, we will be concerned with issues such as syntactic
parsing, morphological analysis, word sense disambiguation, lexical semantic related-
ness, and even linguistic pragmatics—topics which are the bread and butter of NLP,
but are quite foreign to logical AI.

Over the last few years, there has been a surge of interest in the problem of NLI,
centered around the PASCAL Recognizing Textual Entailment (RTE) Challenge (Da-
gan et al. 2005) and within the U.S. Government AQUAINT program. Researchers
working on NLI can build on the successes achieved during the last decade in areas
such as syntactic parsing and computational lexical semantics, and begin to tackle

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 3

the more challenging problems of sentence-level semantics.

1.2 Applications of NLI

The NLI task can serve as a stringent test of a system’s language processing abilities.
Any system which can reliably identify implications of natural language sentences
must have a good understanding of how language works: it must be able to deal with
all manner of linguistic phenomena and broad variability of semantic expression.
Indeed, a capacity for reliable, robust, open-domain natural language inference is
arguably a necessary condition for full natural language understanding (NLU), which
for decades has been seen by many as the holy grail of NLP research. After all,
a system which cannot identify the implications of a sentence cannot be said to
understand the sentence. Some might make the stronger claim that a capacity for
NLI is in fact a sufficient condition for NLU—that a system’s ability to recognize
the consequences of a sentence is all the evidence we need that it has understood
the sentence. This claim, however, is difficult to embrace: one might argue that true
understanding requires not merely recognizing consequences, but generating them,
and moreover that full understanding of speaker meaning (as opposed to sentence
meaning) depends on sophisticated models of discourse, pragmatics, human cognition,
and world knowledge.

While full NLU remains a distant goal, a robust, reliable facility for NLI could
enable a broad range of immediate applications. In this section we outline a few such
applications.

Question answering. In open-domain question answering (QA), the challenge is
to return a textual expression, extracted from a large collection of documents, which
provides a good answer to a question posed in natural language, such as Who was
Lincoln’s Secretary of State? As Harabagiu and Hickl (2006) showed, an effective
NLI system can serve as a key component of a QA system: it can be used to evaluate
whether the target question (or some transformation of the question into a declarative
form) can be inferred from candidate answers extracted from the source document.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 4

For example, an NLI system should be able to recognize that was Lincoln’s Sec-
retary of State can be inferred from the candidate answer William H. Seward served
as Secretary of State under President Abraham Lincoln. A capacity for NLI is even
more directly applicable to the CLEF Answer Validation Exercise,1 in which each
problem consists of a question, a proposed answer, and a supporting text, and the
goal is simply to return a boolean value indicating whether the answer is correct for
the question, given the text.

Semantic search. The goal of semantic search is to provide the ability to retrieve
documents from a very large collection (such as the World Wide Web) based on the
semantic content (rather than simply the surface words) of the documents and the
search query. If a user searches for people demonstrating against free trade, most
existing keyword-based search engines will return only documents containing the
terms demonstrating, free, and trade. However, a document containing the sentence
Protestors chanted slogans opposing the agreement to drop trade barriers might very
well be responsive to the user’s query, even though it fails to contain most of the
search terms. If an NLI system were used to identify approximate semantic equiva-
lence between search queries and sentences in source documents, then one could offer a
form of semantic retrieval not available in current keyword-based search. (Of course,
applying NLI to every document on the Web at query time is infeasible, so using
NLI to enable semantic search will require clever approaches to “semantic indexing”
and/or pre-filtering of candidate documents.)

Automatic summarization. A key challenge in automatic summarization is the
elimination of redundancy. This is especially so in multi-document summarization,
where the summary is constructed from multiple source documents, such as a collec-
tion of news stories describing the same event. Here, the ability of an effective NLI
system to recognize sentence-level semantic equivalence can therefore be enormously
helpful: NLI can be used to ensure that the summary does not contain any sentences

1http://nlp.uned.es/clef-qa/ave/

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 5

that can be inferred from the rest of the summary. An even more basic goal of sum-
marization is correctness, i.e., the summary must accurately reflect the content of the
source document(s). In extractive summarization (Das and Martins 2007), where the
summary is constructed from snippets extracted from the source document(s), this
is rarely an issue. But whether or not the extractive strategy is used, NLI can be
useful in ensuring correctness, by checking that the the summary is implied by the
source document(s). The application of NLI to summarization has been explored by
Lacatusu et al. (2006).

Evaluation of machine translation systems. A relatively new application for
NLI is the automatic evaluation of the output of machine translation (MT) systems,
explored by Padó et al. (2009). Rapid iterative development of MT systems depends
critically upon automatic evaluation measures. In the past, MT researchers have
relied upon evaluations such as BLEU, which measures n-gram overlap between a
candidate translation and human-generated reference translations for the same sen-
tence. However, researchers have long bemoaned the limitations of BLEU and its
cousins: because such scoring metrics operate over surface forms, they are unable to
accommodate syntactic and semantic reformulations (Callison-Burch et al. 2006). An
effective NLI system can mitigate this problem, by assessing approximate semantic
equivalence between a candidate translation and a reference translation: if the candi-
date entails (and is entailed by) the reference, then it is probably a good translation,
even if its surface form is quite different from the reference.

1.3 NLI task formulations and problem sets

Although we have presented NLI as a single well-defined task, in fact the problem
of NLI has been formulated in a number of different ways over time, by different
researchers with different aims. Correspondingly, a number of different NLI problem
sets have been constructed, with varying characteristics. While the construction of
such problem sets has generally been guided by a preconceived notion of the task
to be solved, to some extent each of available problem sets provides an implicit task

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 6

definition: for a particular problem set, the objective is simply to answer as many
problems correctly as possible.

In this section we survey various formulations of the NLI task, and introduce NLI
problem sets to which we will return in later chapters.

1.3.1 The FraCaS test suite

The FraCaS test suite of NLI problems (Cooper et al. 1996) was one product of the
FraCaS Consortium, a large collaboration in the mid-1990s aimed at developing a
range of resources related to computational semantics. It contains 346 NLI problems,
each consisting of one or more premise sentences, (usually) followed by a question
sentence and an answer. While the FraCaS test suite expresses the “goal” of each
problem as a question, the standard formulation of the NLI task involves determining
the entailment relation between a premise and a declarative hypothesis. Thus, for the
purpose of this work, we converted each FraCaS question into a declarative hypothesis,
using a process described in greater detail in section 7.8.1.

The FraCaS problems contain comparatively simple sentences, and the premise
and question/hypothesis sentences are usually quite similar. Despite this simplicity,
the problems are designed to cover a broad range of semantic and inferential phe-
nomena, including quantifiers, plurals, anaphora, ellipsis, adjectives, comparatives,
temporal reference, verbs, and propositional attitudes. Figure 1.1 shows a represen-
tative selection of FraCaS problems.

Most FraCaS problems are labeled with one of three answers: yes means that
the hypothesis can be inferred from the premise(s), no means that the hypothesis
contradicts the premise(s), and unk means that the hypothesis is compatible with
(but not inferable from) the premise(s). The distribution of answers is not balanced:
about 59% of the problems have answer yes, while 28% have answer unk, and 10%
have answer no.2

About 45% of the FraCaS problems contain multiple premises. Most of these have
just two premises, but some have more, and one problem has five. Figure 1.2 shows

2The remaining 3% of problems cannot be straightforwardly assigned to one of these three labels.
See section 7.8.1 for details.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 7

§1: Quantifiers

38 p No delegate finished the report.
h Some delegate finished the report on time. no

48 p At most ten commissioners spend time at home.
h At most ten commissioners spend a lot of time at home. yes

§2: Plurals

83 p Either Smith, Jones or Anderson signed the contract.
h Jones signed the contract. unk

§3: Anaphora

141 p John said Bill had hurt himself.
h Someone said John had been hurt. unk

§4: Ellipsis

178 p John wrote a report, and Bill said Peter did too.
h Bill said Peter wrote a report. yes

§5: Adjectives

205 p Dumbo is a large animal.
h Dumbo is a small animal. no

§6: Comparatives

233 p ITEL won more orders than APCOM.
h ITEL won some orders. yes

§7: Temporal reference

258 p In March 1993 APCOM founded ITEL.
h ITEL existed in 1992. no

§9: Attitudes

335 p Smith believed that ITEL had won the contract in 1992.
h ITEL won the contract in 1992. unk

Figure 1.1: Some single-premise inference problems from the FraCaS test suite.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 8

§6: Comparatives

238 p ITEL won twice as many orders than APCOM.
APCOM won ten orders.

h ITEL won twenty orders. yes

§7: Temporal reference

284 p Smith wrote a report in two hours.
Smith started writing the report at 8 am.

h Smith had finished writing the report by 11 am. yes

Figure 1.2: Some multiple-premise inference problems from the FraCaS test suite.

some examples of FraCaS problems with multiple premises.
The FraCaS test suite will be described in greater detail in section 7.8.1.

1.3.2 Recognizing Textual Entailment (RTE)

A more recent, and better-known, formulation of the NLI task is the Recognizing Tex-
tual Entailment (RTE) Challenge, which has been organized every year for the past
four years (Dagan et al. 2005, Bar-Haim et al. 2006, Giampiccolo et al. 2007; 2008).3

The RTE Challenge was initiated under the auspices of the European Commission’s
PASCAL project, but in 2008 found a new home as part of the NIST Text Analysis
Conference. In each year of the RTE Challenge, organizers have produced a test set
containing several hundred NLI problems; in most years they have also released a
large development set. (See table 1.1 for details.)

Each RTE problem consists of a premise p, a hypothesis h, and an answer label.
The premises were collected “in the wild” from a variety of sources, commonly from
newswire text. They tend to be fairly long (averaging 25 words in RTE1, 28 words
in RTE2, 30 words in RTE3, and 39 words in RTE4), and sometimes contain more
than one sentence (a trend which has also increased over time). The hypotheses, by
contrast, are single sentences, manually constructed for each premise, and are quite

3There will be a fifth round of the RTE Challenge in 2009.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 9

name year sponsor development set test set
RTE1 2005 PASCAL 576 problems 800 problems
RTE2 2006 PASCAL 800 problems 800 problems
RTE3 2007 PASCAL 800 problems 800 problems
RTE4 2008 NIST — 1000 problems

Table 1.1: High-level characteristics of the RTE problem sets.

short (averaging 11 words in RTE1, 8 words in RTE2, and 7 words in RTE3 and
RTE4). Examples of RTE problems are shown in figures 4.1 and 7.4.

In the first three years, the RTE Challenge was presented as a binary classification
task: the goal was simply to determine whether p entailed h (answer yes) or not
(answer no). Problem sets were designed to be balanced, containing equal numbers
of yes and no answers. Beginning with RTE4, participants were encouraged (but
were not obliged) to make three-way predictions, distinguishing cases in which h

contradicts p from those in which h is compatible with, but not entailed by, p (as in
the FraCaS evaluation).

Several characteristics of the RTE problems should be emphasized. Examples are
derived from a broad variety of sources, including newswire; therefore systems must
be domain-independent. The inferences required are, from a human perspective, fairly
superficial: no long chains of reasoning are involved. However, there are “trick” ques-
tions expressly designed to foil simplistic techniques. (Problem 2081 of figure 4.1 is a
good example.) The definition of entailment is informal and approximate: whether a
competent speaker with basic knowledge of the world would typically infer h from p.
Entailments will certainly depend on linguistic knowledge, and may also depend on
world knowledge; however, the scope of required world knowledge is left unspecified.

Despite the informality of the problem definition, human judges exhibit very good
agreement on the RTE task, with agreement rate of 91–96% (Dagan et al. 2005). In
principle, then, the upper bound for machine performance is quite high. In practice,
however, the RTE task is exceedingly difficult for computers. Participants in the
first PASCAL RTE workshop reported accuracy from 50% to 59% (Dagan et al.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 10

2005). In later RTE competitions, higher accuracies were achieved, but this is partly
attributable to the RTE test sets having become intrinsically easier—see section 2.2
for discussion.

1.4 Previous approaches to NLI

Past work on the problem of NLI has explored a wide spectrum of approaches, rang-
ing from robust-but-shallow approaches based on approximate measures of semantic
similarity, to deep-but-brittle approaches based on full semantic interpretation. In
this section we characterize these contrasting approaches, and point the way toward
a middle ground.

1.4.1 Shallow approaches

To date, the most successful NLI systems have relied on simple surface representations
and approximate measures of lexical and syntactic similarity to ascertain whether the
meaning of h is subsumed by the meaning of p. This category of shallow approaches
includes systems based on lexical or semantic overlap (Glickman et al. 2005), pattern-
based relation extraction (Romano et al. 2006), or approximate matching of predicate-
argument structure (MacCartney et al. 2006, Hickl et al. 2006).

As example (1) in section 1.1 demonstrates, full semantic interpretation is often
not necessary to determining inferential validity. For example, a bag-of-words model
like that of Glickman et al. (2005) would approach example (1) by matching each
word in h to the word in p with which it is most similar, matching Some to Several,
companies to airlines, poll to polled, reported to saw, cost to costs, and increases to
grow. Since most words in h can be matched quite well to a word in p (the most
dubious match is that of reported to saw), a bag-of-words model would likely (and
rightly) predict that the inference in (1) is valid. (The bag-of-words approach is
explored in greater depth in chapter 2.)

The bag-of-words approach is robust and broadly effective—but it’s terribly impre-
cise, and is therefore easily led astray. Consider problem 2081 in figure 4.1. Clearly,

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 11

the inference is invalid, but the vanilla bag-of-words model cannot recognize this. Not
only does every word in h also appear in p, but in fact the whole of h is an exact
substring of p. A related problem with the bag-of-words model is that, because it
ignores predicate-argument structure, it can’t distinguish between Booth shot Lincoln
and Lincoln shot Booth.

Both of these shortcomings can be mitigated by including syntactic information
in the matching algorithm, an approach exemplified by the Stanford RTE system,
which we’ll describe more fully in chapter 4. Nevertheless, all shallow approaches
will struggle with such commonplace phenomena as antonymy, negation, non-factive
contexts, and verb-frame alternation. And, crucially, they all depend on an assump-
tion of upward monotonicity.4 To see how this can go wrong, consider changing the
quantifiers in our example from Several and Some to Every and All (or to Most, or
to No and None). The lexical similarity of h to p will scarcely be affected, but the
inference will no longer be valid, because the poll may have included automakers who
did not report cost increases. And constructions which are not upward monotone are
surprisingly widespread—they include not only negation (not) and many quantifiers
(e.g., less than three), but also conditionals (in the antecedent), superlatives (e.g.,
tallest), and countless other prepositions (e.g., without), verbs (e.g., avoid), nouns
(e.g., denial), adjectives (e.g., unable), and adverbs (e.g., rarely). In order properly
to handle inferences involving these phenomena, an approach with greater precision
is required.

1.4.2 Deep approaches

For a semanticist, the most obvious approach to NLI relies on full semantic inter-
pretation: first, translate p and h into some formal meaning representation, such as
first-order logic (FOL), and then apply automated reasoning tools to determine infer-
ential validity. This kind of approach has the power and precision we need to handle

4If a linguistic expression occurs in an upward monotone context (the default), then replacing it
with a more general expression preserves truth; if it occurs in an downward monotone context (such
as under negation), then replacing it with a more specific expression preserves truth. For a fuller
explanation, see section 6.2.1.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 12

negation, quantifiers, conditionals, and so on, and it can succeed in restricted do-
mains, but it fails badly on open-domain NLI evaluations such as RTE. The difficulty
is plain: truly natural language is fiendishly complex, and the full and accurate trans-
lation of natural language into formal representations of meaning presents countless
thorny problems, including idioms, ellipsis, anaphora, paraphrase, ambiguity, vague-
ness, aspect, lexical semantics, the impact of pragmatics, and so on.

Consider for a moment the difficulty of fully and accurately translating the premise
of example (1) into first-order logic. We might choose to use a neo-Davidsonian event
representation (though this choice is by no means essential to our argument). Clearly,
there was a polling event, and some airlines were involved. But what is the precise
meaning of several? Would three airlines be considered several? Would one thousand?
Let’s agree to leave these comparatively minor issues aside. We also have some costs,
and a growing event of which the costs are the subject (a single growing event, or one
for each airline?). And the growth has some quantity, or magnitude, which exceeds
some expectation (one expectation, or many?), held by some agent (the airlines?),
which was itself relative to some notion (held by whom?) of inflation (of what, and
to what degree?). This is beginning to seem like a quagmire—yet this is absolutely
the norm when interpreting real English sentences, as opposed to toy examples.

The formal approach faces other problems as well. Many proofs can’t be completed
without axioms encoding background knowledge, but it’s not clear where to get these.
And let’s not forget that many inferences considered valid in the NLI setting (such as
(1)) are not actually strict logical consequences. Bos and Markert (2005b) provided
a useful reality check when they tried to apply a state-of-the-art semantic interpreter
to the RTE1 test set—they were able to find a formal proof for fewer than 4% of the
problems (and one-quarter of those proofs were incorrect). Thus, for the problem of
open-domain NLI, the formal approach is a nonstarter. To handle inferences requiring
greater precision than the shallow methods described in section 1.4.1, we’ll need a
new approach.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 13

1.5 The natural logic approach to NLI

In the second half of this dissertation, we’ll explore a middle way, by developing a
model of what Lakoff (1970) called natural logic,5 which he defined as a logic whose
vehicle of inference is natural language. Natural logic thus characterizes valid patterns
of inference in terms of syntactic forms which are as close as possible to surface
forms. For example, the natural logic approach might sanction the inference in FraCaS
problem 48 (figure 1.1) by observing that: in downward monotone contexts, inserting
an intersective modifier preserves truth; a lot of is an intersective modifier; and At
most ten is a downward monotone quantifier. Natural logic thus achieves the semantic
precision needed to handle inferences like FraCaS problem 48, while sidestepping the
difficulties of full semantic interpretation.

The natural logic approach has a very long history,6 originating in the syllogisms of
Aristotle and continuing through the medieval scholastics and the work of Leibniz. It
was revived in recent times by van Benthem (1988; 1991) and Sánchez Valencia (1991),
whose monotonicity calculus explains inferences involving semantic containment and
inversions of monotonicity, even when nested, as in Nobody can enter without a valid
passport |= Nobody can enter without a passport. However, because the monotonicity
calculus lacks any representation of semantic exclusion, it fails to explain many simple
inferences, such as Stimpy is a cat |= Stimpy is not a poodle, or FraCaS problem 205
(figure 1.1).

Another model which arguably belongs to the natural logic tradition (though
not presented as such) was developed by Nairn et al. (2006) to explain inferences
involving implicatives and factives, even when negated or nested, as in Ed did not
forget to force Dave to leave |= Dave left. While the model bears some resemblance to
the monotonicity calculus, it does not incorporate semantic containment or explain
interactions between implicatives and monotonicity, and thus fails to license inferences
such as John refused to dance |= John didn’t tango.

5Natural logic is not to be confused with natural deduction, a proof system for first-order logic.
6For a useful overview of the history of natural logic, see van Benthem (2008). For recent work

on theoretical aspects of natural logic, see (Fyodorov et al. 2000, Sukkarieh 2001, van Eijck 2005).

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 14

In chapter 6, we’ll present a new theory of natural logic which extends the mono-
tonicity calculus to account for negation and exclusion, and also incorporates elements
of Nairn’s model of implicatives.

1.6 Overview of the dissertation

In this dissertation, we explore a range of approaches to NLI, beginning with meth-
ods which are robust but approximate, and proceeding to progressively more precise
approaches.

We begin in chapter 2 by developing a baseline system based on overlap between
bags of words, an approach introduced in section 1.4.1. Despite its extreme simplicity,
this model achieves surprisingly good results on an evaluation using the RTE data
sets (introduced in section 1.3.2). However, its effectiveness is limited by its failure
to represent semantic structure.

Next, we consider the problem of alignment for NLI (chapter 3). We examine
the relation between NLI alignment and the similar problem of alignment in machine
translation (MT). We develop a new phrase-based model of alignment for NLI—the
MANLI system—which is inspired by analogous work in MT alignment, and includes
an alignment scoring function, inference algorithms for finding good alignments, and
training algorithms for choosing feature weights. We also undertake the first compar-
ative evaluation of various MT and NLI aligners on an NLI alignment task, and show
that the MANLI system significantly outperforms its rivals.

To remedy the shortcomings of the bag-of-words model, we next introduce the
Stanford RTE system (chapter 4), which uses typed dependency trees as a proxy for
semantic structure, and seeks a low-cost alignment between trees for p and h, using
a cost model which incorporates both lexical and structural matching costs. This
system is typical of a category of approaches to NLI based on approximate graph
matching. We argue, however, that such methods work best when the entailment
decision is based, not merely on the degree of alignment, but also on global features
of the aligned 〈p, h〉 pair motivated by semantic theory.

CHAPTER 1. THE PROBLEM OF NATURAL LANGUAGE INFERENCE 15

Seeking still greater precision, we devote the largest part of the dissertation to de-
veloping an approach to NLI based on natural logic. In chapters 5 and 6, we present a
new model of natural logic which extends the monotonicity calculus of van Benthem
and Sánchez-Valencia to incorporate semantic exclusion and implicativity. In chap-
ter 5, we define an expressive set of entailment relations—including representations
of both semantic containment and semantic exclusion—and described the algebra of
their joins. Then, in chapter 6, we describe a model of compositional entailment
capable of determining the entailment relation between two sentences connected by
a sequence of edits. We introduce the concept of projectivity signatures, which gen-
eralizes the concept of monotonicity classes to cover the exclusion relations. And, we
show how our framework can be used to explain inferences involving implicatives and
non-factives.

In chapter 7, we describe the NatLog system, a computational implementation of
our model of natural logic. NatLog is the first robust, general-purpose system for nat-
ural logic inference over real English sentences. The NatLog system decomposes an
inference problem into a sequence of atomic edits which transforms p into h; predicts
a lexical entailment relation for each edit using a statistical classifier; propagates these
relations upward through a syntax tree according to semantic properties of interme-
diate nodes; and joins the resulting entailment relations across the edit sequence. We
demonstrate the practical value of the NatLog system in evaluations on the FraCaS
and RTE test suites.

Finally, in chapter 8, we summarize the contributions of the dissertation, and offer
some thoughts on the future of natural language inference.

Chapter 2

The bag-of-words approach

How can we begin to approach the task of building a working model of natural lan-
guage inference? For logicians and semanticists, the most obvious approach relies
on full semantic interpretation: translate the premise p and hypothesis h of an NLI
problem into a formal meaning representation, such as first-order logic, and then
apply automated reasoning tools. However, the recent surge in interest in the prob-
lem of NLI was initiated by researchers coming from the information retrieval (IR)
community, which has exploited very lightweight representations, such as the the bag-
of-words representation, with great success. If we approach the NLI task from this
direction, then a reasonable starting point is to represent p and h simply by (sparse)
vectors encoding the counts of the words they contain, and then to predict inferential
validity using some measure of vector similarity. Although the bag-of-words repre-
sentation might seem unduly impoverished, bag-of-words models have been shown to
be surprisingly effective in addressing a broad range of NLP tasks, including word
sense disambiguation, text categorization, and sentiment analysis.

We first alluded to the bag-of-words approach in section 1.4, where we described it
as one end of a spectrum of approaches to the NLI problem. Indeed, the bag-of-words
approach exemplifies what is perhaps the most popular and well-explored category
of approaches to NLI: those which operate solely by measuring approximate lexical
similarity, without regard to syntactic or semantic structure. Our goal in this chapter
is not to propose any particularly novel concepts or techniques; rather, we aim merely

16

CHAPTER 2. THE BAG-OF-WORDS APPROACH 17

to flesh out the details of a specific way of implementing the bag-of-words approach,
to evaluate its effectiveness on standard NLI test suites, and thereby to establish a
baseline against which to compare later results, both for alignment (chapter 3) and
for entailment prediction (chapters 4 and 7).

2.1 A simple bag-of-words entailment model

In this section, we describe a very simple probabilistic model of natural language
inference which relies on the bag-of-words representation. It thus ignores altogether
the syntax—and even the word order—of the input sentences, and makes no attempt
at semantic interpretation. The model depends only on some measure of lexical sim-
ilarity between individual words. The precise similarity function used is not essential
to the model; the choice of similarity function can be viewed as a model parameter.
Despite its simplicity, this model achieves respectable results on standard evaluations
of natural language inference, even when using a very crude lexical similarity function.

2.1.1 Approach

Our approach is directly inspired by the probabilistic entailment model described in
Glickman et al. (2005). Let P (h|p) denote the probability that premise p supports an
inference to (roughly, entails) hypothesis h. We assume that h is supported by p only
to the degree that each individual word hj in h is supported by p. We also assume
that the probability that a given word in h is supported is independent of whether
any other word in h is supported. We can thus factor the probability of entailment
as follows:

P (h|p) =
∏
j

P (hj|p)

In addition, we assume that each word in h derives its support chiefly from a single
word in p. Consequently, the probability that a given word in h is supported by p
can be identified with the max over the probability of its support by the individual

CHAPTER 2. THE BAG-OF-WORDS APPROACH 18

words of p:
P (hj|p) = max

i
P (hj|pi)

By this decomposition, we have expressed the overall probability that p supports h in
terms of a function of the probabilities of support between pairs of individual words
pi and hj:

P (h|p) =
∏
j

max
i
P (hj|pi)

The expression P (hj|pi) can be interpreted as a sort of lexical entailment score be-
tween words pi and hj. We make no attempt to explain what it might mean for words
(as opposed to declarative propositions) to stand in an entailing relationship. Rather,
we focus on the purely pragmatic goal of choosing a lexical scoring function which
does a good job of predicting entailment between p and h. Glickman et al. (2005)
used a lexical scoring function based on web co-occurrence statistics. The model
we’ll describe in the following pages uses a much more simple-minded lexical scoring
function. However, we’ll consider other ways of enhancing the model’s effectiveness,
including weighting the words in h by their frequency in a large corpus; generating
not only a “forward entailment” score P (h|p) but also a “reverse entailment” score
P (p|h); and combining these scores in a maximum entropy model.

Note that, by matching each word in h to the word in p which best supports it,
this approach can also be viewed as inducing an alignment between the words of h
and p, akin to word alignments in statistical machine translation (Brown et al. 1993).
In fact, this model is closely analogous to the “heuristic model” of word alignment
described by Och and Ney (2003).

2.1.2 The lexical scoring function

The model’s most important parameter is a lexical scoring function, which maps
ordered pairs of words to real values in the interval [0, 1] which indicate the degree to
which one word “supports” the other. The model itself leaves unspecified the details
of how such scores should be interpreted and calibrated. But, intuitively, a good
lexical scoring function should assign a score close (or equal) to 1 to a pair of similar

CHAPTER 2. THE BAG-OF-WORDS APPROACH 19

(or identical) words, and will assign a score close to 0 to a pair of dissimilar words.
The best candidates for lexical scoring functions will therefore be measures of

lexical similarity, or perhaps the somewhat weaker notion of lexical relatedness. Can-
didate scoring functions might include:

• measures of string similarity
• similarity functions based on vector-space models, such as latent semantic anal-

ysis (LSA) (Landauer and Dumais 1997)
• measures of distributional similarity, like that proposed by Lin (1998)
• taxonomy-based scoring functions, such as one based on the WordNet-based

semantic distance measure of Jiang and Conrath (1997)

Alternatively, a lexical scoring function might be designed as a hybrid, which
combines information from several component scoring functions. One advantage of
a hybrid scoring function is that it can incorporate information from low-coverage,
high-precision scoring functions (for example, lexical resources providing information
about acronyms) which would be inappropriate for use by themselves. However, the
design of a hybrid scoring function presents several problems. How should the com-
ponent scores be combined: via the max function, or perhaps as a weighted average?
Another difficulty is that the component functions may produce very different dis-
tributions of scores, particularly if some are designed as low-recall, high-precision
measures (e.g., acronym resources), while others are designed as high-recall, low-
precision measures (e.g., distributional similarity). How do we define and implement
a suitable calibration of scores between such component functions, so that scores from
different component functions can meaningfully be compared?

Note that while many lexical scoring functions will be symmetric, this is not
strictly required. For example, if we have access to a lexical resource contain-
ing hyponymy relations (such as WordNet (Fellbaum et al. 1998)), we may wish
to define a scoring function which assigns a high score to hyponym pairs (such as
〈mammal, horse〉) but not to hypernym pairs (such as 〈horse,mammal〉).

While the selection (or design) of a lexical scoring function presents many difficult
choices, in this chapter we’ll sidestep this complexity. Instead, we’ll develop a model

CHAPTER 2. THE BAG-OF-WORDS APPROACH 20

based on an extremely simple-minded lexical scoring function. Our lemma string
similarity function computes a lexical similarity score based on the Levenshtein string
edit distance (Levenshtein 1966) between the lemmas (base forms) of the input words.
In order to achieve the appropriate normalization, we divide the edit distance by the
maximum of the length of the two lemmas, and subtract the result from 1:

sim(w1, w2) = 1− dist(lemma(w1), lemma(w2))

max(|lemma(w1)|, |lemma(w2)|)

(Here lemma(w) denotes the lemma of word w; dist() denotes Levenshtein string edit
distance; and | · | denotes string length.)

2.1.3 Per-word alignment costs

In the following discussion, it will be convenient to work in terms of costs, rather than
scores. Given our lexical scoring function sim, we can define a lexical cost function,
which expresses the cost of aligning hypothesis word hj with premise word pi as the
negative logarithm of their similarity score:

cost(hj, pi) = − log sim(hj, pi)

The cost function has range [0,∞]: aligning equal words will have cost 0; aligning
very different words will have very high cost. And, of course, if sim is symmetric,
then cost will be symmetric as well.

Following the approach described in section 2.1.1, the cost of aligning a given
hypothesis word hj to the premise p will be the minimum of the costs of aligning hj
to each possible premise word pi:

cost(hj|p) = min
i
cost(hj, pi)

(Note that cost(hj|p) is asymmetric, even if cost(hj, pi) is symmetric—this is the
reason for the conditioning bar.)

We can improve robustness by putting an arbitrary upper bound, maxcost, on

CHAPTER 2. THE BAG-OF-WORDS APPROACH 21

word alignment costs; otherwise, a single hard-to-align hypothesis word can com-
pletely block inference.

cost(hj|p) = min(maxcost,min
i
cost(hj, pi))

Lower values formaxcostmake the model “looser”: since every word can be aligned
more cheaply, we’re more likely to predict equivalence between the premise and the
hypothesis. Conversely, higher values for maxcost make the model “stricter”. One
interpretation of maxcost is that it represents the cost of inserting a word into h

which doesn’t correspond to anything in p.

2.1.4 Total alignment costs

The overall cost of aligning h to p can now be computed as the sum of the costs of
aligning the individual words in h.

cost(h|p) =
∑
j

cost(hj|p) =
∑
j

min(maxcost,min
i
cost(hj, pi))

However, intuition suggests that we would like to be able to treat some words
in h as more important than others. It is of no great consequence if we are unable
cheaply to align small function words (such as the, for, or as) in h; it matters much
more whether we can find a suitable alignment for big, rare words (such as Ahmadine-
jad). To capture this intuition, we can define a weight function which represents the
importance of each word in alignment as a non-negative real value. We then define
the total cost of aligning h to p to be the weighted sum of the costs of aligning the
individual words in h:

cost(h|p) =
∑
j

weight(hj) · cost(hj|p)

Just as there were many possible choices for the lexical scoring function, we have
many possible choices for this lexical weight function weight(hj). Clearly, we want
common words to receive less weight, and rare words to receive higher weight. A

CHAPTER 2. THE BAG-OF-WORDS APPROACH 22

plausible weight function might also take account of the part of speech of each word.
However, to keep things simple, we’ll use a weight function based on the inverse
document frequency (IDF) of each word in a large corpus. If N is the number of
documents in our corpus and Nw is the number of documents containing word w,
then we define:

idf(w) = − log(Nw/N)

Since the value of this function will be infinite for words which do not appear in the
corpus, we’ll define our weight function to place an upper bound on weights. We’ll
scale IDF scores into the range [0, 1] by dividing each score by the highest score
observed in the corpus (typically, this is the score of words observed exactly once),
and we’ll assign weight 1 to words not observed in the corpus. If W is the set of
words observed in the corpus, then we define the weight function by:

weight(hj) = min

[
1,

idf(hj)

maxw∈W idf(w)

]
For example, when based on a typical corpus (the English Gigaword corpus), this
function assigns weight 0.0004 to the, 0.1943 to once, 0.6027 to transparent, and
1.000 to Ahmadinejad.

2.1.5 Predicting entailment

Let’s return to our top-level concern: how do we predict whether an inference from
p to h is valid? Now that we have defined the function cost(h|p) expressing the
cost of aligning h to p, we have two possible avenues. The first is to use cost(h|p)
directly, following the approach described in section 2.1.1, to assign a probability to
the entailment from p to h:

P (h|p) = exp(−cost(h|p))

However, this method is rather inflexible: it utilizes only one measure of the overlap
between p and h, and provides no automatic way to tune the threshold above which

CHAPTER 2. THE BAG-OF-WORDS APPROACH 23

to predict entailment.
The second is to use features based on our cost function as input to a machine

learning classifier. Rather than using cost(h|p) directly to predict entailment, we
construct a feature representation of the entailment problem using quantities derived
from the cost function, and train a statistical classifier to predict entailment using
these feature representations as input. For this purpose, we used a simple maximum
entropy (logistic regression) classifier with Gaussian regularization (and regularization
parameter σ = 1).

One advantage of this approach is that it enables us automatically to determine the
appropriate threshold beyond which to predict entailment. Another is that it allows
us to combine different kinds of information about the similarity between p and h. For
example, our feature representation can include not only the cost of aligning h to p,
but also the reverse, that is, the cost of aligning p to h. (If p and h are nearly identical,
then both cost(h|p) and cost(p|h) should be low; whereas if p subsumes h but also
includes extraneous content—a common situation in NLI problems—then cost(h|p)
should be low, but cost(p|h) should be high.) We experimented with a number of
different features based on the cost function, shown in figure 2.1. Intuitively, feqScore
is intended to represent the likelihood that p entails h; reqScore, that h entails p;
eqvScore, that p and h are mutually entailing (i.e., equivalent); fwdScore, that p
entails h and not vice-versa; revScore, that h entails p and not vice-versa; and
indScore, that neither p and h entails the other (i.e., they are independent). However,
these interpretations are merely suggestive—one of the virtues of the machine learning
approach is that a (suitably regularized) classifier can learn to exploit whichever
features carry signal, and ignore the rest, whether or not the features well capture
the intended interpretations.

Clearly, there is considerable redundancy between these features, but because
maximum entropy classifiers (unlike, say, Naïve Bayes classifiers) handle correlated
features gracefully, this is not a source of concern. However, in experiments, we found
little benefit to including all of these features; using just the feqScore and reqScore

features gave results roughly as good as including any additional features.

CHAPTER 2. THE BAG-OF-WORDS APPROACH 24

hCost = cost(h|p)
pCost = cost(p|h)

feqScore = exp(−hCost)

reqScore = exp(−pCost)

eqvScore = feqScore · reqScore
fwdScore = feqScore · (1− reqScore)

revScore = (1− feqScore) · reqScore
indScore = (1− feqScore) · (1− reqScore)

Figure 2.1: Possible features for a maximum-entropy model entailment based on the
bag-of-words model.

2.2 Experimental results

Despite its simplicity, the bag-of-words model described in section 2.1 yields re-
spectable performance when applied to real NLI problems such as those in the RTE
test suites. In order to establish a baseline against which to compare results in later
chapters, we performed experiments designed to quantify the effectiveness of the bag-
of-words approach. In particular, we used the simple lemma string similarity function
described in section 2.1.2 as our lexical scoring function; we placed an upper bound of
10 on per-word alignment costs, as described in section 2.1.3; we combined per-word
alignment costs using IDF weighting, as described in section 2.1.4; and we made en-
tailment predictions using a maximum-entropy classifier with Gaussian regularization,
using only the features feqScore and reqScore, as described in section 2.1.5.

Table 2.1 shows the results of evaluating this model on various combinations of
training and testing data from the RTE test suites. For comparison, table 2.2 shows
results from teams participating in the first three RTE competitions. The figures lead
us to a number of surprising observations.

First, the bag-of-words model performs unexpectedly well, especially in light of
the fact that it is based on a simple-minded measure of string similarity. While it
is not competitive with the best RTE systems, it achieves an accuracy comparable

CHAPTER 2. THE BAG-OF-WORDS APPROACH 25

Training data Test data % yes P % R % Acc %

RTE1 dev RTE1 dev 49.7 53.9 53.7 54.0
RTE1 test 50.1 53.6 53.8 53.6

RTE2 dev RTE2 dev 52.2 56.7 59.2 57.0
RTE2 test 52.4 57.3 60.0 57.6

RTE3 dev RTE3 dev 50.6 70.1 68.9 68.9
RTE3 test 57.5 62.4 70.0 63.0

RTE3 test RTE3 dev 46.9 71.2 64.8 68.4
RTE3 test 53.8 63.0 66.1 62.8

Table 2.1: Performance of the bag-of-words entailment model described in section 2.1
on various combinations of RTE training and test data (two-way classification). The
columns show the training data used, the test data used, the proportion of yes
predictions, precision and recall for the yes class, and accuracy.

Evaluation System Acc %

RTE1 test Best: Glickman et al. 05 58.6
Average (13 teams) 54.8
Median (13 teams) 55.9

RTE2 test Best: Hickl et al. 06 75.4
Average (23 teams) 59.8
Median (23 teams) 59.0

RTE3 test Best: Hickl et al. 07 80.0
Average (26 teams) 62.4
Median (26 teams) 62.6

Table 2.2: Results from teams participating in the first three RTE competitions. For
each RTE competition, we show the accuracy achieved by the best-performing team,
along with average and median accuracies over all participating teams. Each RTE
competition allowed teams to submit two runs; for those teams which did so, we used
the run with higher accuracy in computing all statistics.

CHAPTER 2. THE BAG-OF-WORDS APPROACH 26

to the average and median accuracies achieved by all RTE participants in each of
the RTE competitions. Indeed, when evaluated on the RTE3 test set (after training
on the RTE3 development set), the bag-of-words model achieved an accuracy (63%)
higher than that of more than half of the RTE3 participants. Many of those teams
had pursued approaches which were apparently far more sophisticated than the bag-
of-words model, yet our results show that they could have done better with a more
naïve approach.

Note that, while the system of Glickman et al. (2005) was essentially a pure bag-
of-words model, few or none of the systems submitted to RTE2 or RTE3 could be
described as such. Most of those which came closest to measuring pure lexical overlap
(e.g., Adams (2006), Malakasiotis and Androutsopoulos (2007)) exploited additional
information as well, such as the occurrence of negation in p or h. For comparison,
Zanzotto et al. (2006) describe experiments using a simple statistical lexical system,
similar to the one described in this chapter. They were able to achieve accuracy close
to 60% on both RTE1 and RTE2, and found that simple lexical models outperformed
more sophisticated lexical models, thus confirming our findings.

The second surprise in table 2.1 is the degree of variance in the results across
data sets. A long-standing criticism of the RTE test suites has been that, because
the task is loosely defined and the problems are not drawn from any “natural” data
distribution, there is no way to ensure consistency in the nature and difficulty of the
NLI problems from one RTE data set to the next. Many in the RTE community have
the subjective perception that the character of the problems has changed significantly
from one RTE test suite to the next; the results in table 2.1 show that there are
substantial objective differences as well. Using our simple bag-of-words model as a
yardstick, the RTE1 test suite is the hardest, while the RTE2 test suite is roughly 4%
easier, and the RTE3 test suite is roughly 9% easier. Moreover, in RTE3 there is a
marked disparity between the difficulty of the development and test sets. Whichever
data set we train on, the RTE3 development set appears to be roughly 6% easier than
the RTE3 test set—certainly, an undesirable state of affairs.

A final observation about the results in table 2.1 is that the model does not
appear to be especially prone to overfitting. Half of the rows in table 2.1 show

CHAPTER 2. THE BAG-OF-WORDS APPROACH 27

results for experiments where the test data is the same as the training data, yet these
results are not appreciably better than the results for experiments where the test
data is different from the training data. However, this result is not too surprising—
because the maximum entropy classifier uses just two features, it has only three free
parameters, and thus is unlikely to overfit the training data.

Chapter 3

Alignment for natural language

inference

In order to recognize that Kennedy was killed can be inferred from JFK was assassi-
nated, one must first recognize the correspondence between Kennedy and JFK, and
between killed and assassinated. Consequently, most current approaches to NLI rely,
implicitly or explicitly, on a facility for alignment—that is, establishing links between
corresponding entities and predicates in the premise p and the hypothesis h.

Recent entries in the annual Recognizing Textual Entailment (RTE) competition
(Dagan et al. 2005) have addressed the alignment problem in a variety of ways, though
often without distinguishing it as a separate subproblem. Glickman et al. (2005)
and Jijkoun and de Rijke (2005), among others, have explored approaches like that
presented in chapter 2, based on measuring the degree of lexical overlap between bags
of words. While ignoring structure, such methods depend on matching each word in h
to the word in p with which it is most similar—in effect, an alignment. At the other
extreme, Tatu and Moldovan (2007) and Bar-Haim et al. (2007) have formulated
the inference problem as analogous to proof search, using inferential rules which
encode (among other things) knowledge of lexical relatedness. In such approaches,
the correspondence between the words of p and h is implicit in the steps of the proof.

Increasingly, however, the most successful RTE systems have made the align-
ment problem explicit. Marsi and Krahmer (2005) and MacCartney et al. (2006)

28

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 29

first advocated pipelined system architectures containing a distinct alignment com-
ponent, a strategy crucial to the top-performing systems of Hickl et al. (2006) and
Hickl and Bensley (2007). However, each of these systems has pursued alignment
in idiosyncratic and poorly-documented ways, often using proprietary data, making
comparisons and further development difficult.

In this chapter we undertake the first systematic study of alignment for NLI.1 We
propose a new NLI alignment system (the MANLI system) which uses a phrase-based
representation of alignment, exploits external resources for knowledge of semantic
relatedness, and capitalizes on the recent appearance of new supervised training data
for NLI alignment. In addition, we examine the relation between alignment for NLI
and alignment for machine translation (MT), and investigate whether existing MT
aligners can usefully be applied in the NLI setting.

3.1 NLI alignment vs. MT alignment

The alignment problem is familiar in MT, where recognizing that she came is a good
translation for elle est venue requires establishing a correspondence between she and
elle, and between came and est venue. The MT community has developed not only
an extensive literature on alignment (Brown et al. 1993, Vogel et al. 1996, Marcu
and Wong 2002, DeNero et al. 2006), but also standard, proven alignment tools such
as GIZA++ (Och and Ney 2003). Can off-the-shelf MT aligners be applied to NLI?
There is reason to be doubtful. Alignment for NLI differs from alignment for MT in
several important respects, including:

• Most obviously, it is monolingual rather than cross-lingual, opening the door
to utilizing abundant (monolingual) sources of information on semantic relat-
edness, such as WordNet.

• It is intrinsically asymmetric: p is often much longer than h, and commonly
contains phrases or clauses which have no counterpart in h.

1The material in this chapter is derived in large part from (MacCartney et al. 2008).

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 30

• Indeed, one cannot assume even approximate semantic equivalence—usually a
given in MT. Because NLI problems include both valid and invalid inferences,
the semantic content of h may diverge substantially from p. An NLI aligner
must be designed to accommodate frequent unaligned words and phrases.

• Little training data is available. MT alignment models are typically trained
in unsupervised fashion, inducing lexical correspondences from massive quan-
tities of sentence-aligned bitexts. While NLI aligners could in principle do the
same, large volumes of suitable data are lacking. NLI aligners must therefore
depend on smaller quantities of supervised training data, supplemented by ex-
ternal lexical resources. Conversely, while existing MT aligners can make use of
dictionaries, they are not designed to harness other sources of information on
degrees of semantic relatedness.

Consequently, the tools and techniques of MT alignment may not transfer readily to
NLI alignment. We investigate the matter empirically in section 3.4.2.

3.2 The MSR alignment data

Until recently, research on alignment for NLI has been hampered by a paucity of
high-quality, publicly available data from which to learn. Happily, that has begun
to change, with the release by Microsoft Research (MSR) of gold-standard alignment
annotations (Brockett 2007) for inference problems from the second Recognizing Tex-
tual Entailment (RTE2) challenge (Bar-Haim et al. 2006). To our knowledge, we are
the first to exploit this data for training and evaluation of NLI alignment models.

The RTE2 data consists of a development set and a test set, each containing
800 inference problems. Each problem consists of a premise p and a hypothesis h.
The premises contain 29 words on average; the hypotheses, 11 words. Each problem
is marked as a valid or invalid inference (50% each); however, these annotations
are ignored during alignment, since they would not be available during testing of a
complete NLI system.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 31

In

most

Pacific

countries

there

are

very

few

women

in

parliament

.

W
om
en

ar
e
po
or
ly

re
pr
es
en
ted

in pa
rli
am
en
t

.

Figure 3.1: The MSR gold standard alignment for problem 116 from the RTE2 de-
velopment set.

The MSR annotations use an alignment representation which is token-based, but
many-to-many, and thus allows implicit alignment of multi-word phrases. Figure 3.1
shows an example in which very few has been aligned with poorly represented.

In the MSR data, every alignment link is marked as sure or possible. In making
this distinction, the annotators have followed a convention common in MT, which
permits alignment precision to be measured against both sure and possible links,
while recall is measured against only sure links. In this work, however, we have
chosen to ignore possible links, embracing the argument made by Fraser and Marcu
(2007) that their use has impeded progress in MT alignment models, and that sure-
only annotation is to be preferred.

Each RTE2 problem was independently annotated by three people, following care-
fully designed annotation guidelines. Inter-annotator agreement was high: Brockett
(2007) reports Fleiss’ kappa2 scores of about 0.73 (“substantial agreement”) for map-
pings from h tokens to p tokens; and all three annotators agreed on ∼70% of proposed

2Fleiss’ kappa generalizes Cohen’s kappa to the case where there are more than two raters.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 32

links, while at least two of three agreed on more than 99.7% of proposed links,3 at-
testing to the high quality of the annotation data. For this work, we merged the three
independent annotations, according to majority rule,4 to obtain a gold-standard an-
notation containing an average of 7.3 links per RTE problem.

3.3 The MANLI aligner

In this section, we describe the MANLI aligner, a new alignment system designed
expressly for NLI alignment. The MANLI system consists of four elements:

• a phrase-based representation of alignment,

• a feature-based linear scoring function for alignments,

• a decoder which uses simulated annealing to find high-scoring alignments, and

• perceptron learning to optimize feature weights.

In the following pages, we’ll describe each of these elements in turn.

3.3.1 A phrase-based alignment representation

MANLI uses an alignment representation which is intrinsically phrase-based. (Fol-
lowing the usage common in MT, we use “phrase” to mean any contiguous span of
tokens, not necessarily corresponding to a syntactic phrase.) We represent an align-
ment E between a premise p and a hypothesis h as a set of phrase edits {e1, e2, . . .},
each belonging to one of four types:

• an eq edit connects a phrase in p with an equal (by word lemmas) phrase in h

• a sub edit connects a phrase in p with an unequal phrase in h

• a del edit covers an unaligned phrase in p

• an ins edit covers an unaligned phrase in h

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 33

del(In1)
del(most2)
del(Pacific3)
del(countries4)
del(there5)
eq(are6, are2)
sub(very7 few8, poorly3 represented4)
eq(women9, Women1)
eq(in10, in5)
eq(parliament11, parliament6)
eq(.12, .7)

Figure 3.2: The MSR gold standard alignment for RTE2 problem 116 (the same
problem as in figure 3.1), represented as a set of phrase edits. Note that del and ins
edits of size > 1 are possible in principle, but are not used in our training data.

As an example, figure 3.2 shows the same alignment as in figure 3.1, but represented
as a set of phrase edits.

Alignments are constrained to be one-to-one at the phrase level: every token in p
and h belongs to exactly one phrase, which participates in exactly one edit (possibly
del or ins). However, the phrase representation permits alignments which are many-
to-many at the token level. In fact, this is the chief motivation for the phrase-based
representation: we can align very few and poorly represented as units, without being
forced to make an arbitrary choice as to which word goes with which word. Moreover,
our scoring function can make use of lexical resources which have information about
semantic relatedness of multi-word phrases, not merely individual words.

About 23% of the MSR gold-standard alignments are not one-to-one (at the token
level), and are therefore technically unreachable for MANLI, which is constrained to
generate one-to-one alignments. However, by merging contiguous token links into
phrase edits of size > 1, most MSR alignments (about 92%) can be straightforwardly
converted into MANLI-reachable alignments. For the purpose of model training (but
not for the evaluation described in section 3.4.4), we generated a version of the MSR

3The sure/possible distinction is taken as significant in computing all these figures.
4The handful of three-way disagreements were treated as possible links, and thus were not used.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 34

data in which all alignments were converted to MANLI-reachable form.5

3.3.2 A feature-based scoring function

To score alignments, we use a simple feature-based linear scoring function, in which
the score of an alignment is the sum of the scores of the edits it contains (including
not only sub and eq edits, but also del and ins edits), and the score of an edit is
the dot product of a vector encoding its features and a vector of weights. If E is a set
of edits constituting an alignment, and Φ is a vector of feature functions, the score s
is given by:

s(E) =
∑
e∈E

s(e) =
∑
e∈E

w ·Φ(e)

We’ll explain how the feature weights w are set in section 3.3.4. The features used
to characterize each edit are as follows:

Edit type features. We begin with boolean features encoding the type of each
edit. We expect eqs to score higher than subs, and (since p is commonly longer than
h) dels to score higher than inss.

Phrase features. Next, we have features which encode the sizes of the phrases
involved in the edit, and whether these phrases are non-constituents (in syntactic
parses of the sentences involved).

Semantic relatedness feature. For sub edits, a very important feature represents
the degree of semantic relatedness of the substituends, as a real value in [0, 1]. This
relatedness score is computed as a max over a number of component scoring functions,
some based on external lexical resources, including:

• various string similarity functions, of which most are applied to word lemmas
5About 8% of the MSR alignments contain non-contiguous links, most commonly because p

contains two references to an entity (e.g., Christian Democrats and CDU) which are both linked
to a reference to the same entity in h (e.g., Christian Democratic Union). In such cases, one or
more links must be eliminated to achieve a MANLI-reachable alignment. We used a string-similarity
heuristic to break such conflicts, but were obliged to make an arbitrary choice in about 2% of cases.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 35

• measures of synonymy, hypernymy, antonymy, and semantic relatedness, includ-
ing a widely-used measure due to Jiang and Conrath (1997), based on manually
constructed lexical resources such as WordNet and NomBank

• a function based on the well-known distributional similarity metric of Lin (1998),
which automatically infers similarity of words and phrases from their distribu-
tions in a very large corpus of English text

The ability to leverage external lexical resources—both manually constructed and
automatically induced—is critical to the success of MANLI.

Contextual features. Even when the lexical similarity for a sub edit is high,
it may not be a good match. If p or h contains multiple occurrences of the same
word—which happens frequently with function words, and occasionally with content
words—lexical similarity alone may not suffice to determine which is the right match.
To remedy this, we introduce contextual features for sub and eq edits. A real-
valued distortion feature measures the difference between the relative positions of
the substituends within their respective sentences, while boolean matching neighbors
features indicate whether the tokens before and after the substituends are equal or
similar.

3.3.3 Decoding using simulated annealing

The problem of decoding—that is, finding a high-scoring alignment for a par-
ticular inference problem—is made more complex by our choice of a phrase-based
alignment representation. For a model which uses a token-based representation (say,
one which simply maps h tokens to p tokens), decoding is trivial, since each token
can be aligned independently of its neighbors. (This is the case for the bag-of-words
model described in chapter 2.) But with a phrase-based representation, things are
more complicated. The segmentation into phrases is not given in advance, and every
phrase pair considered for alignment must be consistent with its neighbors with re-
spect to segmentation. Consequently, the decoding problem cannot be factored into
a number of independent decisions.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 36

Inputs
• an alignment problem 〈p, h〉
• a number of iterations N (e.g. 100)
• initial temperature T0 (e.g. 40) and multiplier r (e.g. 0.9)
• a bound on edit size max (e.g. 6)
• an alignment scoring function, score(E)

Initialize
• Let E be an “empty” alignment for 〈p, h〉

(i.e., E contains only del and ins edits, no eq or sub edits)
• Set Ê = E

Repeat for i = 1 to N
• Let {F1, F2, ...} be the set of possible successors of E. To generate this set:

– Consider every possible edit f up to size max
– Let C(E, f) be the set of edits in E which “conflict" with f (i.e., involve at least some

of the same tokens as f)
– Let F = E ∪ {f} \ C(E, f)

• Let s(F) be a map from successors of E to scores generated by score
• Set P (F) = exp s(F), and then normalize P (F), transforming the score map to a probability

distribution
• Set Ti = r · Ti−1

• Set P (F) = P (F)1/Ti , smoothing or sharpening P (F)
• Renormalize P (F)
• Choose a new value for E by sampling from P (F)
• If score(E) > score(Ê), set Ê = E

Return Ê

Figure 3.3: The manli-align algorithm

To address this difficulty, we have devised a stochastic alignment algorithm,
manli-align (figure 3.3), which uses a simulated annealing strategy. Beginning
from an arbitrary alignment, we make a series of local steps, at each iteration sam-
pling from a set of possible successors according to scores assigned by our scoring
function. The sampling is controlled by a “temperature” which falls over time. At
the beginning of the process, successors are sampled with nearly uniform probability,
which helps to ensure that the space of possibilities is explored and local maxima are
avoided. As the temperature falls, there is a ever-stronger bias toward high-scoring
successors, so that the algorithm converges on a near-optimal alignment. Clever use
of memoization helps to ensure that computational costs remain manageable. Using
the parameter values suggested in figure 3.3, aligning an average RTE problem takes
about two seconds.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 37

Inputs
• training problems 〈pj , hj〉, j = 1..n
• corresponding gold-standard alignments Ej

• a number of learning epochs N (e.g. 50)
• a “burn-in” period N0 < N (e.g. 10)
• initial learning rate R0 (e.g. 1) and multiplier r (e.g. 0.8)
• a vector of feature functions Φ(E)
• an alignment algorithm align(p, h;w) which finds a good alignment for 〈p, h〉 using weight

vector w

Initialize
• Set w = 0

Repeat for i = 1 to N
• Set Ri = r ·Ri−1, reducing the learning rate
• Randomly shuffle the training problems
• For j = 1 to n:

– Set Êj = align(pj , hj ; w)
– Set w = w + Ri · (Φ(Ej)−Φ(Êj))

• Set w = w/‖w‖2 (L2 normalization)
• Set w[i] = w, storing the weight vector for this epoch

Return an averaged weight vector:
• wavg = 1/(N −N0)

∑N
i=N0+1 w[i]

Figure 3.4: The manli-learn algorithm

While manli-align is not guaranteed to produce optimal alignments, there is
reason to believe that it usually comes very close. After training, the alignment
found by MANLI scored at least as high as the gold alignment for 99.6% of RTE
problems.6

3.3.4 Perceptron learning

To tune the parameters w of the model, we use an adaptation of the averaged
perceptron algorithm (Collins 2002), which has proven successful on a range of NLP
tasks. The algorithm is shown in figure 3.4. After initializing w to 0, we perform N

training epochs. (Our experiments used N = 50.) In each epoch, we iterate through
the training data, updating the weight vector at each training example according to

6This figure is based on the MANLI-reachable version of the gold-standard data described in
section 3.3.1. For the raw gold-standard data, the figure is 88.1%. The difference is almost entirely
attributable to unreachable gold alignments, which tend to score higher simply because they contain
more edits (and because the learned weights are mostly positive).

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 38

the difference between the features of the target alignment7 and the features of the
alignment produced by the decoder using the current weight vector. The size of the
update is controlled by a learning rate which decreases over time. At the end of each
epoch, the weight vector is normalized and stored. The final result is the average
of the stored weight vectors, omitting vectors from a fixed number of epochs at the
beginning of the run (which tend to be of poor quality). Using the parameter values
suggested in figure 3.4, training runs on the RTE2 development set required about
20 hours.

3.4 Evaluating aligners on MSR data

In this section, we describe experiments designed to evaluate the performance of
various alignment systems on the MSR gold-standard data described in section 3.2.
For each system, we report precision, recall, and F-measure (F1). These statistics
are assessed per problem by counting aligned token pairs.8 In a particular alignment
problem, if A is the set of token pairs which are aligned in the guessed alignment,
and S is the set of token pairs which are aligned in the gold alignment, then precision
P = |A ∩ S|/|A|, while recall R = |A ∩ S|/|S|. F-measure is defined as usual by
F1 = 2PR/(P +R).9 P , R, and F1 are then averaged over all problems in a problem
set.10 We also report the exact match rate: that is, the proportion of problems in
which the guessed alignment exactly matches the gold alignment. The results are
summarized in table 3.1.

7For training (but not for testing), we produced a version of the gold-standard data in which
contiguous many-to-many token links (as in figure 3.1) were merged into sub edits of size > 1 (and
a few non-contiguous links were eliminated).

8For phrase-based alignments like those generated by MANLI, two tokens are considered to be
aligned iff they are contained within phrases which are aligned.

9MT researchers conventionally report results in terms of alignment error rate (AER). Since we
use only sure links in the gold standard data (see section 3.2), AER is equivalent to 1− F1.

10Note that this is a form of macro-averaging. MT evaluations conventionally use micro-averaging,
which gives greater weight to problems containing more aligned pairs. This makes sense in MT,
where the purpose of alignment is to induce phrase tables. But in NLI, where the ultimate goal is to
maximize the number of inference problems answered correctly, it is more fitting to give all problems
equal weight, and so we macro-average. We have also generated all results using micro-averaging,
and found that the relative comparisons are not greatly affected.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 39

3.4.1 A robust baseline: the bag-of-words aligner

As a baseline, we use a simple alignment algorithm which is essential the same as
the bag-of-words model presented in chapter 2. Each hypothesis token hj is aligned
to the premise token pi to which it is most similar, according to a lexical similarity
function based on string edit distance between word lemmas. To generate alignment
scores (which will be of interest in section 3.5), we simply normalize the cost function
defined in section 2.1.4 by the length of h:

score(h|p) =
1

|h|
cost(h|p)

Despite the simplicity of this alignment model, its performance is fairly robust, with
good recall. Its precision, however, its mediocre—chiefly because, by design, it aligns
every hypothesis token with some premise token. The model could surely be improved
by allowing it to leave some h tokens unaligned, but this was not pursued.

3.4.2 MT aligners: GIZA++ and Cross-EM

Given the importance of alignment for NLI, and the availability of standard, proven
tools for MT alignment, an obvious question presents itself: why not use an off-the-
shelf MT aligner for NLI? Although we have argued (section 3.1) that this is unlikely
to succeed, to our knowledge, we are the first to investigate the matter empirically.11

The best-known and most-used MT aligner is undoubtedly GIZA++ (Och and
Ney 2003), which contains implementations of various IBM models (Brown et al.
1993), as well as the HMM model of Vogel et al. (1996). Most practitioners use
GIZA++ as a black box, via the Moses MT toolkit (Koehn et al. 2007). We fol-
lowed this practice, running with Moses’ default parameters on the RTE2 data to
obtain asymmetric word alignments in both directions (p-to-h and h-to-p). We then
performed symmetrization using the well-known intersection heuristic.

Unsurprisingly, the out-of-the-box performance was quite poor, with most words
aligned apparently at random. Precision was fair (72%) but recall was very poor

11However, Dolan et al. (2004) explore a closely-related topic: using an MT aligner to identify
paraphrases.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 40

System Data P % R % F1 % E %

Bag-of-words dev 57.8 81.2 67.5 3.5
(baseline) test 62.1 82.6 70.9 5.3
GIZA++ dev 83.0 66.4 72.1 —
(using lexicon, ∩ heuristic) test 85.1 69.1 74.8 —
Cross-EM dev 67.6 80.1 72.1 —
(using lexicon, ∩ heuristic) test 70.3 81.0 74.1 —
Stanford RTE dev 81.1 61.2 69.7 0.5

test 82.7 61.2 70.3 0.3
Stanford RTE dev 81.1 75.8 78.4 —
(punctuation correction) test 82.7 75.8 79.1 —
MANLI dev 83.4 85.5 84.4 21.7

test 85.4 85.3 85.3 21.3

Table 3.1: Performance of various aligners on the MSR RTE2 alignment data. The
columns show the data set used (800 problems each); average precision, recall, and
F-measure; and the exact match rate (see text).

(46%). Even equal words were usually not aligned—because GIZA++ is designed
for cross-linguistic use, it does not consider word equality between source and tar-
get sentences. To remedy this, we supplied GIZA++ with a lexicon, using a trick
common in the MT community: we supplemented the training data with synthetic
data consisting of matched pairs of equal words. This gives GIZA++ a better chance
of learning that, e.g., man should align with man. The result was a big boost in
recall (+23%), and a smaller gain in precision. The results for GIZA++ shown in
table 3.1 are based on using the lexicon and intersection. With these settings,
GIZA++ properly aligned most pairs of equal words, but continued to align other
words apparently at random.

Next, we compared the performance of intersection with other symmetriza-
tion heuristics defined in Moses—including union, grow, grow-diag, grow-diag-

final (the default), and grow-diag-final-and—and with asymmetric alignments

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 41

in both directions. While all these alternatives achieved better recall than inter-

section, all showed substantially worse precision and F1. On the RTE2 test set, the
asymmetric alignment from h to p scored 68% in F1; grow scored 58%; and all other
alternatives scored below 52%.

As an additional experiment, we tested the Cross-EM aligner (Liang et al. 2006)
from the BerkeleyAligner package on the MSR data. While this aligner is in many
ways simpler than GIZA++ (it lacks any model of fertility, for example), its method
of jointly training two simple asymmetric HMM models has outperformed GIZA++
on standard evaluations of MT alignment. As with GIZA++, we experimented with
a variety of symmetrization heuristics, and ran trials with and without a supplemen-
tal lexicon. The results were broadly similar: intersection greatly outperformed
alternative heuristics, and using a lexicon provided a big boost (up to 12% in F1).
Under optimal settings, the Cross-EM aligner showed better recall and worse preci-
sion than GIZA++, with F1 just slightly lower. Like GIZA++, it did well at aligning
equal words, but aligned most other words at random.

The mediocre performance of MT aligners on NLI alignment comes as no surprise,
for reasons discussed in section 3.1. Above all, the quantity of training data is simply
too small for unsupervised learning to succeed. A successful NLI aligner will need
to exploit supervised training data, and will need access to additional sources of
knowledge about lexical relatedness.

3.4.3 The Stanford RTE aligner

A better comparison is thus to an alignment system expressly designed for NLI. For
this purpose, we used the alignment component of the Stanford RTE system, which
will be described in chapter 4.12 The Stanford aligner performs decoding and learning
in a similar fashion to MANLI, but uses a simpler, token-based alignment representa-
tion, along with a richer set of features for alignment scoring. It represents alignments
as an injective map from h tokens to p tokens. Phrase alignments are not directly
representable, although the effect can be approximated by a pre-processing step which

12However, the experiments described here used a more recent version of the Stanford RTE system
(best described in (Chambers et al. 2007)) than that which forms the basis of chapter 4.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 42

collapses multi-token named entities and certain collocations into single tokens. The
features used for alignment scoring include not only measures of lexical similarity, but
also syntactic features encoding the similarity of paths through dependency parses
between pairs of aligned tokens, which are intended to promote the alignment of
similar predicate-argument structures.

Despite this sophistication, the out-of-the-box performance of the Stanford aligner
is mediocre, as shown in table 3.1. The low recall figures are particularly notewor-
thy. However, a partial explanation is readily available: by design, the Stanford
system ignores punctuation.13 Because punctuation tokens constitute about 15% of
the aligned pairs in the MSR data, this sharply reduces measured recall. However,
since punctuation matters little in inference, such recall errors arguably should be
forgiven. Thus, table 3.1 also shows adjusted statistics for the Stanford system in
which all punctuation alignments are (generously) counted as correct.

Even after this adjustment, the recall figures are unimpressive. Error analysis
reveals that the Stanford aligner does a poor job of aligning function words. About
13% of the aligned pairs in the MSR data are matching prepositions or articles; the
Stanford aligner misses about 67% of such pairs. (By contrast, MANLI misses only
10% of such pairs.) While function words matter less in inference than nouns and
verbs, they are not irrelevant, and because sentences often contain multiple instances
of a particular function word, matching them properly is by no means trivial. If
matching prepositions and articles were ignored (in addition to punctuation), the gap
in F1 between the MANLI and Stanford systems would narrow to about 2.8%.

Finally, the Stanford aligner is handicapped by its token-based alignment repre-
sentation, often failing (partly or completely) to align multi-word phrases such as
peace activists with protesters, or hackers with non-authorized personnel.

3.4.4 The MANLI aligner

As table 3.1 indicates, the MANLI aligner was found to outperform all other aligners
evaluated on every measure of performance, achieving an F1 score 10.5% higher than

13In fact, it operates on a dependency-graph representation from which punctuation is omitted.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 43

GIZA++ and 6.2% higher than the Stanford aligner (even with the punctuation
correction).14 MANLI achieved a good balance between precision and recall, and
matched more than 20% of the gold-standard alignments exactly.

Three factors seem to have contributed most to MANLI’s success. First, MANLI
is able to outperform the MT aligners principally because it is able to leverage lexical
resources to identify the similarity between pairs of words such as jail and prison,
prevent and stop, or injured and wounded. Second, MANLI’s contextual features en-
able it to do better than the Stanford aligner at matching function words, a weakness
of the Stanford aligner discussed in section 3.4.3. Third, MANLI gains a marginal
advantage because its phrase-based representation of alignment permits it to properly
align phrase pairs such as death penalty and capital punishment.

However, the phrase-based representation contributed far less than we had hoped.
Setting MANLI’s maximum phrase size to 1 (effectively, restricting it to token-based
alignments) caused F1 to fall by just 0.2%. We do not interpret this to mean that
phrase alignments are not useful—indeed, about 2.6% of the links in the gold-standard
data involve phrases of size > 1. Rather, we think it shows that we have failed to
fully exploit the advantages of the phrase-based representation, chiefly because we
lack lexical resources providing good information on similarity of multi-word phrases.
Even if we had such resources, however, the consequent gains might be modest.
Recent work by de Marneffe et al. (2009) suggests that the role played by multi-
word expressions in RTE is smaller than one might expect, and is largely restricted
to lexico-syntactic variations which can be captured by other means.

Error analysis suggests that there is ample room for improvement. A large pro-
portion of recall errors (perhaps 40%) occur because the lexical similarity function
assigns too low a value to pairs of words or phrases which are clearly similar, such as
conservation and protecting, server and computer networks, organization and agen-
cies, or bone fragility and osteoporosis. Better exploitation of lexical resources could
help to reduce such errors. Another important category of recall errors (about 12%)
result from the failure to identify one- and multi-word versions of the name of some
entity, such as Lennon and John Lennon, or Nike Inc. and Nike. A special-purpose

14Reported results for MANLI are averages over 10 runs.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 44

similarity function could help here. Note, however, that about 10% of the recall errors
are unavoidable, given our choice of alignment representation, since they involve cases
where the gold standard aligns one or more tokens on one side to a non-contiguous
set of tokens on the other side.

Precision errors may be harder to reduce. These errors are dominated by cases
where we mistakenly align two equal function words (49% of precision errors), two
forms of the verb to be (21%), two equal punctuation marks (7%), or two words or
phrases of other types having equal lemmas (18%). Because such errors often occur
because the aligner is forced to choose between nearly equivalent alternatives, they
may be difficult to eliminate. The remaining 5% of precision errors result mostly from
aligning words or phrases rightly judged to be highly similar, such as expanding and
increasing, labor and birth, figures and number, or 223,000 and 220,000.

3.5 Using alignment to predict RTE answers

In section 3.4, we evaluated the ability of aligners to recover gold-standard alignments.
But since alignment is just one component of the NLI problem, we might also examine
the impact of different aligners on the ability to recognize valid inferences. If a high-
scoring alignment indicates a close correspondence between h and p, does this also
indicate a valid inference? As we will argue in chapter 4, there is more to inferential
validity than close lexical or structural correspondence: negations, antonymy, modals,
non-factive and implicative verbs, and other linguistic constructs can affect validity
in ways hard to capture in alignment. Nevertheless, alignment score can be a strong
predictor of inferential validity, and some NLI systems (e.g., that of Glickman et al.
(2005)) rely entirely on some measure of alignment quality to predict validity.

If an aligner generates real-valued alignment scores, we can use the RTE data to
test its ability to predict inferential validity with the following simple method. For a
given RTE problem, we predict yes (valid) if its alignment score15 exceeds a threshold

15For good results, it may be necessary to normalize the alignment score. Scores from MANLI
were normalized by the number of tokens in the problem. The Stanford aligner performs a similar
normalization internally.

CHAPTER 3. ALIGNMENT FOR NATURAL LANGUAGE INFERENCE 45

System data acc % avgP %

Bag-of-words aligner dev 61.3 61.5
test 57.9 58.9

Stanford RTE aligner dev 63.1 64.9
test 60.9 59.2

MANLI aligner dev 59.3 69.0
(this work) test 60.3 61.0
LCC (Hickl et al. 2006) test 75.4 80.8
RTE2 entries (average) test 58.5 59.1

Table 3.2: Performance of various aligners and complete RTE systems in predicting
RTE2 answers. The columns show the data set used, accuracy, and average precision
(the recommended metric for RTE2).

τ , and no otherwise. We tune τ to maximize accuracy on the RTE2 development
set, and then measure accuracy on the RTE2 test set using the same τ .

Table 3.2 shows results for several NLI aligners, along with some results for com-
plete RTE systems, including the LCC system (the top performer at RTE2) and an
average of all systems participating in RTE2. While none of the aligners rivals the
performance of the LCC system, all achieve respectable results, and the Stanford
and MANLI aligners outperform the average RTE2 entry. Thus, even if alignment
quality does not determine inferential validity, many NLI systems could be improved
by harnessing a well-designed NLI aligner.

3.6 Conclusion

While MT aligners succeed by unsupervised learning of word correspondences from
massive amounts of bitext, NLI aligners are forced to rely on smaller quantities of
supervised training data. With the MANLI system, we have demonstrated how to
overcome this lack of data by utilizing external lexical resources, and how to gain
additional power from a phrase-based representation of alignment.

Chapter 4

The Stanford RTE system

In this chapter, we describe the Stanford RTE system1 for natural language infer-
ence, which represents an initial attempt to find a middle ground between, on the
one hand, approaches to NLI based on lexical similarity, which are robust, but im-
precise; and on the other, approaches based on full semantic interpretation, which
are precise, but brittle. Because full, accurate, open-domain natural language under-
standing lies far beyond current capabilities, most early efforts in natural language
inference sought to extract the maximum mileage from quite limited semantic rep-
resentations. Some (like the bag-of-words model described in chapter 2) used simple
measures of semantic overlap, but over time, the more interesting work largely con-
verged on a graph-alignment approach, operating on semantic graphs derived from
syntactic dependency parses, and using a locally-decomposable alignment score as a
proxy for strength of entailment. (Below, we argue that even approaches relying on
weighted abduction may be seen in this light.) In this chapter, we highlight the fun-
damental semantic limitations of this type of approach, and advocate a multi-stage
architecture that addresses these limitations. The three key limitations are an as-
sumption of monotonicity, an assumption of locality, and a confounding of alignment

1The Stanford RTE system has been developed over several years by a large team, including (in
addition to this author) Rajat Raina, Trond Grenager, Marie-Catherine de Marneffe, Anna Rafferty,
Christopher D. Manning, and many others. The material in this chapter is derived in large part
from (MacCartney et al. 2006), and therefore reflects an earlier stage of development of the Stanford
RTE system. The more recent evolution of the system is described in (Chambers et al. 2007, Padó
et al. 2008).

46

CHAPTER 4. THE STANFORD RTE SYSTEM 47

and evaluation of entailment.
The system described in this chapter was developed around, and evaluated on, nat-

ural language inference problems from the PASCAL RTE1 data (Dagan et al. 2005),
which includes a development set of 567 problems and a test set of 800 problems.
Some example problems are shown in figure 4.1.

4.1 Approaching a robust semantics

In this section we try to give a unifying overview to recent work on robust nat-
ural language inference, to present fundamental limitations of prominent methods,
and then to outline our approach to resolving them. Until 2006, all robust natural
language inference systems of which we are aware employed a single-stage match-
ing/proof process, differing mainly in the sophistication of the matching stage. The
simplest approach is to base the entailment prediction on the degree of semantic over-
lap between the premise p and hypothesis h using models based on bags-of-words,
bags-of-n-grams, TF-IDF scores, or something similar (Jijkoun and de Rijke 2005).
(The model presented in chapter 2 typifies this approach.) Such models are too im-
poverished to be of much use, however. Semantic overlap is typically a symmetric
relation, whereas entailment is clearly not. Moreover, because overlap models do not
account for syntactic or semantic structure, they are easily fooled by examples like
problem 2081 in figure 4.1.

A more sophisticated approach is to formulate the entailment prediction as a
graph matching problem (Haghighi et al. 2005, de Salvo Braz et al. 2005). In this
formulation, the input sentences p and h are represented as normalized syntactic
dependency graphs (like the one shown in figure 4.2) and entailment is approximated
with an alignment between the h graph and a portion of the corresponding p graph.
Each possible alignment of the graphs has an associated score, and the score of the
best alignment is used as an approximation to the strength of the entailment: a
better-aligned hypothesis is assumed to be more likely to be entailed. To enable
incremental search, alignment scores are usually factored as a combination of local
terms, corresponding to the nodes and edges of the two graphs. Unfortunately, even

CHAPTER 4. THE STANFORD RTE SYSTEM 48

59 p Two Turkish engineers and an Afghan translator kidnapped in December
were freed Friday.

h translator kidnapped in Iraq no

98 p Sharon warns Arafat could be targeted for assassination.
h prime minister targeted for assassination no

152 p Twenty-five of the dead were members of the law enforcement agencies and
the rest of the 67 were civilians.

h 25 of the dead were civilians. no

231 p The memorandum noted the United Nations estimated that 2.5 million to
3.5 million people died of AIDS last year.

h Over 2 million people died of AIDS last year. yes

971 p Mitsubishi Motors Corp.’s new vehicle sales in the US fell 46 percent in June.
h Mitsubishi sales rose 46 percent. no

1806 p Vanunu, 49, was abducted by Israeli agents and convicted of treason in 1986
after discussing his work as a mid-level Dimona technician with Britain’s
Sunday Times newspaper.

h Vanunu’s disclosures in 1968 led experts to conclude that Israel has a stock-
pile of nuclear warheads. no

2081 p The main race track in Qatar is located in Shahaniya, on the Dukhan Road.
h Qatar is located in Shahaniya. no

Figure 4.1: Illustrative examples from the RTE1 development set. For each problem,
we show the ID number, the premise p and hypothesis h, and the correct answer.
Though most of the problems shown have answer no, the RTE data sets are actually
balanced between yes and no.

CHAPTER 4. THE STANFORD RTE SYSTEM 49

with factored scores, the problem of finding the best alignment of two graphs is NP-
complete, so exact computation is intractable. Authors have proposed a variety of
approximate search techniques. Haghighi et al. (2005) divide the search into two
steps: in the first step they consider node scores only, which relaxes the problem to a
weighted bipartite graph matching that can be solved in polynomial time, and in the
second step they add the edge scores and hillclimb the alignment via an approximate
local search.

A third approach, exemplified by Moldovan et al. (2003) and Raina et al. (2005),
is to turn the syntactic representation into a neo-Davidsonian-style quasi-logical form,
and to perform weighted abductive theorem proving in the tradition of Hobbs et al.
(1988). We argue, however, that this style of weighted resolution theorem proving is
actually isomorphic to the graph matching approach. For example, a neo-Davidsonian
representation of the graph in figure 4.2 might correspond to the quasi-LF

rose(e1) ∧ nsubj (e1, x1) ∧ sales(x1) ∧ nn(x1, x2) ∧ Mitsubishi(x2) ∧
dobj (e1, x3) ∧ percent(x3) ∧ num(x3, x4) ∧ 46 (x4)

There is a term corresponding to each node and arc, and the unit resolution steps at
the core of resolution theorem proving consider matching an individual node or arc
of the hypothesis with something from the premise, just as in the graph-matching
approach.2

Finally, a few efforts (Akhmatova 2005, Fowler et al. 2005, Bos and Markert
2005a) have tried to translate sentences into formulas of first-order logic, in order to
test logical entailment with a theorem prover. While in principle this approach does
not suffer from the limitations we describe below, in practice it has not borne much
fruit. Because few problem sentences can be accurately translated to logical form,
and because logical entailment is a strict standard, recall tends to be poor.

The simple graph matching formulation of the problem belies three important is-
sues. First, the above systems assume monotonicity: if a good match is found with a
part of the premise, other material in the premise is assumed not to affect the validity

2A possible difference is that with a good supply of additional linguistic and world knowledge
axioms—as is present in Moldovan et al. (2003) but not Raina et al. (2005)—the theorem prover
may generate intermediate forms in the proof, but, nevertheless, individual terms are resolved locally
without reference to global context.

CHAPTER 4. THE STANFORD RTE SYSTEM 50

of the match. But many entailment decisions are non-monotonic in the node and edge
scores. Consider variants on problem 98 in figure 4.1. Suppose the hypothesis were
Arafat targeted for assassination. This would allow a perfect graph match or zero-
cost weighted abductive proof, because the hypothesis is a subgraph of the premise.
However, this would be incorrect, because it ignores the modal operator could. Infor-
mation that changes the validity of a proof can also exist outside a matching clause.
Consider the alternate premise Sharon denies Arafat is targeted for assassination.3

The second issue is the assumption of locality. Locality is needed to allow practical
search, but many entailment decisions rely on global features of the alignment, and
thus do not naturally factor by nodes and edges. To take just one example, dropping
a restrictive modifier preserves entailment in a positive context, but not in a negative
one. For example, Dogs barked loudly entails Dogs barked, but No dogs barked loudly
does not entail No dogs barked. These more global phenomena cannot be modeled
with a factored alignment score.

The last issue arising in the graph matching approaches is the inherent difficulty
in confounding alignment and entailment determination. The way to show that one
graph element does not follow from another is to make the cost of aligning them high.
However, since we are embedded in a search for the lowest cost alignment, this will
just cause the system to choose an alternate alignment rather than recognizing a non-
entailment. In problem 152 of figure 4.1, we would like the hypothesis to align with
the first part of the premise, to be able to prove that civilians are not members of
law enforcement agencies and conclude that the hypothesis does not follow from the
premise. But a graph-matching system will to try to get non-entailment by making
the matching cost between civilians and members of law enforcement agencies be
very high. However, the likely result of that is that the final part of the hypothesis
will align with were civilians at the end of the premise, assuming that we allow the
alignment to “break” arcs.4 Under this candidate alignment, the lexical alignments are
perfect, and the only imperfect alignment is the subject arc of were is mismatched in

3This is the same problem labeled and addressed as context in (Tatu and Moldovan 2005).
4Robust systems need to allow matches with imperfect arc correspondence. For instance, given

Bill went to Lyons to study French farming practices, we would like to be able to conclude that Bill
studied French farming despite the small structural mismatch.

CHAPTER 4. THE STANFORD RTE SYSTEM 51

the two. A robust inference guesser will still likely conclude that there is entailment.
We propose that all three problems can be resolved in a multi-stage architecture,

where the alignment phase is followed by a separate phase of entailment determi-
nation. Finding aligned content is naturally useful, and can be done by any search
procedure. Compared to previous work, our approach to alignment emphasizes struc-
tural correspondence, and downplays issues like polarity and quantity, which can be
left to a subsequent entailment decision. For example, our alignment scoring function
is designed to encourage antonym matches, and ignore the negation of verb pred-
icates. The ideas clearly generalize to evaluating several alignments, but we have
found working with the one-best alignment to be adequate for the PASCAL RTE
data. Given a good alignment, the determination of entailment reduces to a simple
classification decision. The classifier can use hand-tuned weights, or it can be trained
to minimize a relevant loss function using standard techniques from machine learning.
The classifier is built over features designed to identify patterns of valid and invalid
inference. For example, they can detect that it is okay to add a restrictive modifier
if the passage has a universal quantifier (All the students got on the bus |= All the
male students got on the bus), whereas this form of inference is not supported in or-
dinary (upward-monotone) contexts. Because we already have a complete alignment,
the classifier’s decision can be conditioned on arbitrary global features of the aligned
graphs, and it can detect inversions of monotonicity.

4.2 System

Our system has three stages: linguistic analysis, alignment, and entailment determi-
nation. In the following pages, we describe each of these stages in turn.

4.2.1 Linguistic analysis

In the first stage of processing, our goal is to compute linguistic representations of the
premise and hypothesis that contain as much information as possible about their se-
mantic content. We use typed dependency graphs, which contain a node for each word,

CHAPTER 4. THE STANFORD RTE SYSTEM 52

rose

sales

Mitsubishi

percent

46

nsubj dobj

nn num

Figure 4.2: A typed dependency graph for problem 971 of figure 4.1.

and labeled edges representing the grammatical relations between words. An example
of a typed dependency graph for problem 971 of figure 4.1 is given in figure 4.2. The
advantage of this representation is that it contains much of the information about
the entities and relations between them described by the sentence, while being easy
to compute deterministically from a syntactic parse. The disadvantage is that it fails
properly to represent many semantic phenomena; particularly egregious is its inability
to represent quantification and modality.

Our general approach is first to parse the input sentences, and then to convert
each of the resulting phrase structure trees to a typed dependency graph. We use the
Stanford parser (Klein and Manning 2003), a statistical syntactic parser trained on the
Penn TreeBank. To ensure correct parsing, we preprocess the sentences to collapse
named entities and collocations into single tokens (by joining separate words with
underscores). Named entities are identified by the Stanford Named Entity Recognizer
(Finkel et al. 2005), a CRF-based NER system similar to that described by McCallum
and Li (2003), and collocations are derived from consecutive words pairs in WordNet
(Fellbaum et al. 1998).

We convert the phrase structure trees to typed dependency graphs using a set of
deterministic hand-coded rules, as described by de Marneffe et al. (2006). Heads of
the constituents are first identified using the Collins rules (Collins 2003), modified to
retrieve semantic heads. For each grammatical relation, we define patterns over the
phrase structure tree using a language similar to the tgrep utility. Each pattern is

CHAPTER 4. THE STANFORD RTE SYSTEM 53

rose → fell
sales → sales

Mitsubishi → Mitsubishi_Motors_Corp.
percent → percent

46 → 46

score: −0.8962

Figure 4.3: A sample alignment for problem 971 of figure 4.1.

matched against each dependency in the tree, adding the most specific relation found
as the typed dependency. The nodes in the final graph are then annotated with their
associated word, part-of-speech (given by the parser), lemma (given by a finite-state
transducer described by Minnen et al. (2001)) and named-entity tag (given by the
NER tagger).

4.2.2 Alignment

The purpose of the second phase of processing is to find a good partial alignment
between the typed dependency graphs representing the premise p and the hypothesis
h. An alignment consists of a mapping from each node (word) in the h graph to
a single node in the p graph, or to null.5 Not all words in the premise graph are
mapped to, since typically the premise contains much more information than needed
to support the hypothesis. Furthermore, we do not require that the alignment con-
tains a mapping for all words in the hypothesis. Figure 4.3 shows an example of an
alignment for problem 971 of figure 4.1.

The space of alignments is large: there are O((m+1)n) possible alignments for a p
graph with m nodes and an h graph with n nodes. We define a measure of alignment
quality, and a procedure for identifying high scoring alignments. We choose a locally
decomposable scoring function, such that the score of an alignment is the sum of the
local node and edge alignment scores. Unfortunately, there is no polynomial time

5The limitations of using one-to-one alignments are mitigated by the fact that many multiword
expressions (e.g., named entities, noun compounds, multiword prepositions) have been collapsed into
single nodes during linguistic analysis.

CHAPTER 4. THE STANFORD RTE SYSTEM 54

algorithm for finding the exact best alignment. Instead we use an incremental beam
search, combined with a node ordering heuristic, to do approximate global search
in the space of possible alignments. We have experimented with several alternative
search techniques, and found that the solution quality is not very sensitive to the
specific search procedure used.

Our scoring measure is designed to favor alignments which align semantically
similar subgraphs, irrespective of polarity. For this reason, nodes receive high align-
ment scores when the words they represent are semantically similar. Synonyms and
antonyms receive the highest score, and unrelated words receive the lowest. Our
hand-crafted scoring metric takes into account the word, the lemma, and the part of
speech, and searches for word relatedness using a range of external resources, includ-
ing WordNet, precomputed latent semantic analysis matrices, and special-purpose
gazettes. Alignment scores also incorporate local edge scores, which are based on the
shape of the paths between nodes in the premise graph which correspond to adjacent
nodes in the hypothesis graph. Preserved edges receive the highest score, and longer
paths receive lower scores.

4.2.3 Entailment determination

In the final stage of processing, we make a decision about whether or not h is entailed
by p, conditioned on the typed dependency graphs of p and h, as well as the best
alignment between them. Because we have a data set of examples that are labeled
for entailment, we can use techniques from supervised machine learning to learn a
classifier. We adopt the standard approach of defining a feature representation of the
problem and then learning a linear decision boundary in the feature space. We focus
here on the learning methodology; the next section covers the definition of the set of
features.

Defined in this way, one can apply any statistical learning algorithm to this classi-
fication task, such as support vector machines, logistic regression, or naive Bayes. We
used a logistic regression (or maximum entropy) classifier with a Gaussian prior pa-
rameter for regularization. We also compare our learning results with those achieved

CHAPTER 4. THE STANFORD RTE SYSTEM 55

by hand-setting the weight parameters for the classifier, effectively incorporating
strong prior (human) knowledge into the choice of weights.

An advantage to the use of statistical classifiers is that they can be configured
to output a probability distribution over possible answers rather than just the most
likely answer. This allows us to get reliable confidence estimates for computing a
confidence weighted score (see section 4.4). A major concern in applying machine
learning techniques to this classification problem is the relatively small size of the
training set, which can lead to overfitting problems. We address this by keeping the
feature dimensionality small, and using high regularization penalties in training.

4.3 Feature representation

In the entailment determination phase, the entailment problem is reduced to a rep-
resentation as a vector of 28 features, over which the statistical classifier described
above operates. The alignment score is included among the features, but in order to
outperform an alignment-only model, the remaining features must somehow capture
whatever factors distinguish good (or bad) entailments from merely good (or bad)
alignments. The features represent global characteristics of the p and h graphs and
the alignment between them. The feature functions are complex, encoding substantial
human knowledge. They are designed to capture salient patterns of entailment and
non-entailment, with particular attention to contexts which reverse or block mono-
tonicity, such as negations and quantifiers. This section describes several of the most
important groups of features.

Polarity features. These features capture the presence (or absence) of linguistic
markers of negative polarity contexts in both p and h, such as simple negation (not),
downward-monotone quantifiers (no, few), restricting prepositions (without, except)
and superlatives (tallest).

CHAPTER 4. THE STANFORD RTE SYSTEM 56

Adjunct features. These indicate the dropping or adding of syntactic adjuncts
when moving from p to h.6 For the common case of restrictive adjuncts, dropping an
adjunct preserves truth (Dogs barked loudly |= Dogs barked), while adding an adjunct
does not (Dogs barked 6|= Dogs barked today). However, in negative-polarity contexts
(such as No dogs barked), this heuristic is reversed: adjuncts can safely be added, but
not dropped. For example, in problem 59 of figure 4.1, h aligns well with p, but the
addition of in Iraq indicates non-entailment.

We identify the “root nodes” of the problem: the root node of the h graph and the
corresponding aligned node in the p graph. Using dependency information, we iden-
tify whether adjuncts have been added or dropped. We then determine the polarity
(negative context, positive context or restrictor of a universal quantifier) of the two
root nodes to generate features accordingly.

Antonymy features. Entailment problems might involve antonymy, as in problem
971 of figure 4.1. We check whether any aligned pairs of 〈p, h〉 words appear to be
antonymous by consulting a pre-computed list of about 40,000 antonymous and other
contrasting pairs derived from WordNet. For each antonymous pair, we generate
one of three boolean features, indicating whether (i) the words appear in contexts of
matching polarity, (ii) only the p word appears in a negative-polarity context, or (iii)
only the h word does.

The antonymy features highlight the difference between the Stanford RTE system
and alignment-only systems. An alignment-only model must put a high cost on
aligning antonyms; otherwise it may predict that Sales fell entails Sales rose. But
if antonyms are costly to align, it is not possible to correctly predict that Sales fell,
while profits rose entails Sales did not rise. In contrast, our system is happy to align
antonyms at low cost, and relies on the antonymy features to distinguish the cases
where the antonymy aids or hinders the entailment.

6We employ the conventional syntactic distinction between the arguments of a verb (such as
subject and object), which are presumed to be semantically essential, and the adjuncts (such as
temporal modifiers), which are not.

CHAPTER 4. THE STANFORD RTE SYSTEM 57

Modality features. Modality features capture simple patterns of modal reasoning,
as in problem 98 of figure 4.1, which illustrates the heuristic that possibility does not
entail actuality. According to the occurrence (or not) of predefined modality markers,
such as must or maybe, we map each of p and h to one of six modalities: possible,
not possible, actual, not actual, necessary, and not necessary. The
〈p, h〉 modality pair is then mapped into one of the following entailment judgments:
yes, weak yes, don’t know, weak no, or no. For example:

(not possible |= not actual)? ⇒ yes

(possible |= necessary)? ⇒ weak no

Factivity features. The context in which a verb phrase is embedded may carry
semantic presuppositions giving rise to (non-)entailments such as The gangster tried
to escape 6|= The gangster escaped. This pattern of entailment, like others, can be
reversed by negative polarity markers (The gangster managed to escape |= The gang-
ster escaped while The gangster didn’t manage to escape 6|= The gangster escaped). To
capture these phenomena, we compiled small lists of “factive” and non-factive verbs,
clustered according to the kinds of entailments they create. We then determine to
which factivity class the parent of the p node aligned with the root of h belongs.
If the parent is not in the list, we only check whether the embedding context is an
affirmative context or a negative one.

Quantifier features. These features are designed to capture entailment relations
among simple sentences involving quantification, such as Every company must report
|= A company must report (or The company, or IBM). No attempt is made to handle
multiple quantifiers or scope ambiguities. Each quantifier found in an aligned pair of
〈p, h〉 words is mapped into one of five quantifier categories: no, some, many, most,
and all. The no category is set apart, while an ordering over the other four categories
is defined. The some category also includes definite and indefinite determiners and
small cardinal numbers. A crude attempt is made to handle negation by interchanging
no and all in the presence of negation.

Features are generated given the categories of both p and h. One of four boolean

CHAPTER 4. THE STANFORD RTE SYSTEM 58

features is generated: both ‘no’ if both p and h quantifiers are no; one ‘no’ if just
one is; expand if the h quantifier is “larger” (less restrictive) than the p quantifier;
and contract if the reverse. Intuitively, both ‘no’ and expand should favor
entailments; one ‘no’ and contract should disfavor. Unfortunately, these features
are rarely useful on RTE data. Overwhelming, they are activated only for exact
matches between definite or indefinite determiners. Very few quantifiers per se are
identified.

Number, date, and time features. These are designed to recognize (mis-)matches
between numbers, dates, and times, as in problems 1806 and 231 of figure 4.1. We
do some normalization (e.g., of date representations) and have a limited ability to
do fuzzy matching. In problem 1806, the mismatched years are correctly identified.
Unfortunately, in problem 231, the significance of over is not grasped and a mismatch
is reported.7

Alignment features. Our feature representation includes three real-valued fea-
tures intended to represent the quality of the alignment: score is the raw score re-
turned from the alignment phase, while good score and bad score try to capture
whether the alignment score is “good” or “bad” by computing the sigmoid function of
the distance between the alignment score and hard-coded “good” and “bad” reference
values.

4.4 Evaluation

We present results based on the PASCAL RTE1 Challenge, which was introduced
in section 1.3.2. The RTE1 Challenge recommended two evaluation metrics: raw
accuracy and confidence weighted score (CWS).8 The CWS is computed as follows:
for each positive integer k up to the size of the test set, we compute accuracy over
the k most confident predictions. The CWS is then the average, over k, of these

7Later versions of the Stanford RTE system handle over correctly.
8In subsequent RTE competitions, the use of CWS was abandoned in favor of average precision.

CHAPTER 4. THE STANFORD RTE SYSTEM 59

Algorithm RTE1 Dev Set RTE1 Test Set
Acc % CWS % Acc % CWS %

Random 50.0 50.0 50.0 50.0
Jijkoun et al. 05 61.0 64.9 55.3 55.9
Raina et al. 05 57.8 66.1 55.5 63.8
Haghighi et al. 05 — — 56.8 61.4
Bos & Markert 05 — — 57.7 63.2
Stanford RTE, alignment only 58.7 59.1 54.5 59.7
Stanford RTE, hand-tuned 60.3 65.3 59.1 65.0
Stanford RTE, learning 61.2 74.4 59.1 63.9

Table 4.1: Performance of various systems on the RTE1 development and test sets.
The columns show accuracy and confidence weighted score (see text).

partial accuracies. Like raw accuracy, it lies in the interval [0, 1], but it will exceed
raw accuracy to the degree that predictions are well-calibrated.

Table 4.1 shows results for a range of systems and testing conditions. We report
accuracy and CWS on each RTE1 data set. The baseline for all experiments is random
guessing, which always attains 50% accuracy. Table 4.1 also displays comparable
results from RTE1 submissions based on lexical similarity (Jijkoun and de Rijke 2005),
graph alignment (Haghighi et al. 2005), weighted abduction (Raina et al. 2005), and
theorem proving (Bos and Markert 2005a).

We then show results for the Stanford RTE system under several different training
regimes. The row labeled “alignment only” describes experiments in which all fea-
tures except the alignment score are turned off. We predict entailment just in case the
alignment score exceeds a threshold which is optimized on development data. “Hand-
tuning” describes experiments in which all features are on, but no training occurs;
rather, weights are set by hand, according to human intuition. Finally, “learning”
describes experiments in which all features are on, and feature weights are trained
on the development data. The figures reported for development data performance
therefore reflect overfitting; while such results are not a fair measure of overall perfor-
mance, they can help us assess the adequacy of our feature set: if our features have

CHAPTER 4. THE STANFORD RTE SYSTEM 60

failed to capture relevant aspects of the problem, we should expect poor performance
even when overfitting. It is therefore encouraging to see CWS above 70%. Finally,
the figures reported for test data performance are the fairest basis for comparison.
These are significantly better than our results for alignment only (Fisher’s exact test,
p < 0.05), indicating that we gain real value from our features. However, the gain
over comparable results from other teams is not significant at the p < 0.05 level.

A curious observation is that the results for hand-tuned weights are as good or
better than results for learned weights. A possible explanation runs as follows. Most
of the features represent high-level patterns which arise only occasionally. Because the
training data contains only a few hundred examples, many features are active in just a
handful of instances; their learned weights are therefore quite noisy. Indeed, a feature
which is expected to favor entailment may even wind up with a negative weight: the
modal feature weak yes is an example. As shown in table 4.2, the learned weight for
this feature was strongly negative—but this resulted from a single training example
in which the feature was active but the hypothesis was not entailed. In such cases,
we shouldn’t expect good generalization to test data, and human intuition about the
“value” of specific features may be more reliable.

Table 4.2 shows the values learned for selected feature weights. As expected, the
features added adjunct in ‘all’ context, modal yes, and p is factive were
all found to be strong indicators of entailment, while date insert, date modifier

insert, widening from p to h all indicate lack of entailment. Interestingly, p has

neg marker and p & h diff polarity were also found to disfavor entailment;
while this outcome is sensible, it was not anticipated or designed.

The real-valued alignment features good score and bad score proved to be
highly informative. However, the more basic score feature from which these are
derived got a weight near 0, suggesting that it carries little additional information.

4.5 Conclusion

Many researchers have explored approaches to the problem of natural language infer-
ence which work by aligning semantic graphs, using a locally-decomposable alignment

CHAPTER 4. THE STANFORD RTE SYSTEM 61

Category Feature Weight
Adjunct added adjunct in ‘all’ context +1.40
Date date mismatch +1.30
Alignment good score +1.10
Modal yes +0.70
Modal no +0.51
Factive p is factive +0.46
.
Polarity p & h same polarity −0.45

Modal don’t know −0.59

Quantifier widening from p to h −0.66

Polarity p has neg marker −0.66

Polarity p & h diff polarity −0.72

Alignment bad score −1.53

Date date modifier insert −1.57

Modal weak yes −1.92

Date date insert −2.63

Table 4.2: Learned weights for selected features. Positive weights favor entailment.
Weights near 0 are omitted. Based on training on the PASCAL RTE1 development
set, with a Gaussian smoothing parameter of 20.

CHAPTER 4. THE STANFORD RTE SYSTEM 62

score as a proxy for strength of entailment. We have argued that such models suf-
fer from three crucial limitations: an assumption of monotonicity, an assumption of
locality, and a confounding of alignment and entailment determination.

We have described the Stanford RTE system, which extends alignment-based sys-
tems while attempting to address these limitations. After finding the best alignment
between premise and hypothesis, the Stanford RTE system extracts high-level se-
mantic features of the entailment problem, and inputs these features to a statistical
classifier to make an entailment decision. Using this multi-stage architecture, we re-
port results on the PASCAL RTE1 data which surpass previously-reported results for
alignment-based systems.

Chapter 5

Entailment relations

5.1 Introduction

This chapter marks a shift in direction.1 Whereas the bag-of-words model (chapter 2)
and the Stanford RTE system (chapter 4) (and, indeed, most existing RTE systems)
approach the NLI task via approximate measures of the lexical and syntactic similarity
of hypothesis h to premise p, in this chapter we take our first steps toward developing
a more precise model of natural language entailment2 based on natural logic. We begin
by considering the fundamental representations to be used. What kind of answer do
we want a model of entailment to give us? For that matter, what kinds of questions
should we be able to ask of it? More precisely: if we view our entailment model as a
function, what should be the types of its inputs and output?

The simplest kind of entailment model represents entailment as a binary relation
1The material in this chapter is derived in large part from (MacCartney and Manning 2009).
2The attentive reader may note a slight shift in terminology, from natural language inference

to natural language entailment. In formal semantics, entailment is conventionally defined more
narrowly than inferability: we say that p entails h just in case p cannot be true unless h is true.
While the term “textual entailment” has frequently been used to describe the problem of natural
language inference (NLI), we believe that “inference” is a more appropriate term for the general
problem, since NLI problems can hinge on presuppositions and implicatures, as well as entailments.
However, the model we develop in this chapter and the next focuses principally on entailments,
and has little to say about other forms of inference; therefore it will be convenient to use the term
“entailment”.

63

CHAPTER 5. ENTAILMENT RELATIONS 64

between declarative expressions (sentences or short paragraphs). Viewed as a func-
tion, such a model accepts as input an ordered pair 〈p, h〉 of declarative expressions
and returns as output a Boolean value indicating whether p entails h. Indeed, this
problem representation is implicit in the most common definitions of NLI task, such
as RTE. However, various elaborations are possible. Some work in NLI (Cooper et al.
1996) assumes a three-valued output space of entailment relations, while other work
(Sánchez Valencia 1995) considers entailments between words and phrases as well as
sentences.

In this chapter, we describe the problem representations used in previous ap-
proaches to NLI, and argue that none of them is fully adequate for our purposes.
Instead, we introduce a problem representation in which the input is an ordered pair
of linguistic expressions of any semantic type (words, phrases, or sentences) and the
output is one of seven mutually exclusive basic entailment relations. We explain how
to define these entailment relations for expressions of every semantic type, and we
outline a relation algebra which enables us to join entailment relations across chains
of expressions.

5.2 Representations of entailment

5.2.1 Entailment as two-way classification

The simplest formulation of the NLI task is as a binary decision problem: the relation
between a premise p and a hypothesis h is to be classified as either entailment (h
follows from p) or non-entailment (h does not follow from p). This formulation
is used, for example, in the well-known RTE Challenge, in which h is typically a
single sentence, and p may consist of one or (occasionally) several sentences. In this
simple formulation, we make no distinction between unidirectional entailment and
bidirectional entailment (or equivalence). Nor do we distinguish contradiction (if p is
true, then h cannot be true) from simple non-entailment (if p is true, then h may or
may not be true).

Though such a simple conception of entailment hardly needs to be formalized, we’ll

CHAPTER 5. ENTAILMENT RELATIONS 65

do so, in order to facilitate comparison with the more complex representations of en-
tailment to follow. Formally, the output labels entailment and non-entailment

may be interpreted as denoting relations between (that is, sets of ordered pairs of)
declarative expressions. If DomT denotes the domain of declarative expressions (se-
mantic type T), and Dom2

T denotes the Cartesian product of DomT with itself, then
we can define these relations as:

entailment def
= {〈p, h〉 ∈ Dom2

T : p |= h}

non-entailment def
= {〈p, h〉 ∈ Dom2

T : p 6|= h}

Obviously, non-entailment is the set complement of entailment, and thus every
〈p, h〉 ∈ Dom2

T can be assigned to exactly one of these two relations.

5.2.2 Entailment as three-way classification

The three-way formulation of the NLI task refines the binary formulation by dividing
non-entailment into contradiction and compatibility. For example, in the FraCaS data
set (Cooper et al. 1996), problems are annotated with one of three labels:3

• yes denotes entailment: h can be inferred from p.

• no denotes contradiction: the negation of h can be inferred from p.

• unk denotes compatibility: neither h nor its negation can be inferred from p.

Condoravdi et al. (2003) argued for the importance of entailment and contradiction
detection (ECD) as a necessary condition for natural language understanding, and
explored theoretical approaches to the task, but do not report empirical results.

To our knowledge, Harabagiu et al. (2006) provide the first empirical results for
contradiction detection, but they evaluate their system on constructed corpora con-
taining two specific kinds of contradiction: those featuring negation and those formed
by paraphrases. A more general treatment is given by de Marneffe et al. (2008), who

3A few FraCaS problems do not fit neatly into any of these three categories. See section 7.8.1.

CHAPTER 5. ENTAILMENT RELATIONS 66

develop a typology of contradictions and report results on both contradictions found
in the RTE data and “in the wild”.

Over time, the three-way formulation has gained considerable traction in the NLI
community. It was employed in the AQUAINT KBEval data sets (Crouch et al.
2005), and was introduced as a pilot task in the RTE3 competition (Giampiccolo
et al. 2007, Voorhees 2008). In the RTE4 competition (Dang and Giampiccolo 2008),
the three-way classification task became the standard (though two-way classification
was retained as an optional task).

Formally, the output labels of the three-way formulation may be interpreted as
denoting entailment relations defined as follows:

entailment def
= {〈p, h〉 ∈ Dom2

T : p |= h}

contradiction def
= {〈p, h〉 ∈ Dom2

T : p |= ¬h}

compatibility def
= {〈p, h〉 ∈ Dom2

T : p 6|= h ∧ p 6|= ¬h}

As in the binary formulation, the output labels form a partition of the input space,
so that every 〈p, h〉 ∈ Dom2

T can be assigned to exactly one of the three relations.

5.2.3 Entailment as a containment relation

The monotonicity calculus of Sánchez Valencia (1991) carves things up differently.
It interprets entailment as a semantic containment relation v analogous to the set
containment relation ⊆, and seeks to explain inversions of the containment relation
resulting from downward-monotone operators, such as negation. It thus emphasizes
the distinction between forward entailment (p v h) and reverse entailment (p w h).
Unlike the three-way formulation, however, it lacks any way to represent contradiction
(semantic exclusion).

A model of entailment based on the monotonicity calculus would thus have a
different output space than either of the simpler formulations above. While the v
and w relations overlap, they can be factored into three mutually-exclusive rela-
tions, which we might label ≡, @, and A. For completeness, we should also define

CHAPTER 5. ENTAILMENT RELATIONS 67

a no-containment relation which holds exactly when none of the other relations
hold. The output space for the monotonicity calculus then consists of four relations:

≡ def
= {〈p, h〉 ∈ Dom2

T : p |= h ∧ h |= p}

@
def
= {〈p, h〉 ∈ Dom2

T : p |= h ∧ h 6|= p}

A
def
= {〈p, h〉 ∈ Dom2

T : p 6|= h ∧ h |= p}

no-containment def
= {〈p, h〉 ∈ Dom2

T : p 6|= h ∧ h 6|= p}

However, these definitions are incomplete. The monotonicity calculus differs from
the simpler formulations above not only with respect to the output space, but also
with respect to the input space: it defines the semantic containment relation v for
expressions of every semantic type, including individual words and phrases as well
as complete sentences. It achieves this using a recursive definition, beginning from
atomic types and building up to functional types:

1. If x, y ∈ DomT , then x v y iff x = false or y = true.

(For truth values, entailment is equivalent to material implication: x v y iff
x→ y. Thus false v true.)

2. If x, y ∈ DomE, then x v y iff x = y.

(Expressions denoting entities are mutually entailing just in case they denote
the same entity; otherwise they are unrelated.)

3. If x, y ∈ DomA�B, then x v y iff for all a ∈ DomA, x(a) v y(a).

(One function entails another if each of its outputs entails the corresponding
output of the other function.)

4. Otherwise, x 6v y and y 6v x.

(Expressions having different semantic types are unrelated.)

Defining semantic containment for expressions of every semantic type is necessary
to the goal of the monotonicity calculus, which aims to explain the impact of inver-
sions of monotonicity (even when nested) in a compositional manner. For example,

CHAPTER 5. ENTAILMENT RELATIONS 68

ENTAILMENT

NON-ENTAILMENT

ENTAILMENT

COMPATIBILITY

CONTRADICTION

NO-CONTAINMENT

p ≡ h

p ⊏ h

p ⊐ h

2-way 3-way containment

p. X is a couch
h. X is a sofa

p. X is a crow
h. X is a bird

p. X is a fish
h. X is a carp

p. X is a hippo
h. X is hungry

p. X is a cat
h. X is a dog

Figure 5.1: A comparison of three representations of entailment relations used in past
work. The rows show five examples of simple inference problems; the columns show
the entailment relation assigned to each problem by the three formulations presented
in sections 5.2.1, 5.2.2, and 5.2.3.

the monotonicity calculus lets us conclude from dancing w waltzing that isn’t danc-
ing v isn’t waltzing and thus Matilda isn’t dancing v Matilda isn’t waltzing. (See
section 6.2.1 for a fuller exposition.)

5.2.4 The best of both worlds

Clearly, the representation of entailment used in the monotonicity calculus—with
four mutually-exclusive entailment relations defined over expressions of all seman-
tic types—is far more expressive than the two-way or three-way formulations. On
the other hand, the three-way formulation makes a useful distinction between con-
tradiction and mere non-entailment which is absent from the monotonicity calculus.
(Figure 5.1 shows a comparison of these different representations.)

The inability to express semantic exclusion severely limits the deductive power of
the monotonicity calculus. Consider the following sequence of propositions:

(1) a. Garfield is a cat.

CHAPTER 5. ENTAILMENT RELATIONS 69

b. Garfield is a mammal.

c. Garfield is not a fish.

d. Garfield is not a carp.

Clearly, the first proposition (1a) entails the last (1d). However, the monotonicity
calculus lacks the machinery to recognize this. It can make the inference from (1a) to
(1b) (using the semantic containment cat @ mammal), and from (1c) to (1d) (using
the semantic containment fish A carp). But it cannot make the simple inference from
(1b) to (1c), which hinges on the semantic exclusion between mammal and fish.

Of course, the first-order predicate calculus renders such inferences trivial, but
using formal logic requires full semantic interpretation, which is contrary to the nat-
ural logic approach. We’d like to preserve the spirit of the monotonicity calculus,
while enhancing its power. Ideally, then, we’d like to have the best of both worlds, by
defining an inventory of entailment relations which satisfies the following desiderata:

• It should preserve the semantic containment relations of the monotonicity cal-
culus;

• It should augment these with relations expressing semantic exclusion;

• It should be complete, so that every pair of expressions can be assigned to some
relation; and

• Indeed, it should partition the space of ordered pairs of expressions, that is, the
relations it contains should be not only exhaustive but also mutually exclusive,
so that we can define a function which maps any ordered pair of expressions to
a single entailment relation.

We’ll approach these goals somewhat indirectly. Taking inspiration from Sánchez
Valencia, we’ll focus first on set relations. We’ll define an inventory of set relations
which satisfy our desiderata, and then return to entailment relations in section 5.4.

CHAPTER 5. ENTAILMENT RELATIONS 70

5.3 The 16 elementary set relations

How can we define an inventory of set relations satisfying the desiderata outlined in
section 5.2.4? Of course, relations between sets include familiar relations such as the
(strict) subset relation (x ⊂ y) and the equivalence relation (x = y). We can also
define an exclusion relation, which holds between non-overlapping sets (x ∩ y = ∅).
And we could define more arcane relations, such as the relation between two sets
whose intersection is a singleton (|x ∩ y| = 1). In fact, the space of possible set
relations is very large. Recall that a relation is a set of ordered pairs. A universe
U contains 2|U | sets, 4|U | ordered pairs of sets, and thus 24|U| possible set relations.
Assuming |U | � 1, then, the number of possible set relations is huge. However, only
a small fraction of these will be of any particular interest. From the space of all
possible set relations, we’d like to identify a subset which (a) include familiar and
useful relations expressing equivalence, containment, and exclusion, and (b) form a
partition of the space of ordered pairs of sets, so that every ordered pair of sets can
be assigned to exactly one relation. One way to do this is as follows.

Each ordered pair 〈x, y〉 of subsets of U divides U into (up to) four partitions:
x∩y, x∩y, x∩y, and x∩y, each of which may be empty or non-empty.4 Let us label
each of these partitions by a two-bit string encoding whether it is inside or outside
each of the two sets:

label definition meaning

00 x ∩ y in neither x nor y
01 x ∩ y in y but not x
10 x ∩ y in x but not y
11 x ∩ y in both x and y

Every ordered pair of sets 〈x, y〉 can now be assigned to one of 16 equivalence
classes, according to whether each of these four partitions is empty or not. Let us label
each equivalence class with R subscripted by a 4-bit string, following the convention
that the nth bit of the subscript (starting from 0) denotes the non-emptiness of the
partition whose label is the bit string with binary value n. (Thus R1101 denotes the

4x denotes the set complement of set x, defined by the constraints x ∩ x = ∅ and x ∪ x = U .

CHAPTER 5. ENTAILMENT RELATIONS 71

R0000 R0001 R0010 R0011

R0100 R0101 R0111

R1000 R1010 R1011

R1100 R1101 R1110 R1111

R0110

R1001

Figure 5.2: The 16 elementary set relations, represented by Johnston diagrams. Each
box represents the universe U , and the two circles within the box represent the sets
x and y. A region is white if it is empty, and shaded if it is non-empty. Thus in the
diagram labeled R1101, only the region x∩ y is empty, indicating that ∅ ⊂ x ⊂ y ⊂ U .

equivalence class in which only partition 10 is empty.) These equivalence classes are
depicted graphically in figure 5.2.

In fact, each of these equivalence classes is a set relation, that is, a set of ordered
pairs of sets. We will refer to these 16 set relations as the elementary set relations,
and we will denote this set of 16 relations by R. By construction, the relations in R

are both mutually exhaustive (every ordered pair of sets belongs to some relation in
R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.

CHAPTER 5. ENTAILMENT RELATIONS 72

relation constraint on x constraint on y constraint on 〈x, y〉
R0000 ∅ = x = U ∅ = y = U x = y

R0001 ∅ ⊂ x = U ∅ ⊂ y = U x = y

R0010 ∅ ⊂ x = U ∅ = y ⊂ U x ⊃ y

R0011 ∅ ⊂ x = U ∅ ⊂ y ⊂ U x ⊃ y

R0100 ∅ = x ⊂ U ∅ ⊂ y = U x ⊂ y

R0101 ∅ ⊂ x ⊂ U ∅ ⊂ y = U x ⊂ y

R0110 ∅ ⊂ x ⊂ U ∅ ⊂ y ⊂ U x ∩ y = ∅ ∧ x ∪ y = U

R0111 ∅ ⊂ x ⊂ U ∅ ⊂ y ⊂ U x ∩ y 6= ∅ ∧ x ∪ y = U

R1000 ∅ = x ⊂ U ∅ = y ⊂ U x = y

R1001 ∅ ⊂ x ⊂ U ∅ ⊂ y ⊂ U x = y

R1010 ∅ ⊂ x ⊂ U ∅ = y ⊂ U x ⊃ y

R1011 ∅ ⊂ x ⊂ U ∅ ⊂ y ⊂ U x ⊃ y

R1100 ∅ = x ⊂ U ∅ ⊂ y ⊂ U x ⊂ y

R1101 ∅ ⊂ x ⊂ U ∅ ⊂ y ⊂ U x ⊂ y

R1110 ∅ ⊂ x ⊂ U ∅ ⊂ y ⊂ U x ∩ y = ∅ ∧ x ∪ y 6= U

R1111 ∅ ⊂ x ⊂ U ∅ ⊂ y ⊂ U x ∩ y 6= ∅ ∧ x ∪ y 6= U

. . . ∧ x 6⊆ y ∧ x 6⊇ y

Table 5.1: The 16 elementary set relations between sets x and y in universe U ,
described in terms of set-theoretic constraints. Constraints which appear in gray are
less salient, but still active.

Moreover, provided that |U | ≥ 4, the relations in R are distinct.5

Table 5.1 describes the properties of the 16 elementary set relations in terms of
set-theoretic constraints.

5.3.1 Properties of the elementary set relations

We can make a number of observations about the relations in R:
5If |U | < 4, some of the relations in R will be extensionally equivalent. For example, if |U | = 1,

then all relations except R0001, R0010, R0100, and R1000 will have extension ∅.

CHAPTER 5. ENTAILMENT RELATIONS 73

The empty relation. Relation R0000 is an extremely degenerate case: it is the
relation between two sets which are both empty (= ∅) and universal (= U). If the
universe is non-empty (the usual case), no pairs of sets satisfy these constraints, and
the relation is empty. In the unusual case of an empty universe, this relation contains
exactly one pair of sets (namely 〈∅, ∅〉), and all other relations are empty.

Singleton relations. Relations R0001, R0010, R0100, and R1000 cover the cases where
the universe is non-empty and both x and y are either empty or universal. Each of
these relations therefore contains exactly one pair of sets.

Other edge cases. Relations R0011, R0101, R1010, and R1100 cover the cases where
the universe is non-empty and one (but not both) of x and y is either empty or
universal. Each of these relations therefore has cardinality 2|U | − 2.

Degenerate relations. The nine relations in R mentioned so far (namely, R0000,
R0001, R0010, R0011, R0100, R0101, R1000, R1010, and R1100) are boundary cases in which
either x or y is either empty or universal. We therefore describe them as degenerate
relations. Note that a set which is empty or universal corresponds to a predicate
which is semantically vacuous (such as round square cupola or exists); consequently,
we will later focus our attention on the remaining seven relations. (See section 5.5
for further discussion.)

Relations expressing equivalence. In four of the relations in R (namely, R0000,
R0001, R1000, and R1001), x and y are equivalent (that is, x = y).

Relations expressing containment. In four of the relations in R (namely, R0010,
R0011, R1010, and R1011), x strictly contains y (that is, x ⊃ y). In another four
relations (namely, R0100, R0101, R1100, and R1101), x is strictly contained by y (that
is, x ⊂ y).

Relations expressing exclusion. In eight of the relations in R (namely, those in
the first and third columns of figure 5.2), x and y are mutually exclusive: that is,

CHAPTER 5. ENTAILMENT RELATIONS 74

x ∩ y = ∅.

Relations expressing exhaustion. In eight of the relations in R (namely, those
in the first two rows of figure 5.2), x and y are mutually exhaustive: that is, x∪y = U .

The independence relation. Relation R1111 is unique in that it expresses non-
equivalence, non-containment, non-exclusion, and non-exhaustion. We call this the
“independence” relation because if sets x and y belong to this relation, then informa-
tion about whether or not a given element is contained in x conveys no information
about whether or not it is contained in y, and vice-versa. Intuitively, independence
is the least informative relation, in a sense we’ll make precise in section 5.3.2.

Converses and symmetric relations. We describe relations R and S as converses
iff ∀x, y : 〈x, y〉 ∈ R ⇔ 〈y, x〉 ∈ S. A relation which is its own converse is described
as symmetric. If R is a relation in R, then the bit-string label of the converse of R is
obtained from the bit-string label of R by swapping the two middle bits. It follows
that a relation in R is symmetric just in case the two middle bits of its bit-string label
are identical. Thus, eight relations in R are symmetric: namely, R0000, R0001, R0110,
R0111, R1000, R1001, R1110, and R1111. Among the remaining eight relations, R0010 and
R0100 are converses, R0011 and R0101 are converses, R1010 and R1100 are converses, and
R1011 and R1101 are converses.

Duals under negation. We describe set relations R and S as duals under negation
iff ∀x, y : 〈x, y〉 ∈ R ⇔ 〈x, y〉 ∈ S. Two relations in R are duals under negation if
and only if their bit-string labels are reverses. Thus R1011 and R1101 are duals, while
R1001 is self-dual. The significance of this duality will become apparent later.

We have defined the relations in R as relations between sets, but we can easily
recast them as relations between set-denoting linguistic expressions, (e.g., simple
predicates). In this form, we refer to the elements of R as the elementary entailment
relations. (We consider in section 5.4 how to define entailment relations for expressions
of all semantic types.)

CHAPTER 5. ENTAILMENT RELATIONS 75

5.3.2 Cardinalities of the elementary set relations

Intuitively, R1111 is the least informative set relation. If two sets are selected at
random from a large universe, it’s very likely that they belong to R1111. In this sense,
we might call R1111 the “default” set relation—it’s the set relation you assume to hold
when you don’t have any information to the contrary.

We can provide some justification for this claim by a combinatoric argument. In
a universe of n objects, there are 2n possible sets, and 4n possible ordered pairs of
sets. Every such pair can be assigned to exactly one of the 16 relations in R, and we
can use combinatorics to count how many pairs belong to each relation. Of the 4n

possible ordered pairs of sets:

• One relation in R (namely R1111) contains 4n− (4 ·3n)+(6 ·2n)−4 pairs of sets.
Note that as n approaches infinity, the proportion of pairs of sets belonging to
this relation approaches 1.

• Then, four relations in R (namely R0111, R1011, R1101, and R1110) contain 3n −
(3 · 2n) + 3 pairs each. These are the non-degenerate relations expressing non-
exclusive exhaustion, non-exhaustive exclusion, and containment. Note that
each has a label containing one 0 and three 1s.

• Next, six relations in R (namely R0011, R0101, R0110, R1001, R1010, and R1100)
contain 2n−2 pairs each. Two of these are the non-degenerate relations express-
ing equivalence and negation; the remainder are degenerate relations. Note that
each has a label containing two 0s and two 1s.

• Then, four relations in R (namely R0001, R0010, R0100, and R1000) contain just
1 pair each. These are the degenerate singleton relations. Note that each has a
label containing three 0s and one 1.

• Finally, unless the universe is empty, the relation R0000 contains 0 pairs.

CHAPTER 5. ENTAILMENT RELATIONS 76

5.4 From set relations to entailment relations

In section 5.3, we defined a collection R of relations between sets. Our true aim,
however, is to define an inventory of entailment relations, which are relations between
linguistic expressions. And, following Sánchez Valencia, we would like to define our
entailment relations for expressions of every semantic type—not merely expressions
which denote sets (e.g., predicates), but also expressions which denote truth values
(e.g., propositions), entities (e.g., names), and more complex types.

A conventional account of semantic types can be briefly summarized as follows.
Every linguistic expression has a semantic type, which is either an atomic type or a
functional type. There are two atomic types: expressions which denote truth values
have atomic type T , while expressions which denote entities have atomic type E.6

An expression which has functional type φ�ψ combines with an argument of type φ
(the input type) to produce a compound expression of type ψ (the output type). For
example, a predicate such as is rich has semantic type E�T , and will combine with
an expression denoting an entity (such as Buffett) to produce a compound expression
which denotes a truth value (Buffett is rich). The input and output types of a
functional type may themselves be functional types. For example, (E�T)� (E�T)

is the type of an adverb (such as partly) which can modify an adjective of type E�T

(such as red) to produce a compound expression of type E�T (partly red).
Let us define entailment relation to mean any set of ordered pairs of linguistic

expressions, subject to the constraint that in every pair, both elements belong to the
same semantic type.7 Our goal here is to extend the definitions of the relations in R

from set relations to entailment relations. For semantic types which can be interpreted
as denoting characteristic functions of sets, this is completely straightforward: the
set-theoretic definitions shown in table 5.1 can be applied directly. This includes all
functional types whose final output is type T (a truth value), and includes most of the

6Some authors define additional atomic types, such as numbers, but we’ll keep things simple.
7Clearly, we’re abusing terminology somewhat, since many relations which fit this definition will

contain pairs of expressions in which neither element entails the other. However, in most of the
entailment relations with which we will be concerned, it is at least the case that one element of
every pair in the relation conveys some information, positive or negative, about the other. And, for
various reasons, every alternative term for this concept seems unsatisfactory.

CHAPTER 5. ENTAILMENT RELATIONS 77

functional types encountered in semantic analysis: E�T (common nouns, adjectives,
and intransitive verbs), E �E � T (transitive verbs), (E � T) � (E � T) (adverbs),
(E�T)�(E�T)�T (binary generalized quantifiers), and so on. Note that it makes
no difference whether T “stands alone” at the end of the type signature: for example,
expressions of type (E�T)� (E�T) can be interpreted as denoting a subset of the
Cartesian product of type E�T and type E.

The definitions can then be extended to other types by interpreting each type
as if it were a type of set. For example, propositions (semantic type T) can be
understood in model-theoretic terms as sets of models (or possible worlds). So if x
and y are contingent propositions,8 then x and y belong to relation R1001 iff they hold
in exactly the same set of models; to relation R1101 iff y holds in every model where
x holds (but not vice-versa); to relation R1110 iff there is no model where both x and
y hold (but there is some model where neither holds); and so on. Likewise, entities
(semantic type E) can be identified with singleton sets, with the result that two
entity-denoting expressions belong to relation R1001 if they denote the same entity, or
to relation R1110 otherwise.

5.5 The seven basic entailment relations

When interpreted as a collection of entailment relations, R satisfies our desiderata for
an inventory of entailment relations: first, it contains representations of both semantic
containment and semantic exclusion; second, the relations in R are (by design) both
mutually exclusive and mutually exhaustive, so that every ordered pair of expressions
can be assigned to exactly one relation in R. However, as an inventory of entailment
relations, R is somewhat unwieldy. 16 relations is rather a lot, and the symbols we’ve
used to denote these relations (e.g. R1101) are unfriendly. Can we make things more
manageable?

8A proposition is contingent iff it is neither necessarily true (that is, true in all models) nor
necessarily false (that is, true in no models).

CHAPTER 5. ENTAILMENT RELATIONS 78

5.5.1 The assumption of non-vacuity

Of the 16 relations in R, nine are in any case degenerate relations, in the sense defined
in section 5.3.1. That is, they hold only between two expressions of which at least one
has a denotation which is either empty or universal. Since expressions having empty
denotations (e.g., round square cupola) or universal denotations (e.g., exists) fail to
divide the world into meaningful categories, they can be regarded as semantically
vacuous. Contradictions and tautologies may be common in logic textbooks, but
they are rare in everyday speech. Most of the predicates we actually use (such as red
or heavy or French) are not vacuous—they make a meaningful distinction between an
in-group and an out-group. Thus, in a practical model of informal natural language
inference, we will rarely go wrong by assuming the non-vacuity of the expressions we
encounter.9

5.5.2 Defining the relations in B

Consequently, in the remainder of this chapter, and in chapters 6 and 7, we will focus
our attention on the seven non-degenerate relations, which we designate as the set
B of basic entailment relations. Note that B is a subset of R; it consists of those
relations in R in which the denotations of the related expressions are neither empty
nor universal. As an inventory of entailment relations, B preserves the key advantages
of R: it includes representations of both semantic containment and semantic exclusion,
and the relations in B are both mutually exclusive and (given the assumption of non-
vacuity) mutually exhaustive. But seven is a much more manageable size than 16,
and we can now introduce names and symbols for the relations in B that are more
compact and intuitive than the symbols we have used for relations in R:

9The assumption of non-vacuity is closely related to the assumption of existential import, which
is standard in traditional logic. For a defense of existential import in natural language semantics,
see (Böttner 1988).

CHAPTER 5. ENTAILMENT RELATIONS 79

symbol10 name example set theoretic definition11 in R

x ≡ y equivalence couch ≡ sofa x = y R1001

x @ y forward entailment crow @ bird x ⊂ y R1101

x A y reverse entailment Asian A Thai x ⊃ y R1011

x ∧ y negation able ∧ unable x ∩ y = ∅ ∧ x ∪ y = U R0110

x | y alternation cat | dog x ∩ y = ∅ ∧ x ∪ y 6= U R1110

x ` y cover animal ` non-ape x ∩ y 6= ∅ ∧ x ∪ y = U R0111

x # y independence hungry # hippo (all other cases) R1111

The relations in B can be characterized as follows. First, we preserve the semantic
containment relations (v and w) of the monotonicity calculus, but factor them into
three mutually exclusive relations: equivalence (≡), (strict) forward entailment (@),
and (strict) reverse entailment (A). Second, we include two relations expressing
semantic exclusion: negation (∧), or exhaustive exclusion, which is analogous to set
complement; and alternation (|), or non-exhaustive exclusion. The next relation is
cover (`), or non-exclusive exhaustion. Though its utility is not immediately obvious,
it is the dual under negation (in the sense defined in section 5.3.1) of the alternation
relation. Finally, the independence relation (#) covers all other cases: it expresses
non-equivalence, non-containment, non-exclusion, and non-exhaustion. As noted in
section 5.3.2, # is the least informative relation, in that it places the fewest constraints
on its arguments.

10Selecting an appropriate symbol to represent each relation is a vexed problem. We sought
symbols which (a) are easily approximated by a single ASCII character, (b) are graphically symmetric
iff the relations they represent are symmetric, and (c) do not excessively abuse accepted conventions.
The ∧ symbol was chosen to evoke the logically similar bitwise XOR operator of the C programming
language family; regrettably, it may also evoke the Boolean AND function. The | symbol was chosen
to evoke the Sheffer stroke commonly used to represent the logically similar Boolean NAND function;
regrettably, it may also evoke the Boolean OR function. The @ and A symbols were obviously chosen
to resemble their set-theoretic analogs, but a potential confusion arises because some logicians use
the horseshoe ⊃ (with the opposite orientation) to represent material implication.

11Each relation in B obeys the additional constraints that ∅ ⊂ x ⊂ U and ∅ ⊂ y ⊂ U (i.e., x and
y are non-vacuous).

CHAPTER 5. ENTAILMENT RELATIONS 80

It is important to point out that our adoption of the assumption of non-vacuity,
and our decision to focus on the seven non-degenerate relations in B, rather than
the more complete set of relations in R, is a question of convenience, not necessity.
The model of natural logic we develop in chapter 6 can easily be revised to accommo-
date vacuous expressions and relations between them, but then becomes somewhat
unwieldy, both because more relations are required, and because the names and sym-
bols used to describe them are less friendly.

5.6 Joining entailment relations

The model of natural language inference we wish to develop will require a general
ability to combine entailment relations across a sequence of expressions. If we know
that entailment relation R holds between x and y, and that entailment relation S

holds between y and z, then what is the entailment relation between x and z? Recall
that every entailment relation is a set of ordered pairs of expressions (of the same
semantic type). The join of relations R and S, which we denote R on S,12 can be
defined formally as:

R on S
def
= {〈x, z〉 : ∃y (〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S)} (5.1)

Some joins are quite intuitive. For example, it is immediately clear that:

@ on @ = @

A on A = A
∧ on ∧ = ≡

∀R R on ≡ = R

∀R ≡ on R = R

12In Tarskian relation algebra, this operation is known as relation composition, and is often rep-
resented by a semi-colon: R ; S. To avoid confusion with semantic composition (to be discussed
in section 6.2), we prefer to use the term join for this operation, by analogy to the database JOIN
operation (also commonly represented by on). (To be precise, this operation is a projected join—but
we prefer to keep the terminology simple.)

CHAPTER 5. ENTAILMENT RELATIONS 81

Other joins are less obvious, but still accessible to intuition. For example, the join of |
and ∧ is @. This can be seen with the aid of Venn diagrams, or by considering simple
examples: fish | human and human ∧ nonhuman, thus fish @ nonhuman. Other joins
which can be apprehended in similar fashion include:

| on ∧ = @ ∧ on | = A
∧ on ` = @ ` on ∧ = A

| on ` = @ ` on | = A
∧ on # = # # on ∧ = #

(Note that the join operation is not always commutative: the order in which entail-
ment relations are joined can make a difference to the result.)

5.6.1 “Nondeterministic” joins

Alas, we soon stumble upon an inconvenient truth: joining two relations in B does
not always produce a unique relation in B. Consider the join of | and |. If x | y
and y | z, we cannot say which relation in B holds between x and z. They could be
equivalent, or one might contain the other. They might be independent or alternative.
All we can say for sure is that they are not exhaustive (since both are disjoint from
y). The following examples illustrate the problem:

x | y y | z x ? z

gasoline | water water | petrol gasoline ≡ petrol
pistol | knife knife | gun pistol @ gun
dog | cat cat | terrier dog A terrier
rose | orchid orchid | daisy rose | daisy

woman | frog frog | Eskimo woman # Eskimo

The join of | and | is “nondeterministic”, in the sense that x | y and y | z does not
determine a unique relation in B which holds between x and z. And there are many
pairs of relations in B which share this property. In fact, we’ll show in section 5.6.2
that, of the 49 possible joins of two relations in B, 17 are “nondeterministic” in this
sense.

CHAPTER 5. ENTAILMENT RELATIONS 82

However, to call such joins “nondeterministic” is a bit of a misnomer. The result of
joining | and | is fully determined, and it is an entailment relation (in the sense defined
in section 5.4), only it is not one of the seven relations in B. Rather, it is a union
of such relations, specifically

⋃
{≡,@,A, |,#}.13 In fact, we’ll soon demonstrate that

joining two relations in B always yields either another relation in B, or a union of
relations in B.

5.6.2 Computing joins

So far, we have relied on intuition to determine the join of two entailment relations.
How can we compute joins in a principled way? Equation 5.1 defines the join opera-
tion, but does not explain how to compute its result for a particular pair of inputs.
We can achieve this by generalizing the approach of section 5.3 from two sets to three.
In a universe U , we consider all possible ordered triples 〈x, y, z〉 of subsets of U . The
sets x, y, and z divide the universe into (up to) eight partitions, each of which can be
labeled by a three-bit string encoding whether it is inside or outside each of the three
sets. (For example, the label 110 denotes x ∩ y ∩ z.) Each triple 〈x, y, z〉 can now be
assigned to one of 256 equivalence classes, according to whether each of these eight
partitions is empty or not. Each equivalence class can be labeled with T subscripted
by an 8-bit string, following the convention that the nth bit of the subscript (starting
from 0) denotes the non-emptiness of the partition whose label is the bit string with
binary value n. (Thus T11111101 denotes the equivalence class in which only partition
110 is empty.) In fact, each of these equivalence classes is a ternary set relation, that
is, a set of ordered triples of sets. Following the convention of section 5.3, we will
refer to these 256 ternary set relations as the elementary ternary set relations, and
we will use T to denote this set of relations.

Each ternary set relation determines, via projection, three binary set relations:
namely, the relation between x and y, the relation between y and z, and the relation

13We use this notation as shorthand for the union ≡ ∪ @ ∪ A ∪ | ∪ #. To be precise, the result
of joining | and | is not identical with this union, but is a subset of it, since the union contains some
pairs of sets (e.g., 〈U \ a, U \ a〉, for any |a| = 1) which cannot participate in the | relation. However,
the approximation makes little practical difference.

CHAPTER 5. ENTAILMENT RELATIONS 83

between x and z. We use πx,y(T) to denote the projection of the ternary relation T
onto a binary relation between x and y. The three such projections may be defined
as follows:

πx,y(T)
def
= {〈x, y〉 : ∃z (〈x, y, z〉 ∈ T)}

πy,z(T)
def
= {〈y, z〉 : ∃x (〈x, y, z〉 ∈ T)}

πx,z(T)
def
= {〈x, z〉 : ∃y (〈x, y, z〉 ∈ T)}

By construction, each of πx,y(T), πy,z(T), and πx,z(T) must be one of the 16 elementary
(binary) set relations in R introduced in section 5.3.

We can now determine the join of two relations R and S in R as follows:14

1. Find all ternary relations T in T having binary relation R between x and y and
binary relation S between y and z, that is, {T ∈ T : πx,y(T) = R ∧ πy,z(T) = S}.

2. For each such T , determine the binary relation between x and z, namely πx,z(T).

3. Form the union of the resulting binary relations.

We can combine these steps in a single formula:

∀R, S ∈ R : R on S =
⋃

T∈T : πx,y(T)=R ∧ πy,z(T)=S

πx,z(T)

Each of these three steps is easily implemented in code, and because |T| is only 256, a
complete join table for R can be computed very quickly. Table 5.2 shows an example
of computing the join of R1110 (which is identical with |) with itself.

Since B (the set of seven basic entailment relations) is a subset of R (the set of 16
elementary entailment relations), computing the joins of relations in B requires no

14To be precise, the method described produces a (relatively tight) upper bound on the true join
of R and S, not an exact result. As we observed in footnote 13, the relation which results from this
method may include a few pairs 〈x, z〉 of expressions such that x cannot be an argument to R, or
z to S. The exact join can be computed by exhaustively enumerating the extensions of R and S.
However, the method described is far more efficient and intuitive, and the approximation involved
makes little practical difference.

CHAPTER 5. ENTAILMENT RELATIONS 84

T πx,y(T) πy,z(T) πx,z(T)
T01101000 R1110→ | R1110→ | R1110→ |
T01101100 R1110→ | R1110→ | R1111→#
T10100100 R1110→ | R1110→ | R1001→≡
T10101100 R1110→ | R1110→ | R1011→ A
T11100100 R1110→ | R1110→ | R1101→ @
T11101000 R1110→ | R1110→ | R1110→ |
T11101100 R1110→ | R1110→ | R1111→#

Table 5.2: An example of computing the join of two relations in R using elementary
ternary set relations. The first column shows a selection of relations T in T. The
remaining columns show the projection of each T onto binary relations between x
and y, y and z, and x and z. Arrows indicate the mapping from each relation in R to
the corresponding relation in B. The seven rows shown represent all and only those
relations T in T having πx,y(T) = πx,y(T) = R1110. We can therefore conclude that
R1110 on R1110 =

⋃
{R1001, R1011, R1101, R1110, R1111}. Since R1110 is identical with |,

we can further conclude that |on |=
⋃
{≡,@,A, |,#}.

additional work. The complete join table for the relations in B is shown in table 5.3.
Note that joining two relations in B always yields either a relation in B or a union
thereof; the “degenerate” relations in R do not appear.

5.6.3 Unions of the basic entailment relations

Since entailment relations are just sets of ordered pairs of linguistic expressions having
the same semantic type, the union of the relations in any subset of B is itself an
entailment relation, even if it is not an element of B. We will refer to (non-trivial)
unions of relations in B as union relations.15 Of the 49 possible joins of relations in B,
32 yield a relation in B, while 17 yield a union relation not in B, with larger unions
conveying less information. Union relations can be further joined, and we can establish
that the smallest set of relations which contains B and is closed under joining contains

15Some union relations hold intrinsic interest. For example, in the three-way formulation of the
NLI task described in section 5.2.2, the entailment relation can be identified with

⋃
{≡,@}; the

contradiction relation with
⋃
{∧, |}; and the compatibility relation with

⋃
{A,`,#}.

CHAPTER 5. ENTAILMENT RELATIONS 85

on ≡ @ A ∧ | ` #

≡ ≡ @ A ∧ | ` #

@ @ @ ≡@A|# | | @∧|`# @|#
A A ≡@A`# A ` A∧|`# ` A`#
∧ ∧ ` | ≡ A @ #

| | @∧|`# | @ ≡@A|# @ @|#
` ` ` A∧|`# A A ≡@A`# A`#

@`# A|# # A|# @`# ≡@A∧|`#

Table 5.3: The join table for the seven basic entailment relations in B. For compact-
ness, we omit the union notation; thus @|# stands for

⋃
{@, |,#}.

just 16 relations.16 One of these is the total relation
⋃
{≡,@,A, ∧, |,`,#}, to which

all pairs of (non-vacuous) expressions belong. This relation, which we denote •, is the
black hole of entailment relations, in the sense that (a) it conveys zero information
about pairs of expressions which belong to it, and (b) joining a chain of entailment
relations will, if it contains any noise and is of sufficient length, lead inescapably to
•.17 This tendency of joining to devolve toward less-informative entailment relations
places an important limitation on the power of the inference method described in
chapter 6.

In an implemented model, the complexity introduced by union relations is easily
tamed. As table 5.3 shows, every one of the union relations which results from joining
relations in B contains #. In practice, any union relation which contains # can safely
be approximated by #. After all, # is already the least informative relation in B—
loosely speaking, it indicates ignorance of the relation between two expressions—and
further joining will never serve to strengthen it. Our implemented model therefore
has no need to represent union relations at all.

16That is, the relations in B plus 9 union relations. Note that this closure fails to include most of
the 120 possible union relations. Perhaps surprisingly, the unions

⋃
{≡,@} and

⋃
{∧, |} mentioned

in footnote 15 do not appear.
17In fact, computer experiments show that if relations are selected uniformly at random from B,

it requires on average just five joins to reach •.

Chapter 6

Compositional entailment

The inventory of basic entailment relations B developed in chapter 5 provides a
foundation on which we can now build a theory of compositional entailment which
extends and generalizes past work in natural logic (introduced in section 1.5).1 Our
theory is inspired by the monotonicity calculus of Sánchez Valencia, but augments it
significantly. Whereas the monotonicity calculus focuses solely on semantic contain-
ment relations, our theory adds the ability to explain inferences involving negation,
antonymy, and other forms of semantic exclusion. Moreover, it incorporates elements
of a model developed by Nairn et al. (2006) to explain inferences involving implicative
and factive constructions. By describing all these phenomena (semantic containment,
semantic exclusion, implicatives and factives) in a unified framework, the theory can
also explain interactions among them.

The cornerstone of our account is the principle of compositionality, also known as
Frege’s Principle, after its best-known exponent. In its original form, this principle
states that the meaning of a compound expression is a function of the meanings of its
parts. In this chapter, we adopt an analogous principle which states that (some of) the
entailments of a compound expression are a function of the entailments of its parts.2

Of course, the principle of compositionality has its critics (notably Chomsky (1975)),
1The material in this chapter is derived in large part from (MacCartney and Manning 2009).
2This relies on extending entailment relations to cover expressions of all semantic types, as de-

scribed in section 5.4, as opposed to the purely truth-functional conception of entailment standard
in formal logic.

86

CHAPTER 6. COMPOSITIONAL ENTAILMENT 87

and it is not difficult to produce examples which seem to violate compositionality. It is
nevertheless clear that the semantics of a vast range of everyday phrases (such as two
nice men who helped me carry groceries yesterday) are best explained compositionally,
and the principle of compositionality has provided the foundation for much of modern
semantic analysis, from Montague onwards. Above all, our approach is pragmatic,
not dogmatic. We freely concede that our theory of compositional entailment will
fail to explain many entailments, even from sentences whose meaning is (arguably)
purely compositional. But we hope to demonstrate that such a theory can elegantly
explain a rich variety of entailments, and indeed, can do so without resorting to full
semantic interpretation.

The theory we develop in this chapter can be summarized as follows. If two linguis-
tic expressions differ by a single atomic edit (the deletion, insertion, or substitution
of a subexpression), then the entailment relation between them depends on two fac-
tors: first, the lexical entailment relation generated by the edit; and second, how this
lexical entailment relation is affected by semantic composition with the remainder
of the expression (the context). In section 6.1, we describe the lexical entailment
relations produced by various common kinds of edits. (An important set of special
cases is covered in section 6.3.) Then, in section 6.2, we reach the core of the theory:
an account of projectivity, which explains how entailment relations between simple
expressions are projected, via semantic composition, to entailment relations between
compound expressions. Together, these sections enable us to determine the atomic
entailment relation between any two expressions connected by an atomic edit. Next,
in section 6.4, we combine this power with the account of joining entailment relations
(section 5.6) to describe a general method for establishing the entailment relation
between arbitrary pairs of expressions. In section 6.5 we present a number of worked-
out examples of the operation of this inference method, and in section 6.6 we consider
whether the method can be shown to be inferentially sound.

CHAPTER 6. COMPOSITIONAL ENTAILMENT 88

6.1 Lexical entailment relations

Suppose x is a compound linguistic expression, and let e(x) be the result of applying
an atomic edit e (the deletion, insertion, or substitution of a subexpression) to x.
The entailment relation β(x, e(x)) which holds between x and e(x) will depend on
two factors: (1) the lexical entailment relation generated by e, which we label β(e),
and (2) other properties of the context x in which e is applied (to be discussed in
section 6.2). For example, suppose x is red car. If e is sub(car, convertible), then β(e)

is A (because convertible is a hyponym of car). On the other hand, if e is del(red),
then β(e) is @ (because red is an intersective modifier). Crucially, the value of β(e)

depends solely on the lexical items involved in e, independent of context.
Our use of the term “lexical” should not be taken to indicate that the edits in

question must operate on individual words. On the contrary, it will often be conve-
nient to consider edits involving short phrases, or even edits (especially deletions) of
rather long phrases or whole clauses. What matters, for current purposes, is that the
arguments to the edit will be treated as lexical units: in determining their semantics
and their entailments, we will not consider their compositional structure (if any), but
will treat them as semantic atoms.

How are lexical entailment relations determined? Ultimately, this is the province
of lexical semantics, which lies outside the scope of this work. However, the answers
are fairly intuitive in most cases, and we can make a number of useful observations.

6.1.1 Substitutions of open-class terms

The lexical entailment relation generated by a substitution edit is simply the relation
between the substituted terms: β(sub(a, b)) = β(a, b). These terms need not be single
words (bachelor ≡ unmarried man), but they must belong to the same semantic type,
or else β(a, b) will be undefined.

For open-class terms such as common nouns, adjectives, and verbs, we can often
determine the appropriate lexical entailment relation by consulting a lexical resource
such as WordNet. Synonyms belong to the ≡ relation (sofa ≡ couch, happy ≡ glad,
forbid ≡ prohibit); hyponym-hypernym pairs belong to the @ relation (crow @ bird,

CHAPTER 6. COMPOSITIONAL ENTAILMENT 89

frigid @ cold, soar @ rise); and antonyms generally belong to the | relation (hot |
cold, rise | fall, advocate | opponent). (Note that most antonym pairs do not belong
to the ∧ relation, since they typically do not exclude the middle.) Two common
nouns which have neither a synonymy nor a hyponymy relation typically describe
exclusive categories, and thus belong to the | relation, whether they are coordinate
terms (cat | dog) or unrelated nouns (battle | chalk). By contrast, two unrelated
adjectives usually describe qualities which are not incompatible, and therefore belong
to the # relation (weak # temporary). The appropriate entailment relation between
two arbitrary verbs may depend in part on their lexical aspects (Aktionsarten), and
may also depend on world knowledge not readily available to an automatic system.
For example, plausibly skiing | sleeping (because someone who is skiing is surely not
asleep), but skiing # talking (someone who is skiing may or may not be talking).

Proper nouns, which denote individual entities or events, will stand in the ≡
relation if they denote the same entity (USA ≡ United States), or the | relation
otherwise (JFK | FDR). A proper noun and a common noun should be assigned to
the @ relation if it can be established that the former is an instance of the latter
(Socrates @ man). There is an interesting question concerning geographic meronym-
holonym pairs: should they be assigned to the @ relation, as in Kyoto @ Japan?
While this may seem intuitive, it leads to non-sensical conclusions such as Kyoto is a
beautiful city @ Japan is a beautiful city ; thus it is better to assign such pairs to the
| relation. On the other hand, locative phrases formed from meronym-holonym pairs
do belong to to the @ relation: thus in Kyoto @ in Japan.

In this work, we have adopted the (perhaps dubious) assumption that tense and
aspect matter little in inference. Similarly, we neglect the distinction between singu-
lar and plural. Consequently, we routinely assign all edits involving auxiliaries and
inflection to the ≡ relation; thus we say that did sleep ≡ has slept and is sleeping
≡ sleeps. While a purist might quibble with calling such phrase pairs semantically
equivalent, we find that the flexibility afforded by this approximation yields a sub-
stantial dividend in the performance of our implemented system, and we are bolstered
by the fact that the official definition of the RTE task explicitly specifies that tense
be ignored. Similarly, we treat punctuation as semantically vacuous, and thus assign

CHAPTER 6. COMPOSITIONAL ENTAILMENT 90

all edits involving punctuation marks to the ≡ relation.
Very few naturally-occurring pairs of terms belong to the ` relation. When we

are obliged to produce such pairs for the purpose of an illustrative example, we often
resort to using a general term and the negation of one of its hyponyms, such as
mammal ` nonhuman or metallic ` nonferrous.

Pairs of terms which cannot reliably be assigned to another entailment relation,
according to one of the principles described in this section, should most likely be
assigned to the # relation (hungry # hippo).

Of course, there are many difficult cases, where the most appropriate lexical en-
tailment relation between two terms will depend on subjective judgments about word
sense, topical context, and so on. Consider, for example, the pair system and ap-
proach. In some contexts (e.g., computer science research), they may be used as
near-synonyms—but near enough to be assigned to the ≡ relation? In other contexts
(e.g., air traffic control), they may have quite different meanings.

6.1.2 Substitutions of closed-class terms

Closed-class terms may require special handling. For example, substitutions involving
quantifiers generate a rich variety of lexical entailment relations:

all ≡ every
every @ some
some ∧ no

no | every
four or more @ two or more
exactly four | exactly two
at most four ` at least two

most # ten or more

Some of these results may be more intuitive when seen in context. For instance, from
some ∧ no, we can establish that some birds talk ∧ no birds talk, and from exactly
four | exactly two, we can establish that exactly four jurors smoke | exactly two jurors
smoke. Note also that some of these assertions assume the non-vacuity (section 5.5.1)

CHAPTER 6. COMPOSITIONAL ENTAILMENT 91

of the predicates to which the quantifiers are applied. In particular, every x y @

some x y assumes that x is a non-empty predicate; otherwise every x y could be true
while some x y is false. Similarly, no x y | every x y assumes that x is non-empty;
otherwise no x y and every x y might be simultaneously true. Finally, note that the
interpretation of bare numbers may depend on pragmatic issues: does four mean at
least four or exactly four? If it’s the former, then I have four children @ I have two
children; if it’s the latter, then I have four children | I have two children. At stake is
the well-known distinction between entailment and conversational implicature (Grice
1975); because these issues have been thoroughly explored elsewhere, we will not
pursue them here.

Two pronouns, or a pronoun and a noun, should ideally be assigned to the ≡
relation if it can be determined from context that they refer to the same entity,
though this may be difficult for an automatic system to establish reliably.

Prepositions can be somewhat problematic. Because of their protean nature, the
appropriate entailment relations among prepositions may depend strongly on context.
Some pairs of prepositions are clearly best interpreted as antonyms, and thus assigned
to the | relation (above | below). But many prepositions are used so flexibly in natural
language that the pragmatic choice is to assign them to the ≡ relation (on [a plane]
≡ in [a plane] ≡ by [plane]). Then again, in contexts where they clearly refer to
spatial relations, the same pairs of prepositions are better assigned to the | relation
(on [the box] | in [the box] | by [the box]). This context-dependence poses a significant
challenge to automatic prediction of lexical entailment relations.

6.1.3 Generic deletions and insertions

For deletion edits, the default behavior is to generate the @ relation (thus red car @

car). Insertion edits are symmetric: by default, they generate the A relation (sing
A sing off-key). This heuristic can safely be applied whenever the affected phrase is
an intersective modifier, a conjunct, or an independent clause; and it can usefully be
applied to phrases much longer than a single word (car which has been parked outside
since last week @ car). Indeed, this principle underlies most current approaches to the

CHAPTER 6. COMPOSITIONAL ENTAILMENT 92

RTE task, in which the premise p often contains much extraneous content not found
in the hypothesis h. Most RTE systems try to determine whether p subsumes h: they
penalize new content inserted into h, but do not penalize content deleted from p. The
success of this strategy depends on the prevalence of upward-monotone contexts, and
thus can easily be derailed by the presence of negation, certain quantifiers, restrictive
verbs and adverbs, and other downward-monotone operators.

6.1.4 Special deletions and insertions

While most deletions and insertions adhere to the simple heuristic described in sec-
tion 6.1.3, some lexical items exhibit special behavior upon deletion or insertion. The
most obvious example is negation, which generates the ∧ relation (didn’t sleep ∧ did
sleep). Implicatives and factives (such as refuse to and admit that) constitute another
important class of exceptions, but we postpone discussion of them until section 6.3.
Then there are non-intersective adjectives such as fake, former, and alleged. These
have various behavior: deleting fake or former seems to generate the | relation (fake
diamond | diamond, former student | student), while deleting alleged seems to gen-
erate the # relation (alleged spy # spy). We lack a complete typology of such cases,
but consider this an interesting problem for lexical semantics.

6.2 Entailments and semantic composition

How are entailment relations affected by semantic composition? That is, how do
the entailment relations between compound expressions depend on the entailment
relations between their parts? Suppose we have established the value of β(x, y), and
let f be an expression which can take x or y as an argument. What is the value of
β(f(x), f(y)), and how does it depend on the properties of f? In other words, how is
β(x, y) projected through f?

CHAPTER 6. COMPOSITIONAL ENTAILMENT 93

6.2.1 Semantic composition in the monotonicity calculus

The monotonicity calculus of Sánchez Valencia provides a partial answer. It explains
the impact of semantic composition on entailment relations ≡, @, A, and # by
assigning semantic functions to one of three monotonicity classes: up, down, and
non. If f has monotonicity up (the default), then the entailment relation between
a and b is projected through f without change: β(f(x), f(y)) = β(x, y). Thus some
parrots talk @ some birds talk, because parrot @ bird, and some has monotonicity up

in its first argument. If f has monotonicity down, then @ and A are swapped. Thus
no carp talk A no fish talk, because carp @ fish, and no has monotonicity down in
its first argument. Finally, if f has monotonicity non, then @ and A are projected
as #. Thus most humans talk # most animals talk, because while human @ animal,
most has monotonicity non in its first argument.

The monotonicity calculus also provides an algorithm for computing the effect on
entailment of multiple levels of semantic composition. Although Sánchez Valencia’s
presentation of this algorithm uses a complex scheme for annotating nodes in a cat-
egorial grammar parse, the central idea can be recast in simple terms: propagate a
lexical entailment relation upward through a semantic composition tree, from leaf to
root, while respecting the monotonicity properties of each node along the path. Con-
sider the sentence Nobody can enter without pants. A plausible semantic composition
tree for this sentence could be rendered as (nobody (can ((without pants) enter))).
Now consider replacing pants with clothes. We begin with the lexical entailment re-
lation: pants @ clothes. The semantic function without has monotonicity down, so
without pants A without clothes. Continuing up the semantic composition tree, can
has monotonicity up, but nobody has monotonicity down, so we get another reversal,
and find that nobody can enter without pants @ nobody can enter without clothes.

6.2.2 Projectivity signatures

While the monotonicity calculus elegantly explains the impact of semantic compo-
sition on the containment relations (chiefly, @ and A), it lacks any account of the
exclusion relations (∧ and |, and, indirectly, `). To remedy this lack, we propose to

CHAPTER 6. COMPOSITIONAL ENTAILMENT 94

projectivity
connective ≡ @ A ∧ | ` #

negation (not) ≡ A @ ∧ ` | #

conjunction (and) / intersection ≡ @ A | | # #

disjunction (or) ≡ @ A ` # ` #

conditional (if) (antecedent) ≡ A @ # # # #

conditional (if) (consequent) ≡ @ A | | # #

biconditional (if and only if) ≡ # # ∧ # # #

Table 6.1: Projectivity signatures for various constructions which correspond to log-
ical connectives. Certain approximations have been made; see text for details.

generalize the concept of monotonicity to a concept of projectivity. We categorize
semantic functions into a number of projectivity signatures, which can be seen as gen-
eralizations of both the three monotonicity classes of Sánchez Valencia and the nine
implication signatures of Nairn et al. (see section 6.3). Each projectivity signature is
defined by a map B 7→ B which specifies how each entailment relation is projected by
the function. (Binary functions can have different signatures for each argument.) In
principle, there are up to 77 possible signatures; in practice, probably no more than
a handful are realized by natural language expressions. Though we lack a complete
inventory of projectivity signatures, we can describe a few important cases.

6.2.3 Projectivity of logical connectives

We begin by considering natural language expressions and constructions which corre-
spond to logical connectives, such as negations, conjunctions, and conditionals. The
projectivity properties of such expressions can be computed algorithmically. Table 6.1
shows the results, but note that certain approximations and simplifications have been
made, which will be explained below.

Negation. Like most functions, negation (represented in English by not, n’t, or
never) projects ≡ and # without change. As a downward monotone function, it
swaps @ and A. But we can also establish that it projects ∧ without change, and

CHAPTER 6. COMPOSITIONAL ENTAILMENT 95

swaps | and `. It thus projects every relation as its dual under negation (in the sense
defined formally in section 5.3.1). For example:

happy ≡ glad ⇒ not happy ≡ not glad
kiss @ touch ⇒ didn’t kiss A didn’t touch

human ∧ nonhuman ⇒ not human ∧ not nonhuman
French | German ⇒ not French ` not German

more than 4 ` less than 6 ⇒ not more than 4 | not less than 6
swimming # hungry ⇒ isn’t swimming # isn’t hungry

Conjunction and intersective modification. Conjunction (expressed by and)
is upward-monotone, but projects both ∧ and | as |, and projects ` as #. The closely
related phenomenon of intersective modification (achieved by adjectives, adverbs,
relative clauses, and so on) has the same projectivity, for both modifier and modified.
We therefore find:

dinghy @ boat ⇒ orange dinghy @ orange boat
human ∧ nonhuman ⇒ living human | living nonhuman
French | Spanish ⇒ French wine | Spanish wine
metallic ` nonferrous ⇒ metallic pipe # nonferrous pipe

Disjunction. Like conjunction, disjunction is upward-monotone; unlike conjunc-
tion, it projects ∧ and ` as `, and projects | as #:

waltzed @ danced ⇒ waltzed or sang @ danced or sang
human ∧ nonhuman ⇒ human or equine ` nonhuman or equine

red | blue ⇒ red or yellow # blue or yellow

Conditionals. The antecedent of a conditional is downward-monotone, whereas
the consequent is upward-monotone:

If he drinks tequila, he feels nauseous A If he drinks liquor, he feels nauseous
If he drinks tequila, he feels nauseous @ If he drinks tequila, he feels sick

The antecedent of a conditional projects both ∧ and | as #, whereas the consequent
projects both ∧ and | as |:

CHAPTER 6. COMPOSITIONAL ENTAILMENT 96

If it’s sunny, we surf # If it’s not sunny, we surf
If it’s sunny, we surf # If it’s rainy, we surf
If it’s sunny, we surf | If it’s sunny, we don’t surf
If it’s sunny, we surf | If it’s sunny, we ski

Note that these results do not match the projectivity signatures obtained algorithmi-
cally for material implication (which include the partial signatures {∧ :`, | :`,`:#}
for the antecedent, and {∧ :`, | :#,`:`} for the consequent). Clearly, material impli-
cation is not a good model for the semantics of the conditional statement as typically
used in natural language; for a thorough discussion, see Stalnaker (1968; 1992).

Biconditionals. Biconditionals are rarely used in natural language, but where they
are, they block projection of all entailment relations except ≡ and ∧.

Some caveats are in order. While the results shown in table 6.1 are broadly
correct, certain approximations have been made (except in the case of negation, for
which the projectivity signature shown is exact). The reason is that, for binary
functions, the projection of a given entailment relation can depend on the value
of the other argument to the function. That is, if we are given β(x, y), and we
are trying to determine its projection β(f(x, z), f(y, z)), the answer can depend not
only on the properties of f , but also on the properties of z. In particular, if z
has some “special” relation to x or y (say, ≡, @, or ∧), a different projection may
result. Therefore, the results shown in table 6.1 reflect the assumption that z is
as “generic” as possible: specifically, that z stands in the (minimally informative)
relation to both x and y. Our motivation for this assumption is closely related
to our motivation for ignoring vacuous expressions (those having empty or universal
denotations): in natural language one rarely combines two expressions which already
have some “special” relation, since the result is typically either redundant (French
European, sofa or couch) or nonsensical (human nonhuman, hot cold food). This
assumption causes the results shown in table 6.1 to be imprecise in the following
ways:

CHAPTER 6. COMPOSITIONAL ENTAILMENT 97

• Certain “special” values for z can cause conjunction, disjunction, and the con-
ditional (in both the antecedent and the consequent) to project @ or A as ≡.
As an example, consider the projection of @ by conjunction (and). Suppose x
is French, y is European, and z is Parisian. Since the conjunctions French and
Parisian and European and Parisian are both equivalent to Parisian, the en-
tailment relation between them is ≡. In table 6.1, we neglect such possibilities,
following the argument that such redundant expressions rarely occur in natural
language.

• Certain “special” values for z can result in degenerate entailment relations (in
the sense defined in section 5.3.1) being projected. As an example, consider
the projection of | by conjunction (and). Suppose x is male, y is female, and
z is asexual. Since the conjunctions male and asexual and female and asex-
ual are both empty, the entailment relation between them is R1000 (defined in
section 5.3.1). In table 6.1, we neglect such possibilities, in keeping with our
assumption that semantically vacuous expressions will rarely be encountered in
natural language.

• Except in the case of negation, the projections shown as # are in fact larger, less
informative union relations (defined in section 5.6.3): either

⋃
{≡,@,A, |,#},⋃

{≡,@,A,`,#}, or
⋃
{@,A, |,`,#}. As in section 5.6.3, we argue that these

approximations make little practical difference, since the true projections con-
tain #, and # is already the least informative entailment relation.

• Some of the relations shown as projections in table 6.1 are not strictly identical
with the true projections, but rather are least upper bounds (in the space of
relations in B and unions thereof) on the true projections. In other words, the
relations shown may contain certain pairs of expressions which cannot occur as
a result of projection. The discrepancies in question are small, and are of no
practical consequence. (Note that a similar issue was encountered in connection
with computing the joins of relations in B in section 5.6.2.)

CHAPTER 6. COMPOSITIONAL ENTAILMENT 98

projectivity for 1st argument projectivity for 2nd argument
quantifier ≡ @ A ∧ | ` # ≡ @ A ∧ | ` #

some ≡ @ A `† # `† # ≡ @ A `† # `† #

no ≡ A @ | † # | † # ≡ A @ | † # | † #

every ≡ A @ | ‡ # | ‡ # ≡ @ A | † | † # #

not every ≡ @ A `‡ # `‡ # ≡ A @ `† `† # #

at least two ≡ @ A # # # # ≡ @ A # # # #

most ≡ # # # # # # ≡ @ A | | # #

exactly one ≡ # # # # # # ≡ # # # # # #

all but one ≡ # # # # # # ≡ # # # # # #

Table 6.2: Projectivity signatures for various binary generalized quantifiers for each
argument position. “1st argument” refers to the restrictor NP; “2nd argument” refers
to the body VP. Results marked with † or ‡ depend on the assumption of non-vacuity;
see text.

6.2.4 Projectivity of quantifiers

While semanticists are well acquainted with the monotonicity properties of common
quantifiers, which describe how they project the containment relations (≡, @, and A),
how they project the exclusion relations (∧, |, and, indirectly, `) may be less familiar.
Table 6.2 summarizes the projectivity signatures of a number of binary generalized
quantifiers for each argument position. This table has several noteworthy aspects.

First, all quantifiers (like most other semantic functions) project ≡ and # without
change. Second, the table confirms well-known monotonicity properties of quantifiers:
no is downward-monotone in both arguments; every is downward-monotone in its first
argument; most is non-monotone in its first argument; and so on. Third, because no
is the negation of some, its projectivity signature can be found by projecting the
signature of some through the signature of not. Likewise for not every and every.

Note that relation | is frequently “blocked” by quantifiers (i.e., projected as #).
Of the quantifiers shown in table 6.2, this holds for all in the first argument position,
and for most in the second argument position. Thus no fish talk # no birds talk and
someone was early # someone was late. Two significant exceptions are the quantifiers

CHAPTER 6. COMPOSITIONAL ENTAILMENT 99

every and most in their second arguments, where | is projected without change: thus
everyone was early | everyone was late and most people were early | most people were
late. (Observe the similarity of the projectivity signatures of every and most in their
second arguments to that of intersective modification.)

Finally, a caveat: some of the results shown in table 6.2 depend on assuming the
non-vacuity of the other argument to the quantifier: those marked with † assume it
to be non-empty, while those marked with ‡ assume it to be non-universal. Without
these assumptions, # is projected.

6.2.5 Projectivity of verbs

Verbs (and verb-like constructions) exhibit diverse behavior with respect to projec-
tivity. Most verbs are upward-monotone (though not all—see section 6.3), and many
verbs project ∧, |, and ` as #. For example:

humans ∧ nonhumans ⇒ eats humans # eats nonhumans
cats | dogs ⇒ eats cats # eats dogs

mammals ` nonhumans ⇒ eats mammals # eats nonhumans

However, exceptions abound. Consider, for example, verbs (and verb-like con-
structions) which encode functional relations, such as is married to or is the capital
of.3 The hallmark of such expressions is that they impose a sort of exclusivity con-
straint on their objects: a given subject can have the specified relation to at most
one object (though subject and object may be described in various ways, and with
various degrees of specificity).4 These constructions seem to exhibit projectivity be-
havior similar to that of intersective modifiers, projecting ∧ and | as |, and ` as #.
So, for example, we find that:

is married to a German | is married to a non-German
is married to a German | is married to an Italian
is married to a European # is married to a non-German

3Ideal examples of this phenomenon are hard to find. Most candidates admit some exceptions:
Solomon had 700 wives, and London is the capital of both England and the UK.

4The AuContraire system (Ritter et al. 2008) includes an intriguing approach to identifying
such functional phrases automatically.

CHAPTER 6. COMPOSITIONAL ENTAILMENT 100

Categorizing verbs according to their projectivity is an interesting problem for lexical
semantics, which may involve codifying some amount of world knowledge.

6.3 Implicatives and factives

6.3.1 Implication signatures

Nairn et al. (2006) offer an elegant account of inferences involving implicatives and
factives5 such as manage to, refuse to, and admit that. Their model classifies such
operators into nine implication signatures, according to their implications regarding
their complements—positive (+), negative (–), or null (◦)—in both positive and neg-
ative contexts. Thus manage to has implication signature +/–, because it carries a
positive implication in a positive context (managed to escape implies escaped), and
a negative implication in a negative context (didn’t manage to escape implies didn’t
escape). In contrast, refuse to has implication signature –/◦, because it carries a
negative implication in a positive context (refused to dance implies didn’t dance), and
no implication in a negative context (didn’t refuse to dance implies neither danced
nor didn’t dance). Table 6.3 shows canonical examples of each of the nine possible
implication signatures.

An important difference between factive and implicative operators is that the
factives (but not the implicatives) carry the same implication in both positive and
negative contexts. This difference is related to the nature of the primary implication
carried by the operator. A commonly held view (Karttunen 1971) is that factive
constructions presuppose, rather than entail, the truth (or falsity, in the case of coun-
terfactives) of their complements: thus, he admitted that he knew presupposes that
he knew. One of the hallmarks of presuppositions (as opposed to entailments) is that
they are not affected by negation, which is why the factives carry the same impli-
cation in negative contexts as in positive contexts. The implicatives, on the other
hand, are commonly thought to entail, rather than presuppose, the truth (or falsity)

5We use “factives” as an umbrella term embracing counterfactives (e.g., pretend that) and non-
factives (e.g., believe that) along with factives proper (e.g., admit that).

CHAPTER 6. COMPOSITIONAL ENTAILMENT 101

signature example
implicatives +/– manage to

+/◦ force to
◦/– permit to
–/+ fail to
–/◦ refuse to
◦/+ hesitate to

factives +/+ admit that
–/– pretend that
◦/◦ believe that

Table 6.3: The nine implication signatures of Nairn et al.

of their complements: thus he managed to escape entails that he escaped. Of course,
implicatives may carry presuppositions as well (he managed to escape might be ar-
gued to presuppose that he tried to escape, or perhaps that it was hard to escape),
but such implications are secondary to the relation between the implicative and its
complement.

6.3.2 Deletions and insertions of implicatives

The model developed by Nairn et al. explains inferences involving implicatives by
means of an implication projection algorithm, which bears some resemblance to the
marking algorithm of Sánchez Valencia’s monotonicity calculus, in that it involves
propagating information about the effects of semantic functions on inferability through
a semantic composition tree.

We can take a big step toward unifying the two accounts within our framework by
specifying, for each implication signature, the lexical entailment relation generated
when an operator of that signature is deleted from (or inserted into) a compound ex-
pression. For example, deleting an operator with implication signature +/◦ generates
the @ relation (he was forced to sell @ he sold), whereas deleting an operator with
implication signature –/◦ generates the | relation (he refused to fight | he fought).

CHAPTER 6. COMPOSITIONAL ENTAILMENT 102

signature β(del(·)) β(ins(·)) example
+/– ≡ ≡ he managed to escape ≡ he escaped
+/◦ @ A he was forced to sell @ he sold
◦/– A @ he was permitted to live A he lived
–/+ ∧ ∧ he failed to pay ∧ he paid
–/◦ | | he refused to fight | he fought
◦/+ ` ` he hesitated to ask ` he asked
◦/◦ # # he believed he had won # he had won

Table 6.4: The lexical entailment relations generated by deletions and insertions of
implicatives (and nonfactives), by implication signature.

Table 6.4 depicts the lexical entailment relations generated by deletions and in-
sertions of implicative operators according to their implication signatures. This table
invites several observations. First, as the examples make clear, there is room for vari-
ation regarding passivization and morphology. An implemented model must tolerate
such diversity. Second, the entailment relations generated by deletion and insertion
are converses of each other, as we’d expect. Third, we get the right predictions
concerning the implications of implicatives occurring in negative polarity contexts.
Indeed, some of the examples may seem more intuitive when one considers their
negations. For example, deleting an operator with implication signature ◦/– gener-
ates lexical entailment relation A, but as we saw in section 6.2, under negation A

is projected as @ (he wasn’t permitted to live @ he didn’t live). Likewise, deleting
an operator with implication signature ◦/+ generates lexical entailment relation `;
under negation, this is projected as | (he didn’t hesitate to ask | he didn’t ask).

6.3.3 Deletions and insertions of factives

Note that table 6.4 includes neither the factives proper (implication signature +/+)
nor the counterfactives (implication signature –/–). It is tempting to try to handle
the factives as we did the implicatives. For example, deleting implication signature
+/+ seems to generate the lexical entailment relation @, since he admitted that he

CHAPTER 6. COMPOSITIONAL ENTAILMENT 103

knew implies he knew, but not vice-versa. Likewise, deleting implication signature
–/– seems to generate the lexical entailment relation |, since he pretended he was sick
excludes he was sick, but is not equivalent to its negation.

However, following this path does not lead to the right predictions in negative
polarity contexts. If deletions of signature +/+ yield @, then since negation projects
@ as A, we would expect to find that he didn’t admit that he knew A he didn’t know.
But this is clearly incorrect. In the first place, he didn’t know does not imply he didn’t
admit that he knew. Moreover, if x A y, then the truth of x must be compatible with
the truth of y, but one cannot consistently assert both he didn’t admit that he knew
and he didn’t know, since the former presupposes the negation of the latter. Similarly,
if deletions of signature –/– yield |, then since negation projects | as `, we would
expect to find that he didn’t pretend he was sick ` he wasn’t sick. But this too is
incorrect. If x ` y, then the truth of x must be compatible with the falsity of y, but
one cannot consistently assert both he didn’t pretend he was sick and he was sick,
since the former presupposes the negation of the latter.

What has gone wrong? Recall from section 6.3.1 that the implication between a
factive and its complement is not an entailment, but a presupposition. The problem
arises principally because, as is well known, the projection behavior of presuppositions
differs from that of entailments (van der Sandt 1992). Consequently, the model
of compositional entailment developed in this chapter does not suffice to explain
inferences involving presupposition.6 While the model could perhaps be elaborated
to handle presupposition, we have chosen not to pursue this path.

The problems described here do not affect the nonfactives (implication signature
◦/◦), since the nonfactives do not carry any presupposition (or, indeed, any entail-
ment) regarding their complements. Thus, we can accurately say that deleting a
nonfactive generates lexical entailment relation # (he believed he had won # he had
won). And, since negation projects # as #, we obtain the correct predictions in
negative contexts (he didn’t believe he had won # he hadn’t won).

6Nevertheless, the NatLog system described in chapter 7 does handle factives (proper) and coun-
terfactives within this framework, assigning lexical entailment relations @ and | to deletions of
implication signatures +/+ and –/– (respectively). Indeed, NatLog benefits from doing so, since in
practice, this leads to correct predictions more often than not.

CHAPTER 6. COMPOSITIONAL ENTAILMENT 104

projectivity
signature example monotonicity ≡ @ A ∧ | ` #

+/– manage to up ≡ @ A ∧ | ` #

+/◦ force to up ≡ @ A | | # #

◦/– permit to up ≡ @ A ` # ` #

–/+ fail to down ≡ A @ ∧ ` | #

–/◦ refuse to down ≡ A @ | # | #

◦/+ hesitate to down ≡ A @ ` ` # #

+/+ admit that up ≡ @ A ∧ ∧ # #

–/– pretend that up ≡ @ A ∧ # ∧ #

◦/◦ believe that non # # # # # # #

Table 6.5: The monotonicity and projectivity properties of implicatives and factives,
by implication signature. Some results may depend on whether one assumes a de
dicto or de re reading; see text.

6.3.4 Projectivity signatures of implicatives

We can further cement implicatives and factives within our model by specifying the
projectivity properties of each implication signature. For an implicative or factive op-
erator i having implication signature I, the projection of entailment relation R can be
computed automatically, by exhaustively considering the four possible combinations
of truth or falsity for i(x) and i(y), where 〈x, y〉 ∈ R, given the implication relations
between i(x) and x, and between i(y) and y, as specified by I; and the constraints
on combinations of truth or falsity for x and y, as specified by R. However, a more
detailed description of the algorithm would be more tedious than enlightening.

Table 6.5 summarizes the results. It may be helpful to illustrate some of the
findings with concrete examples. Implicatives having signature +/◦ are upward-
monotone (forced to tango @ forced to dance); and project both ∧ and | as | (forced to
stay | forced to go and forced to tango | forced to waltz).7 By contrast, implicatives

7It might be objected that forced to tango does not exclude forced to waltz, since someone could
be forced to perform both dances during the course of an evening. However, these expressions cannot
describe the same event: a single forcing event cannot be simultaneously a forcing-to-tango event
and a forcing-to-waltz event.

CHAPTER 6. COMPOSITIONAL ENTAILMENT 105

having signature –/◦ are downward-monotone (refused to tango A refused to dance);
they project ∧ as | (refused to stay | refused to go) but project | as # (refused to tango
refused to waltz).

Note that some of the results in table 6.5 may depend on whether one assumes a
de dicto or de re reading, and that the de dicto reading may be more or less available,
depending on the specific implicative or factive operator (and perhaps on context).
For the two-way implicatives (signatures +/– and –/+), a de dicto reading is arguably
completely unavailable. For the remaining implicatives, the de dicto reading seems to
be quite marked. (One could perhaps accept, “When he refused to tango, he wasn’t
refusing to dance—he thought the tango was a sex position.”) For certain factives
(e.g., know) and counterfactives, the de dicto reading may be more plausible, and for
many nonfactives (e.g., believe or want), the de dicto reading seems to dominate. In
general, a de dicto reading has the effect of “blocking” projection, that is, projecting
every entailment relation as #. This is reflected in the last row of table 6.5, which
describes the monotonicity class for implication signature ◦/◦ as non, and assigns #

to all its projections.

6.4 Putting it all together

We now have the building blocks of a general method to establish the entailment
relation between a premise p and a hypothesis h. The steps are as follows:

1. Find a sequence of atomic edits 〈e1, . . . , en〉 which transforms p into h: thus
h = (en ◦ . . . ◦ e1)(p). For convenience, let us define x0 = p, xn = h, and
xi = ei(xi−1) for i ∈ [1, n].

2. For each atomic edit ei:
(a) Determine the lexical entailment relation β(ei) generated by edit ei, as

described in section 6.1.
(b) Project β(ei) upward through the semantic composition tree of expression

xi−1 to find the entailment relation β(xi−1, xi) which holds between ex-
pressions xi−1 and xi, as described in section 6.2. We call this the atomic

CHAPTER 6. COMPOSITIONAL ENTAILMENT 106

entailment relation for edit ei, and sometimes refer to it using the alternate
notation β(xi−1, ei).

3. Join atomic entailment relations across the sequence of edits, as in section 5.6:
β(p, h) = β(x0, xn) = β(x0, e1) on . . . on β(xi−1, ei) on . . . on β(xn−1, en)

While this inference method effectively explains many common patterns of infer-
ence (see section 6.5 for examples), it faces several important limitations:

• First, it depends on finding an appropriate edit sequence connecting p and
h. By itself, the theory presented in this chapter offers no insight as to how
such a sequence should be established, or when one candidate edit sequence
should be preferred to another. (This question has been addressed separately
in chapter 3.) The method does assume that none of the edits span multiple
monotonicity/projectivity domains, and can break down if this assumption is
not met. Also, as the examples in section 6.5 will illustrate, the ordering of edits
can (though usually does not) affect the outcome of this inference method.

• Second, the usefulness of the result is sometimes limited by the tendency of
the join operation toward less informative entailment relations, as described in
section 5.6. Joining atomic entailment relations across a sequence of edits may
yield a union of relations in B, rather than an individual relation in B; in the
worst case, it may yield the total relation •, which is completely uninformative.
(See section 6.5.5 for an example.)

• Third, the inference method provides no general mechanism for combining in-
formation from multiple premises. It thus fails to capture many inference rules
of classical logic, including modus ponens, modus tollens, disjunction elimina-
tion, and so on. (However, some inferences can be enabled by treating auxiliary
premises as encoding lexical entailment relations. For example, if we encode All
men are mortal as the lexical entailment men @ mortal, then we can enable the
classic syllogism Socrates is a man @ Socrates is mortal.)

Because of these limitations, the inference method we describe here has less de-
ductive power than first-order logic. Indeed, it fails to sanction some fairly simple

CHAPTER 6. COMPOSITIONAL ENTAILMENT 107

inferences, including de Morgan’s laws for quantifiers (see section 6.5.4 for details).
Yet despite its limitations, this inference method neatly explains a broad range of
inferences, including not only those which involve semantic containment (which are
also explained by the monotonicity calculus) but also those which involve semantic
exclusion and implicativity (which are not). The next section presents a variety of
examples.

6.5 Examples

In the following pages, we illustrate the operation of the inference method described in
section 6.4, and elucidate some related issues, by working through a series of concrete
examples of its application.

6.5.1 An example involving exclusion

While the monotonicity calculus notably fails to explain even the simplest inferences
involving semantic exclusion, such examples are easily accommodated in our frame-
work. For instance:

p: Stimpy is a cat.
h: Stimpy is not a poodle.

Clearly, this is a valid inference. To establish this using our inference method, we
must begin by selecting a sequence of atomic edits which transforms the premise p
into the hypothesis h. While there are several possibilities, one obvious choice is first
to replace cat with dog, then to insert not, and finally to replace dog with poodle. An
analysis of this edit sequence is shown in table 6.6. In this representation (of which
we will see several more examples in the following pages), we show three entailment
relations associated with each edit ei, namely:

• β(ei), the lexical entailment relation generated by ei,

• β(xi−1, ei), the atomic entailment relation which holds across ei, and

CHAPTER 6. COMPOSITIONAL ENTAILMENT 108

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
Stimpy is a cat

1 sub(cat, dog) | | |
Stimpy is a dog

2 ins(not) ∧ ∧ @
Stimpy is not a dog

3 sub(dog, poodle) A @ @
Stimpy is not a poodle

Table 6.6: Analysis of an inference involving semantic exclusion.

• β(x0, xi), the cumulative join of all atomic entailment relations up through ei.
This can be calculated in the table as β(x0, xi−1) on β(xi−1, ei).

We also show (in gray) the intermediate forms through which p progresses as it is
transformed into h by the sequence of edits.

The analysis proceeds as follows. First, replacing cat with its coordinate term dog
generates the | relation. Next, inserting not generates the ∧ relation, and | joined with
∧ yields @. Finally, replacing dog with its hyponym poodle generates the A relation.
Because of the downward-monotone context created by not, this is projected as @,
and @ joined with @ yields @. Therefore, p entails h.

6.5.2 Examples involving implicatives

The inference method described also explains many examples involving implicatives,
including this one:

p: The doctor didn’t hesitate to recommend Prozac.
h: The doctor recommended medication.

This is a valid inference. Premise p can be transformed into hypothesis h by a
sequence of three edits: the deletion of the implicative hesitate to, the deletion of
the negation, and the substitution of Prozac with its hypernym medication. (Here
and in subsequent examples, we neglect edits involving auxiliaries and morphology,
which simply yield the ≡ relation.) Table 6.7 shows one possible ordering for these
three edits; in section 6.5.3 we use the same example to explore the impact of using
different edit orderings.

CHAPTER 6. COMPOSITIONAL ENTAILMENT 109

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
The doctor didn’t hesitate to recommend Prozac

1 del(hesitate to) ` | |
The doctor didn’t recommend Prozac

2 del(didn’t) ∧ ∧ @
The doctor recommended Prozac

3 sub(Prozac, medication) @ @ @
The doctor recommended medication

Table 6.7: Analysis of an inference involving an implicative.

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
We were not permitted to smoke

1 del(permitted to) A @ @
We did not smoke

2 del(not) ∧ ∧ |
We smoked

3 ins(Cuban cigars) A A |
We smoked Cuban cigars

Table 6.8: Analysis of another inference involving an implicative.

We can analyze these three edits as follows. First, the deletion of the implica-
tive hesitate to generates lexical entailment relation `, according to its implication
signature (namely ◦/+); but because of the downward-monotone context created by
didn’t, this is projected as |. Next, the deletion of didn’t generates lexical entailment
relation ∧, in an upward-monotone context, and | joined with ∧ yields @. Finally, the
substitution of Prozac with its hypernym medication generates lexical entailment re-
lation @, in an upward-monotone context, and @ joined with @ yields @. Therefore,
p entails h.

As another example, consider:

p: We were not permitted to smoke.
h: We smoked Cuban cigars.

This is not a valid inference: in fact, p and h are incompatible. But again, p can
be transformed into h by a sequence of three edits (neglecting auxiliaries and mor-
phology, as before), which we analyze as follows. First, deleting the implicative

CHAPTER 6. COMPOSITIONAL ENTAILMENT 110

i ei β(ei) β(xi−1, ei) β(x0, xi)

1 del(hesitate to) ` | |
2 del(didn’t) ∧ ∧ @
3 sub(Prozac, medication) @ @ @

1 del(hesitate to) ` | |
2 sub(Prozac, medication) @ A |
3 del(didn’t) ∧ ∧ @

1 del(didn’t) ∧ ∧ ∧

2 del(hesitate to) ` ` @
3 sub(Prozac, medication) @ @ @

1 del(didn’t) ∧ ∧ ∧

2 sub(Prozac, medication) @ A |
3 del(hesitate to) ` ` @

1 sub(Prozac, medication) @ @ @
2 del(hesitate to) ` | |
3 del(didn’t) ∧ ∧ @

1 sub(Prozac, medication) @ @ @
2 del(didn’t) ∧ ∧ |
3 del(hesitate to) ` ` @

Table 6.9: Six analyses of the same inference, using different edit orders.

permitted to generates lexical entailment relation A, according to its implication sig-
nature (namely ◦/–), but because of the downward-monotone context created by not,
this is projected as @. Next, deleting not generates lexical entailment relation ∧, in
an upward-monotone context, and @ joined with ∧ yields |. Finally, inserting Cuban
cigars restricts the meaning of smoked, generating lexical entailment relation A, in
an upward-monotone context, and | joined with A yields |. Therefore, h contradicts
p.

CHAPTER 6. COMPOSITIONAL ENTAILMENT 111

6.5.3 Different edit orders

Since the inference method described in section 6.4 requires selecting an ordered
sequence of edits, but does not establish any criteria for preferring one edit order to
another, a critical question is: does edit order make any difference to the outcome,
and if so, how? As we’ll see in section 6.5.5, different edit orders can indeed yield
different outcomes: some edit orders can lead to an entailment relation which is
less informative than (though still compatible with) the desired result. However, we
very commonly find in real-world inference problems that the result obtained from
our inference method is insensitive to the order in which the edits are applied. An
illustration is shown in table 6.9. Here, we consider all six possible orderings of the
edits involved in the Prozac example from section 6.5.2. In each case, the lexical
entailment relations generated by each edit are the same, but how they’re projected
into atomic entailment relations can depend on the relative ordering of deletions of
downward monotone operators. Likewise, the intermediate results of joining can vary,
but in each case, the final result is the same.

Consider, for example, the second-to-last block in table 6.9. We begin by replacing
Prozac with its hypernym medication. This generates lexical entailment relation @,
which is then projected through the downward-monotone implicative hesitate to as
A, which is in turn projected through negation as @. Next, the deletion of hesitate to
generates lexical entailment relation `, which is projected through negation as |, and
@ joined with | yields |. Finally, the deletion of negation generates lexical entailment
relation ∧, in an upward-monotone context, and | joined with ∧ yields @: the same
result as before.

6.5.4 Inability to handle de Morgan’s laws for quantifiers

As noted earlier (section 6.4), the inference method we describe has less deductive
power than first-order logic, and consequently fails to explain some fairly simple
inferences which are staples of introductory logic courses. Consider, for example, de

CHAPTER 6. COMPOSITIONAL ENTAILMENT 112

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
Not all birds fly

1 del(not) ∧ ∧ ∧

All birds fly

2 sub(all, some) @ @ `
Some birds fly

3 ins(not) ∧ ` ≡@A`#
Some birds do not fly

Table 6.10: Analysis of an example of de Morgan’s laws for quantifiers, first try.

Morgan’s laws for quantifiers:

¬(∀x P (x)) ⇔ ∃x (¬P (x)) (6.1)

¬(∃x P (x)) ⇔ ∀x (¬P (x)) (6.2)

The following example provides a natural-language instantiation of this pattern of
inference:

p: Not all birds fly.
h: Some birds do not fly.

This inference is trivially valid: the entailment relation between p and h is ≡.
However, there does not appear to be any way to demonstrate this using the inference
method we describe. Transforming p into h will require three atomic edits: (a) the
deletion of the sentential (wide-scope) negation, (b) the substitution of all with some,
and (c) the insertion of the predicate (narrow-scope) negation. While these three edits
could be applied in any of 3! = 6 orderings, it will turn out that every ordering leads
to the same (unsatisfactory) result.

To begin with, consider the ordering shown in table 6.10. First, the deletion of the
sentential negation generates the ∧ relation. Next, the quantifier substitution yields
the @ relation, and ∧ joined with @ yields `. Finally, the insertion of the predicate
negation yields the ∧ relation, but because the insertion occurs in the second argument
(the body) of the existential quantifier some, ∧ is projected as `, and ` joined with
` yields, as a final result, the union relation

⋃
{≡,@,A,`,#}. This relation might

be dubbed the non-exclusion relation, since it omits only the exclusion relations ∧

CHAPTER 6. COMPOSITIONAL ENTAILMENT 113

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
Not all birds fly

1 del(not) ∧ ∧ ∧

All birds fly

2 ins(not) ∧ | A
All birds do not fly

3 sub(all, some) @ @ ≡@A`#
Some birds do not fly

Table 6.11: Analysis of an example of de Morgan’s laws for quantifiers, second try.

and |. Because this result contains the desired result (namely ≡), it is not incorrect,
but it is far less informative than we would hope.

Different orderings of the three required edits lead to the same outcome. For
example, if we insert the predicate negation before we perform the quantifier substi-
tution, then we obtain the analysis shown in table 6.11. As before, the deletion of the
sentential negation generates the ∧ relation. But this time, the insertion of the pred-
icate negation occurs in the second argument (the body) of the universal quantifier
all, so that the lexical entailment relation ∧ is projected as | (see section 6.2.4), and ∧

joined with | yields A. Finally, the quantifier substitution generates @, and A joined
with @ again yields the non-exclusion relation: not incorrect, but under-specific.

While we won’t bother to work through the details here, it can be shown that each
of the six possible orderings of the three required edits leads to the same result, albeit
via different intermediate steps. The problem could perhaps be solved by allowing
more complex edit operations to count as atomic, and by specifying the appropriate
lexical entailment relations generated by these richer edits. In our example, it would
suffice to treat the quantifier substitution and the insertion of predicate negation as
a single atomic edit which generates the ∧ relation. However, such an ad-hoc solution
has little to recommend it.

6.5.5 A more complex example

Let’s now look at a more complex example that demonstrates the interaction of a
number of aspects of the model we’ve presented. The inference is:

CHAPTER 6. COMPOSITIONAL ENTAILMENT 114

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
Jimmy Dean refused to move without blue jeans

1 sub(Jimmy Dean, James Dean) ≡ ≡ ≡
James Dean refused to move without blue jeans

2 del(refuse to) | | |
James Dean moved without blue jeans

3 ins(did) ≡ ≡ |
James Dean did move without blue jeans

4 ins(n’t) ∧ ∧ @
James Dean didn’t move without blue jeans

5 sub(move, dance) A @ @
James Dean didn’t dance without blue jeans

6 del(blue) @ @ @
James Dean didn’t dance without jeans

7 sub(jeans, pants) @ @ @
James Dean didn’t dance without pants

Table 6.12: Analysis of a more complex inference, first try.

p: Jimmy Dean refused to move without blue jeans.
h: James Dean didn’t dance without pants.

Of course, the example is quite contrived, but it has the advantage that it compactly
exhibits several phenomena of interest: semantic containment (between move and
dance, and between pants and jeans); semantic exclusion (in the form of negation);
an implicative (namely, refuse to); and nested inversions of monotonicity (created by
refuse to and without).

In this example, the premise p can be transformed into the hypothesis h by a
sequence of seven edits, as shown in table 6.12. (This time we include even “light”
edits, for completeness.) We analyze these edits as follows. The first edit simply
substitutes one variant of a name for another; since both substituends denote the
same entity, the edit generates the ≡ relation. The second edit deletes an implicative
(refuse to) with implication signature –/◦. As described in section 6.3.2, deletions of
this signature generate the | relation, and ≡ joined with | yields |. The third edit
inserts an auxiliary verb (did); since auxiliaries are more or less semantically vacuous,
this generates the ≡ relation, and | joined with ≡ yields | again. The fourth edit
inserts a negation, generating the ∧ relation. Here we encounter the first interesting

CHAPTER 6. COMPOSITIONAL ENTAILMENT 115

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
Jimmy Dean refused to move without blue jeans

1 ins(did) ≡ ≡ ≡
Jimmy Dean did refuse to move without blue jeans

2 ins(n’t) ∧ ∧ ∧

Jimmy Dean didn’t refuse to move without blue jeans

3 del(blue) @ A |
Jimmy Dean didn’t refuse to move without jeans

4 sub(jeans, pants) @ A |
Jimmy Dean didn’t refuse to move without pants

5 sub(move, dance) A A |
Jimmy Dean didn’t refuse to dance without pants

6 del(refuse to) | ` @
Jimmy Dean didn’t dance without pants

7 sub(Jimmy Dean, James Dean) ≡ ≡ @
James Dean didn’t dance without pants

Table 6.13: Analysis of a more complex inference, second try.

join: as explained in section 5.6, | joined with ∧ yields @. The fifth edit substitutes
move with its hyponym dance, generating the A relation. However, because the edit
occurs within the scope of the newly-introduced negation, A is projected as @, and
@ joined with @ yields @. The sixth edit deletes a generic modifier (blue), which
generates the @ relation by default. This time the edit occurs within the scope of two
downward-monotone operators (without and negation), so we have two inversions of
monotonocity, and @ is projected as @. Again, @ joined with @ yields @. Finally,
the seventh edit substitutes jeans with its hypernym pants, generating the @ relation.
Again, the edit occurs within the scope of two downward-monotone operators, so @

is projected as @, and @ joined with @ yields @. Thus p entails h.
Of course, the edit sequence shown is not the only sequence which can transform p

into h. A different edit sequence might yield a different sequence of intermediate steps,
but the same final result. Consider, for example, the edit sequence shown in table 6.13.
Note that the lexical entailment relation β(ei) generated by each edit is the same
as before. But because the edits involving downward-monotone operators (namely,
ins(n’t) and del(refused to)) now occur at different points in the edit sequence, many
of the atomic entailment relations β(xi−1, ei) have changed, and thus the sequence of

CHAPTER 6. COMPOSITIONAL ENTAILMENT 116

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)
Jimmy Dean refused to move without blue jeans

1 ins(did) ≡ ≡ ≡
Jimmy Dean did refuse to move without blue jeans

2 ins(not) ∧ | |
Jimmy Dean did refuse not to move without blue jeans

3 del(refuse to) | | ≡@A|#
Jimmy Dean didn’t move without blue jeans

4 del(blue) @ @ •
Jimmy Dean didn’t move without jeans

5 sub(jeans, pants) @ @ •
Jimmy Dean didn’t move without pants

6 sub(move, dance) A A •
Jimmy Dean didn’t dance without pants

7 sub(Jimmy Dean, James Dean) ≡ ≡ •
James Dean didn’t dance without pants

Table 6.14: Analysis of a more complex inference, third try.

joins has changed as well. In particular, edits 3 and 4 occur within the scope of three
downward-monotone operators (negation, refuse, and without), with the consequence
that the @ relation generated by each of these lexical edits is projected as A. Likewise,
edit 5 occurs within the scope of two downward-monotone operators (negation and
refuse), and edit 6 occurs within the scope of one downward-monotone operator
(negation), so that | is projected as `. Nevertheless, the ultimate result is still @.

However, it turns out not to be the case that every edit sequence which trans-
forms p into h will yield equally satisfactory results. Consider the sequence shown in
table 6.14. The crucial difference in this edit sequence is that the insertion of not,
which generates lexical entailment relation ∧, occurs within the scope of refuse, so
that ∧ is projected as atomic entailment relation | (see section 6.3.4). But the dele-
tion of refuse to also produces atomic entailment relation | (see section 6.3.2), and |
joined with | yields a relatively uninformative union relation, namely

⋃
{≡,@,A, |,#}

(which could also be described as the non-exhaustion relation). The damage has
been done: further joining leads directly to the “black hole” relation •, from which
there is no escape.

Note, however, that even for this infelicitous edit sequence, our inference method

CHAPTER 6. COMPOSITIONAL ENTAILMENT 117

has not produced an incorrect answer (because the • relation includes the @ relation),
only an uninformative answer (because it includes all other relations in B as well). In
fact, through all the examples we have considered, we have encountered no evidence
that our inference method is unsound, i.e., that it can lead to an incorrect (as opposed
to merely uninformative) result. We’ll consider whether this is true in general in the
final section of this chapter.

6.6 Is the inference method sound?

We have seen that the inference method described in section 6.4 is able to produce the
desired entailment relation (that is, one which is not only correct but as informative
as possible) on a broad variety of example problems, including inferences involv-
ing semantic containment, semantic exclusion, implicativity, and nested inversions of
monotonicity. We have also seen that the method fails to achieve inferential complete-
ness : that is, there exist valid inferences (such as instantiations of de Morgan’s laws
for quantifiers, section 6.5.4) for which the method is not able to produce the desired
entailment relation, but only a less informative (though compatible) relation. What
about the converse property of inferential soundness? When the inference method
produces an informative result, can we be confident that the result is correct?

Unfortunately, we cannot provide a formal proof of soundness. Indeed, to seek
such a proof would be to misconstrue the very purpose of natural logic, which is, at its
heart, a model of informal reasoning. It is true, of course, that in order to make the
model precise and to implement it in code, we have erected a certain amount of formal
scaffolding: the definition of the set B of basic entailment relations and the algebra of
their joins (chapter 5), and the notion of projectivity signatures (this chapter). This
formal framework, if divorced from natural language and viewed purely as a calculus
of set relations, would no doubt support a formal proof of soundness. But such a
calculus would not be a model of natural logic, nor would it provide an account of
natural language inference; thus, it is a topic for another dissertation.

In a model of natural language inference, the informality of natural language
necessarily intrudes. The correctness of results produced by the inference method

CHAPTER 6. COMPOSITIONAL ENTAILMENT 118

described in section 6.4 depends on many factors which defy formalization. First, as
noted above, we must find a suitable sequence of edits which transforms p into h (and
the inference method per se offers no guidance on how to find such a sequence, or
indeed, whether one exists). Second, we must predict the correct entailment relation
for each edit. Cases like sub(jeans, pants) are straightforward enough, but (as we
noted in section 6.1) other cases are not so clear-cut. Lexical ambiguity is one issue:
whether bank @ building depends on which sense of bank is intended. Vagueness is
another: does three @ several? Does method ≡ strategy? Finally, we must correctly
determine the projectivity properties of semantic functions in our sentences, and
properly identify the extent of their arguments. Classic scope ambiguities (as in Every
man loves some woman) may be one issue, but there are other potential sources of
difficulty. For example, we noted in section 6.2.5 that while most verbs project | as
#, those which encode functional relations project | as |. But whether a particular
verb encodes a functional relation may not be entirely clear-cut.

Many of the difficulties just described involve properly identifying the seman-
tic properties of lexical items involved in the inference. A further consideration—
though it is purely theoretical—is that lexical items exhibiting certain combinations
of semantic properties could, in principle, render our inference method unequivocally
unsound.8 Suppose there were an English adverb X-ly having the following (admit-
tedly bizarre) combination of properties: first, it is semantically vacuous (so that
β(del(X-ly)) = ≡); and second, it is downward monotone (so that its projectivity
signature includes {@:A}). Now consider the following inference:

p: John runs X-ly.
h: John moves.

Here, p is transformed into h by two edits, which can occur in either order:
sub(runs, moves) and del(X-ly). Of course, β(sub(runs, moves)) = @. Now, the
result produced by the inference method will depend upon the order in which the
edits are applied. If we first apply the del and then the sub, the result is @, because
the del is semantically vacuous, and after it has occurred, X-ly is no longer present

8The following example is due to an anonymous reviewer for the Eighth International Conference
on Computational Semantics, to whom we are indebted.

CHAPTER 6. COMPOSITIONAL ENTAILMENT 119

to affect the sub, which generates @. However, if we first apply the sub and then
the del, then the result is A, because the presence of the downward-monotone X-ly
causes the lexical entailment relation @ produced by the sub to be projected as A.
Since it is not possible that p @ h and p A h, at least one of these two results must
be incorrect. Therefore, if expressions like X-ly can occur in natural language, then
at least some edit orders can cause our inference method to produce incorrect results.

We are not aware of any actual natural language expression having the unusual
combination of properties exemplified by X-ly. Indeed, it is difficult to imagine that
such an expression could be coined—what, exactly, might it mean? It therefore seems
a plausible hypothesis that expressions like X-ly do not occur in natural languages,
and consequently that, in practice if not in principle, such expressions pose no threat
to the soundness of our inference method. This claim resembles the typological claims
that have been made about certain monotonicity patterns of quantifiers existing in
natural languages. But because we can offer no concrete evidence to support this
claim, it remains a hypothesis only.

Whatever the theoretical limitations of our model of natural logic, it has been
shown in practice successfully to address a wide range of inference problems. In
section 6.5, we illustrated this using a variety of toy examples; in chapter 7, we will
describe a computational implementation of this model and a large-scale evaluation
of its effectiveness on real-world inference problems.

Chapter 7

The NatLog system

The model of natural logic developed in chapters 5 and 6 may be an elegant theory,
and we have seen that it successfully explains a handful of contrived examples. But
is the model just a toy, or can it be effectively implemented and applied to real-
world examples of natural language inference? This chapter aims to answer those
questions.1

The NatLog system is a Java implementation of our model of natural logic. In the
following pages, we present the high-level architecture of the system (section 7.1) and
provide detailed descriptions of each of its five key components (sections 7.2 through
7.6). Next, we illustrate the operation of the system (section 7.7) using a concrete
example first introduced in the previous chapter. We then discuss evaluations of
the effectiveness of the system on two well-known collections of NLI problems: the
FraCaS test suite (section 7.8) and the RTE3 test suite (section 7.9).

7.1 System architecture

The NatLog system uses a multi-stage pipelined architecture in which the task of
alignment (that is, identifying corresponding entities and predicates in p and h) is
distinguished from the task of entailment classification (determining whether p entails
h). While this division of labor may seem obvious, it is by no means a given: in many

1The material in this chapter is derived in large part from (MacCartney and Manning 2008).

120

CHAPTER 7. THE NATLOG SYSTEM 121

RTE systems, alignment is not explicitly formulated as a separate task, but is achieved
implicitly as part of entailment classification. In adopting a pipelined approach, we
follow a precedent established by Marsi and Krahmer (2005), and developed further in
the Stanford RTE system, as described in (MacCartney et al. 2006) and in chapter 4
of this dissertation.

As we saw in chapter 4, the Stanford RTE system uses a pipeline of three stages,
comprising linguistic analysis, alignment, and entailment classification. The NatLog
pipeline has a similar structure, but places far great emphasis on entailment classi-
fication, which it divides into three separate stages. Altogether, then, the NatLog
pipeline includes five stages of processing:

1. Linguistic analysis (section 7.2) involves applying standard linguistic analysis
tools (tokenization, lemmatization, parsing, etc.) to the input sentences p and h
in order to generate a variety of linguistic annotations which prepare the ground
for further processing.

2. Alignment (section 7.3) means establishing a sequence of atomic edits which
transforms p into h. The NatLog system does not itself have the capacity
to perform alignment, but relies instead on alignments derived from outside
sources (such as the MANLI system introduced in chapter 3, or the Stanford
RTE aligner described in chapter 4).

3. Lexical entailment classification (section 7.4) is the core of the NatLog
system: it uses machine learning and a variety of lexical resources to predict an
entailment relation for each atomic edit, based solely on features of the lexical
items involved, independent of context.

4. Entailment projection (section 7.5) aims to predict the entailment relation
which holds across each atomic edit by considering the impact of the context in
which the edit occurs on the lexical entailment relation produced in the previous
stage.

5. Entailment joining (section 7.6) combines the atomic entailment relations

CHAPTER 7. THE NATLOG SYSTEM 122

predicted by the preceding stage across the chain of edits in order to produce
the entailment relation which holds between p and h.

The following sections describe each of these stages in greater detail.

7.2 Linguistic analysis

The NatLog pipeline begins by applying a number of off-the-shelf linguistic analy-
sis tools to the input sentences p and h, in order to generate linguistic annotations
which will be useful later in processing. We rely on the Stanford parser (Klein and
Manning 2003), a Penn Treebank-trained statistical parser, for tokenization, part-of-
speech tagging, and syntactic phrase-structure parsing. We also generate a lemma
for each word token using a Java port of the finite-state analyzer of Minnen et al.
(2001). Lemmas and part-of-speech tags are used in lexical entailment classification
(section 7.4), while the syntactic parses are used in entailment projection (section 7.5).
However, relative to some other NLI systems, the linguistic pre-processing performed
by NatLog is relatively light. In particular, we make no attempt to perform named
entity recognition, coreference resolution, dependency parsing, or semantic role label-
ing. While all these kinds of information could potentially be useful in later stages
of processing, we have chosen to focus our development efforts on our core model of
natural logic, rather than on incremental improvements to linguistic annotation.

This stage includes one other important type of linguistic analysis: monotonicity
marking of p and h, in which we compute the effective monotonicity for each token
span in each input sentence. While this computation is actually performed as part
of the linguistic analysis stage, logically it forms part of the fourth processing stage
(entailment projection); thus we postpone further discussion until section 7.5.

7.3 Alignment

In the second stage of processing, we establish an alignment between the premise p
and hypothesis h, represented by a sequence of atomic edits, operating over phrases,

CHAPTER 7. THE NATLOG SYSTEM 123

which transforms p into h. (Following the usage common in the machine translation
literature, we use the term “phrase” to refer to a contiguous span of word tokens,
whether or not the tokens constitute a syntactic phrase.) This alignment representa-
tion is symmetric and many-to-many, and is general enough to include various other
alignment representations as special cases. We define four edit types:

• an eq edit connects a phrase in p with an equal (by word lemmas) phrase in h
• a sub edit connects a phrase in p with an unequal phrase in h
• a del edit covers an unaligned phrase in p
• an ins edit covers an unaligned phrase in h

Each edit is parameterized by the token indices at which it operates, and edit indices
may “cross”, permitting representation of movement. (This is the same representation
of alignment used by the MANLI system, described in chapter 3.)

The NatLog system does not itself include any facility for finding good alignments;
rather, its purview is the identification of entailment relations between aligned sen-
tence pairs. NatLog therefore relies on alignments derived from other sources: either
human annotators, or automatic alignment systems such as the MANLI system (chap-
ter 3) or the Stanford RTE aligner (chapter 4).

Although NatLog does not itself generate alignments, but merely reads them in
from an outside source, it does perform one important bit of processing as part of
the alignment stage: name, heuristic ordering of edits. The outside sources from
which NatLog obtains alignments typically do not specify any particular ordering in
which the edits contained in an alignment should be applied. However, the inference
method implemented by NatLog requires that such an ordering be established (see
section 6.4), since this ordering defines a path from p to h through intermediate forms,
and thereby decomposes the inference problem into a sequence of atomic inference
problems, one for each atomic edit. Since NatLog is free to choose whatever edit
order it prefers, it uses heuristic rules to select an order which maximizes the benefit
of the monotonicity marking performed in the first stage of processing (but described
in section 7.5).

CHAPTER 7. THE NATLOG SYSTEM 124

In particular, NatLog prefers to put del edits at the beginning of the edit se-
quence, sub edits in the middle, and ins edits at the end. There is one complication:
the relative ordering of edits involving downward-monotone (or non-monotone) op-
erators (e.g., the deletion of not) may influence the effective monotonicity applicable
for other edits. Therefore, in choosing an edit order, NatLog places any edits involv-
ing downward-monotone (or non-monotone) operators in a separate group, after all
other del and sub edits, and before all other ins edits. This has the benefit that
when NatLog needs to compute the effective monotonicity for a particular edit (in
the fourth stage), it is able to use the monotonicity markings on p for all ordinary
del and sub edits, and the monotonicity markings on h for all ordinary ins edits.
(By “ordinary”, we simply mean “not involving downward-monotone or non-monotone
operators”.)

7.4 Predicting lexical entailment relations

Much of the heavy lifting in the NatLog system is done in the third stage of pro-
cessing, by the lexical entailment model, which is a concrete implementation of the
principles described in section 6.1. This model has the job of predicting a lexical
entailment relation for each atomic edit in the alignment determined in the previous
stage. Its prediction is based solely on features of the lexical items involved in the edit,
independent of the projective properties of the context in which the edit occurs. (For
example, this model should assign the entailment relation A to the edit sub(weapon,
rifle), regardless of whether the context at the locus of the edit is upward-monotone,
downward-monotone, or something else.)

To makes its predictions, the lexical entailment model uses machine learning tech-
niques, and exploits a plethora of external lexical resources containing information
about relationships between word meanings. For each edit, the model generates a fea-
ture representation (section 7.4.1) which encapsulates all available information about
the type of the edit and the words involved in the edit, and then applies a decision tree
classifier (section 7.4.2) which has been trained on a large set of manually-annotated
lexical entailment problems.

CHAPTER 7. THE NATLOG SYSTEM 125

7.4.1 Feature representation

The process of predicting a lexical entailment relation for a given atomic edit begins
with generating a feature representation of the edit, which is a real-valued vector
encoding a variety of information about the edit: its type, its size, characteristics
of the words involved the edit, and (in the case of sub edits) information about
the semantic relationship between the substituends. This feature representation then
serves as an input to the classifier described in section 7.4.2.

We begin by describing the features active for sub edits, in which we are particu-
larly concerned with the semantic relationship between the substituends, that is, the
phrases (often single words) from p and h involved in the edit.

WordNet-derived features. Perhaps the most important features for sub edits
are those which exploit WordNet to measure the semantic relatedness of the sub-
stituends, using various relation types, including synonymy, antonymy, and hyper-
nymy. Each of these features takes values on the interval [0..1].

• The WNSyn feature indicates synonymy: it takes value 1 iff the substituends are
synonyms per WordNet (i.e., belong to the same synset), and 0 otherwise.

• The WNAnt feature indicates antonymy: it takes value 1 iff the substituends are
antonyms per WordNet, and 0 otherwise.

• The WNHyper feature indicates hypernymy. If the h phrase is a (direct or in-
direct) hypernym of the p phrase in WordNet, then WNHyper takes the value
1 − n

8
, where n if the number of links which must be traversed in the Word-

Net hypernym hierarchy to get from the p phrase to the h phrase. Other-
wise, WNHyper takes value 0. For example, WNHyper(owl , bird) = 0.75, while
WNHyper(bird , owl) = 0.0.

• The WNHypo feature indicates hyponymy, and is simply the inverse of the WNHyper
feature. Thus WNHypo(owl , bird) = 0.0, while WNHypo(bird , owl) = 0.75.

CHAPTER 7. THE NATLOG SYSTEM 126

• The JiCo feature is a measure of semantic relatedness based on the well-known
Jiang-Conrath WordNet distance metric (Jiang and Conrath 1997), which mea-
sures the distance between two WordNet synsets s1 and s2 as

dJC(s1, s2)
def
= IC(s1) + IC(s2)− 2 · IC(lso(s1, s2))

where IC(s) is the information content of synset s (that is, the negative of the
logarithm of its frequency of occurrence in a large corpus), and lso(s1, s2) is
the least superordinate (most specific hypernym) of synsets s1 and s2. Possible
values for dJC range from a minimum of 0 (for synonyms) to a theoretical
maximum of 2 · maxs(IC(s)). Thus, to convert dJC to a measure of semantic
relatedness on [0..1], we use

JiCo(s1, s2)
def
= 1− dJC(s1, s2)

2 ·maxs(IC(s))

This formula gives results that are intuitively pleasing, although it has the
consequence that comparatively few pairs of terms receive a score near 0.

Features based on other lexical resources. In addition to the WordNet-based
features, we use a few other features based on external lexical resources which are
in some ways complementary to WordNet. Like the WordNet-based features, these
features have values on [0..1].

• The NomB feature uses information from the NomBank lexical resource (Mey-
ers et al. 2004) to indicate derivationally related words having different parts
of speech, particularly nominalizations. We extracted from the NOMLEX-
PLUS.0.8 file about 4,000 related noun/verb pairs (such as accusation/accuse)
and about 2,500 related adjective/adverb pairs (such as angry/angrily). The
NomB feature is set to 0.75 if the substituends are among these pairs, or to 0
otherwise.

• The DLin feature is a measure of semantic relatedness based on a thesaurus
compiled automatically by Dekang Lin (Lin 1998). This resource, which covers

CHAPTER 7. THE NATLOG SYSTEM 127

nouns, verbs, and adjectives, estimates the relatedness between a pair of words
or phrases by measuring their distributional similarity, that is, the similarity be-
tween the distributions, in a very large corpus, of the grammatical relationships
in which they participate. It is thus a useful complement to the information ob-
tained from manually-compiled resources like WordNet and NomBank. Because
the scores obtained from the thesaurus are not normalized, we map them onto
[0..1] by dividing every score by the maximum score observed in the thesaurus
(separately for each part of speech).

String similarity features. Since no static lexical resource can possibly contain
every pair of words which might be encountered, the robustness of the system can
be greatly enhanced by including features which measure only string similarity. Such
features are particularly helpful for identifying the equivalence between different ver-
sions of proper names, which are commonly missing from static lexical resources. For
example, string similarity can help us to identify alternate or erroneous spellings of a
name (Ahmadinejad, Ahmadi-Nejad, or Ahmadinejab), or shorter and longer versions
of the same name (Lincoln vs. Abraham Lincoln).

• The LemStrSim feature estimates the similarity between words w1 and w2 using
a function based on the string edit distance between the word lemmas:

LemStrSim(w1, w2) = max

[
0, 1− dist(lemma(w1), lemma(w2))

max(|lemma(w1)|, |lemma(w2)|)− k

]
Here lemma(w) denotes the lemma of word w, as generated by the finite state
transducer of Minnen et al. (2001); dist() denotes Levenshtein string edit dis-
tance (Levenshtein 1966); and |·| denotes string length. k is a penalty parameter
whose purpose is to prevent assigning high similarity to very short pairs of un-
related words with similar spelling, such as or and for, or she and the. For
example, if k = 0, then LemStrSim(she, the) = 0.67, but if k = 2 (the valued we
used in practice), then LemStrSim(she, the) = 0.0. The similarity assigned to
longer word pairs is less affected by the penalty parameter. For example, with
k = 2, LemStrSim(Ahmadinejad ,Ahmadinejab) = 0.89.

CHAPTER 7. THE NATLOG SYSTEM 128

• The LemSubSeq feature is designed to identify the case where one of the sub-
stituends is a multi-word phrase which contains the other as a sub-phrase, as in
sub(Lincoln, Abraham Lincoln) or sub(Dick and Jane, Jane). Unlike the other
features presented so far, the LemSubSeq feature takes values which are entail-
ment relations (and which are subsequently encoded by a bundle of boolean
features). In particular:

– LemSubSeq(p, h) = @ iff h is a subsequence of p
– LemSubSeq(p, h) = A iff p is a subsequence of h
– LemSubSeq(p, h) = ≡ iff p and h are equal
– LemSubSeq(p, h) = # otherwise

As the name suggests, the LemSubSeq feature works by comparing word lemmas,
not merely surface forms.

Lexical category features. We also include a number of features which describe
the lexical categories to which the substituends belong.

• The Light feature is a boolean feature which is activated just in case both
substituends contain only semantically “light” words, that is, words which have
a limited impact on the semantics of the sentences in which they appear. The
intent is that substitutions involving light words should be predicted to gener-
ate lexical entailment relation ≡. We define light words to include punctuation,
prepositions, possessive markers, articles, auxiliary verbs, and expletives. Of
course, we do not mean to make a strong claim that all such words are seman-
tically vacuous—rather, this definition reflects a pragmatic choice which seems
to work well in practice.

• The Preps feature is a boolean feature which is activated just in case both
substituends are prepositions. The presence of this feature encourages NatLog
to be somewhat liberal (i.e., biased toward predicting ≡) regarding substitutions
involving prepositions. As we argued in section 6.1.2, this is often—though not
always—an appropriate choice.

CHAPTER 7. THE NATLOG SYSTEM 129

• The Pronoun feature is a boolean feature which is activated just in case both
substituends are pronouns. The presence of this feature encourages NatLog to
be somewhat liberal regarding substitutions involving pronouns.

• The NNNN feature is a boolean feature which is activated just in case either
both substituends are common nouns, or both substituends are proper nouns.
The motivation for this feature is to encode the background assumption that
most such pairs of nouns should (in the absence of evidence to the contrary) be
predicted to stand in the | relation, as described in section section 6.1.1. For
example, we want apple | banana and Atlanta | Boston. Of course, for specific
pairs of nouns, the ≡, @, or A relation might be more appropriate, but we hope
that in such cases some other featurizer will provide the evidence we need to
make that prediction.

• The Quantifier feature is designed to enable predicting appropriate lexical
entailment relations for sub edits involving quantifier phrases, as outlined in
section 6.1.2. Its output space is the set B of basic entailment relations, and
its value is intended to serve as the predicted lexical entailment relation for
the given substitution. This feature function contains quite a bit of manually
encoded knowledge. It defines a number of quantifier categories, such as:

– ALL: including all, every, each, both, everybody, etc.
– SOME: including some, something, several, one or more, etc.
– NONE: including no, nothing, nobody, no one, neither, etc.
– NUM: specific cardinal numbers

In all, we define about a dozen quantifier categories, along with patterns used
to identify occurrences of each category. Finally, for many category pairs, we
define relations in B which should be predicted to result from a substitution of
quantifiers in those categories. So, for example, we have:

sub(ALL, SOME) → @

sub(ALL, NONE) → |
sub(ALL, NUM) → #

CHAPTER 7. THE NATLOG SYSTEM 130

and so on. These definitions are driven both by theory and by pragmatism. If
either substituend fails to be recognized as a quantifier phrase, or if we have not
defined a predicted entailment relation for the given pair of quantifier categories,
then the feature takes value #.

Miscellaneous additional features for sub edits. Our feature representation
includes a couple of additional features which do not fit neatly into any of the pre-
ceding feature categories.

• The NeqNum feature is a boolean feature designed to identify number mis-
matches. It is activated just in case the substituends are both numbers and
are not equal.

• The MiscSub feature is used to encode knowledge about specific pairs of expres-
sions which do not fit neatly into any of the other features. Its output space is
the set B of basic entailment relations, and it includes hand-coded mappings
from specific pairs of expressions to lexical entailment relations which should be
predicted for sub edits involving those pairs. In particular, the MiscSub feature
encodes the knowledge that:

– sub(and, or) should yield @.
– sub edits involving different ways of expressing the genitive (e.g., ’s, of,

his, her, its) should yield ≡.
– sub edits involving certain pairs of prepositions should yield | (e.g., after
| before, inside | outside), rather than the default ≡.

What about del and ins edits? These are handled as one: in fact, when asked
to predict a lexical entailment relation for an ins edit, NatLog first converts it to
a del edit (by swapping the roles of p and h), then applies the lexical entailment
model (which is designed for del edits), and then returns the converse of the resulting
prediction (for example, swapping @ and A).

The feature representation used for del edits is much smaller than the one used
for sub edits. (As noted in section 6.1.3, most del edits just have @ as the target

CHAPTER 7. THE NATLOG SYSTEM 131

lexical entailment relation, so this is an easier prediction problem.) In fact, for del

edits, we use only the Light and Pronoun features, plus an additional feature which
applies only to dels:

• The MiscDel feature is used to encode knowledge about specific expressions
which do not fit neatly into any of the other features. Its output space is the
set B of basic entailment relations, and it includes hand-coded mappings from
specific expressions to lexical entailment relations which should be predicted for
del edits involving those pairs. In particular, the MiscDel feature encodes the
knowledge that:

– del(not) and del(false) should yield ∧, while del(true) should yield ≡.
– Certain non-intersective adjectives have non-default behavior. del(fake)

and del(former) should yield |, while del(alleged) should yield #.
– Deletions of modal verbs often yield #. Thus del(could) and del(should)

should yield |.

Finally, the MiscDel feature is also where we encode knowledge about lexical
entailment relations generated by deletions of implicative and factive operators,
as described in section 6.3.2 and section 6.3.3. To do this, we use a custom-built
resource which maps a few dozen common implicative and factive operators to
their implication signatures (see section 6.3.1), based on a list obtained from
researchers at PARC. For example, this map tells us that force has implication
signature +/◦, and thus del(force) should yield @; while fail has implication
signature −/+, and thus del(fail) should yield ∧.

7.4.2 Classifier training

The feature representation described in section 7.4.1 serves as input to a classifier
whose job is to predict lexical entailment relations. For this purpose, we use a J48
decision tree classifier from the Weka machine learning library (Witten and Frank
2005). Our motivation for choosing a decision tree classifier—as opposed to a linear
model such as a maximum entropy classifier or a support vector machine—is that we
expect the decision space to be richly structured, with most classification decisions

CHAPTER 7. THE NATLOG SYSTEM 132

problems involving sub edits (1,525 examples)
reln count examples
≡ 1,042 sub(blast, explosion), sub(had, has), sub(Alfred Nobel, Nobel)
@ 95 sub(jet, plane), sub(Italy, nation), sub(deafening, loud)
A 86 sub(robots, mini-robots), sub(acquired, bought), sub(some, one)
∧ 8 sub(no, some), sub(confirmed, unconfirmed)
| 191 sub(1972, 1975), sub(Rwanda, Uganda), sub(salt, vinegar)
` 0
103 sub(fetal, human), sub(gatherers, pygmies), sub(baby, girl)

problems involving del edits (924 examples)
reln count examples
≡ 191 del(has), del(manage to), del(genuine)
@ 694 del(last week), del(predictably), del(single)
A 3 del(tried to)
∧ 6 del(not), del(forgot to), del(it is false that)
| 7 del(former), del(refused to), del(prevented)
` 2 del(hesitate to)
21 del(may), del(needed to), del(concluded)

Table 7.1: Examples of training problems for the lexical entailment model.

hinging on just one or two features. While linear models excel at combining evidence
from a large number of features, in our problem setting we anticipate comparatively
little need to combine evidence.

In order to train the classifier, we constructed a training set containing 2,449 lexical
entailment problems, derived from alignments of NLI problems from various sources.
Of these problems, 1,525 represented sub edits, and consisted of a pair of words or
phrases. The other 924 represented del edits, and consisted of just a single word or
phrase. Each problem was manually annotated with one of the seven relations in B,
indicating the lexical entailment relation generated by the given edit. As table 7.1
makes clear, the distribution of data was far from even. Because the problems were

CHAPTER 7. THE NATLOG SYSTEM 133

derived from actual alignments, most sub problems consisted of pairs of equal (or
nearly equal) expressions, and thus were labeled with relation ≡. The second most
common label for sub problems was |; many of these problems contained pairs of un-
equal proper nouns or mutually exclusive common nouns. Among the del problems,
the overwhelming majority were labeled with relation @, reflecting the prevalence of
intersective modification, as described in section 6.1.3. The second most common
label for del problems was ≡; most such problems involved expressions treated as
semantically vacuous, such as auxiliary verbs, though a few involved implicatives.

During training, the decision tree was minimally pruned, and the resulting tree
contains about 180 leaves. When tested on the training data, the classifier achieves
>99% accuracy, indicating that our feature representation successfully captures nearly
all relevant distinctions between examples.

7.5 Entailment projection

Whereas the third stage predicts a lexical entailment relation for each edit, it is the
job of the fourth stage of processing to determine the atomic entailment relation
which holds across each edit: that is, the entailment relation which holds between
successive intermediate forms in the path from p to h defined by the alignment. As
we described in section 6.2, this atomic entailment relation will depend not only
on the lexical entailment relation produced by the edit (which is independent of
context), but also on the projective properties of the context in which the edit occurs.
Thus, predicting atomic entailment relations involves two tasks: first, establishing
the projective properties which apply in different regions of the sentences involved
in the problem; and second, determining how these properties affect the projection
of lexical entailment relations into atomic entailment relations for specific edits. We
describe the first of these tasks as monotonicity marking and the second as predicting
projections.

CHAPTER 7. THE NATLOG SYSTEM 134

unary operator: without
pattern: IN < /^[Ww]ithout$/
argument 1: monotonicity down on dominating PP

pattern: __ > PP=proj

binary operator: most
pattern: JJS < /^[Mm]ost$/ !> QP
argument 1: monotonicity non on dominating NP

pattern: __ >+(NP) (NP=proj !> NP)
argument 2: monotonicity up on dominating S

pattern: __ >> (S=proj !> S)

Figure 7.1: Some monotonicity operator type definitions.

7.5.1 Monotonicity marking

The goal of monotonicity marking is to identify within the sentences p and h any
operators which have monotonicity down or non, and to predict the likely extent of
their arguments.

(In an ideal world, we would identify not only operators having monotonicity
down or non, but operators having any projectivity signature other than the one
which maps each entailment relation to itself. In that case, we would describe the
task as “projectivity marking”, as opposed to simply “monotonicity marking”. The fact
that NatLog does only monotonicity marking, rather than full projectivity marking,
is one of the limitations of the current system.)

For example, in the sentence Jimmy Dean refused to move without blue jeans, we
want to recognize that refused is a downward-monotone operator whose argument is
the embedded sentence to move without blue jeans, and that without is a downward-
monotone operator whose argument is the noun phrase blue jeans. Similarly, in the
sentence The best player doesn’t always win, we want to recognize that best is a
non-monotone operator whose argument is the noun player, and that doesn’t is a
downward-monotone operator whose argument is the entire sentence.

Our choice of a Treebank-trained parser (driven by the goal of broad coverage)
somewhat complicates this effort, because the nesting of constituents in phrase-
structure parses does not always correspond to the structure of idealized semantic

CHAPTER 7. THE NATLOG SYSTEM 135

composition trees. Our solution is imperfect, but largely effective. We define a list of
monotonicity operator types (that is, categories of operators with monotonicity down

or non, such as implicatives like refuse, or prepositions like without), and for each
such operator type we specify its arity and a Tregex tree pattern (Levy and Andrew
2006) which permits us to identify its occurrences in our Treebank parses. We also
specify, for each argument position of each operator type, both the monotonicity class
(down or non) and another Tregex pattern which helps us to determine the likely
extent of the argument in a phrase-structure tree. (Figure 7.1 shows some example
definitions.)

Although we have presented monotonicity marking as belonging (logically) to
the fourth stage of NatLog processing, in fact it happens during the first stage, as
part of linguistic analysis. After parsing, we match the tree patterns in each of the
monotonicity operator type definitions against the phrase-structure parse trees for p
and h, and add annotations to parse tree nodes to indicate constituents which are
either monotonicity operators or arguments thereto.

Note that we make no attempt to resolve scope ambiguities, such as that exhibited
by the sentence Every man loves some woman, but we find that in practice this rarely
causes problems: the default behavior usually leads to the right predictions. There
are at least three reasons for this. First, inferences which hinge on scope ambiguities
are rare. Second, the assumption that the first quantifier takes wide scope turns out
to be a fairly reliable heuristic. Third, in many cases the effective monotonicity at
each point in the sentence will be same no matter how the scope ambiguity is resolved.
This is the case with Every man loves some woman: whether some is interpreted as
having wide or narrow scope, the effective monotonicity at man will be down, while
the effective monotonicity in the rest of the sentence will be up.

7.5.2 Predicting projections

Having computed a lexical entailment relation for each edit in the third stage of
processing, NatLog uses the monotonicity markings on the parses of p and h to de-
termine the projection of each lexical entailment relation into an atomic entailment

CHAPTER 7. THE NATLOG SYSTEM 136

relation. As we described in section 7.3, NatLog facilitates this process by choosing
an edit ordering in which del and sub edits not involving monotonicity operators
are applied first, and ins edits not involving monotonicity operators are applied last.
Consequently, in computing the atomic entailment relation for a particular edit, we
use monotonicity markings from p for del and sub edits, and monotonicity markings
from h for ins edits. (This strategy can go wrong if there are multiple edits involving
monotonicity operators, but this rarely occurs in practice. A more principled ap-
proach would be separately to compute monotonicity markings on every intermediate
form on the path from p to h defined by the alignment.)

Given a parsed sentence with monotonicity markings, how do we actually deter-
mine the projection of a given entailment relation? Our first task is to establish the
effective monotonicity at the locus of the edit. First, we find the smallest parse con-
stituent containing the tokens involved in the edit. Next, we trace a path upward
through the parse tree from this constituent to the root, collecting any monotonicity
markings we find along the way. (We exclude any monotonicity markings which were
generated by an operator which is itself an argument to the edit.) If any of these
markings is non, we conclude that the effective monotonicity is non. Otherwise,
we count the number of markings which are down, and if this number is odd, we
conclude that the effective monotonicity is down. Otherwise, we conclude that the
effective monotonicity is up.

If the effective monotonicity is non, then we assume that every lexical entailment
relation is projected as atomic entailment relation #. If the effective monotonicity
is down, then we assume that every lexical entailment relation is projected as its
dual under negation (in the sense of section 5.3.1): thus @ is projected as A, and
vice-versa. Finally, if the effective monotonicity is up, then we assume that every
lexical entailment relation is projected without change.

7.6 Joining entailment relations

In the final stage of processing, the atomic entailment relations predicted for each edit
(which result from the projectivity computations in the previous stage) are combined,

CHAPTER 7. THE NATLOG SYSTEM 137

one by one, across the chain of atomic edits, to produce a final, overall prediction
for the inference problem. The combination is performed using the join operation on
defined in section 5.6. This is a deterministic operation, and is simple to compute. (In
fact, the 7×7 join table for relations in B is precomputed, so this stage of processing
involves only lookups.)

As we alluded to in section 5.6.3, the NatLog system has no need to represent
unions of relations in B which may result from joining two relations in B. Rather,
those joins which would result in a union relation are approximated instead by #.
Note that if a chain of joins ever reaches #, then it is “stuck” there: no further joining
can lead to any other result. Consequently, prediction errors earlier in the processing
pipeline are likely to cause the final prediction to be #, and this tendency becomes
stronger as the number of atomic edits grows. Because # is the least informative
relation in B (permitting neither the truth nor falsity of one of its arguments to be
inferred from the truth or falsity of the other), we might say that NatLog has an
innate tendency to be conservative in its predictions, in the sense that when it runs
into problems, it tends to predict neither entailment nor contradiction.

This chaining of entailments across edits can be compared to the method presented
in (Harmeling 2007); however, that approach assigns to each edit merely a probability
of preserving truth, not an entailment relation.

7.7 An example of NatLog in action

Because our presentation of the five stages of the NatLog system in sections 7.2
through 7.6 has perhaps been rather abstract, we now describe a concrete example
which illustrates the operation of the NatLog system. For this purpose, we use an
inference problem first introduced in section 6.5.5, namely:

p: Jimmy Dean refused to move without blue jeans.
h: James Dean didn’t dance without pants.

During the linguistic analysis stage, these sentences are parsed using the Stanford
parser; the results are shown in figure 7.2. The operation of the remaining four stages
is depicted in table 7.2.

CHAPTER 7. THE NATLOG SYSTEM 138

(S
(NP (NNP Jimmy) (NNP Dean))
(VP (VBD refused)

(S
(VP (TO to)

(VP (VB move)
(PP (IN without)

(NP (JJ blue) (NNS jeans)))))))
(. .))

(S
(NP (NNP James) (NNP Dean))
(VP (VBD did) (RB n’t)

(VP (VB dance)
(PP (IN without)

(NP (NNS pants)))))
(. .))

parse for p parse for h

Figure 7.2: Syntactic parses for the p and h sentences of the James Dean example.

lexical atomic cum.
edit features entrel mono entrel join

1 del(blue) @ up @ @

2 sub(Jimmy Dean, James Dean) strsim:0.67 ≡ up ≡ @

3 sub(move, dance) hyponym A down @ @

4 eq(without, without) ≡ down ≡ @

5 sub(jeans, pants) hypernym @ up @ @

6 del(refused to) implic:+/◦ | up | |
7 ins(n’t) cat:neg ∧ up ∧ @

8 ins(did) cat:aux ≡ down ≡ @

Table 7.2: An example of the operation of the NatLog model.

The best alignment for this example is fairly easy to identify, and the edits it
contains appear as the first column table 7.2. Note, however, that these edits have
been ordered according to the heuristics described in section 7.3: dels first, then
subs, then edits which involve operators with non-default projectivity, and inss last.

The second column of table 7.2 shows features generated by the lexical entailment
model for each edit. For compactness, we display at most one (especially salient) fea-
ture per edit. Jimmy Dean and James Dean have comparatively high string similarity.
We use WordNet to identify the other two sub edits as hyponym and hypernym sub-
stitutions. The miscDeln feature identifies refuse to as an implicative with signature
+/◦, and the final ins edits are distinguished by their lexical categories.

CHAPTER 7. THE NATLOG SYSTEM 139

The third column of table 7.2 shows the lexical entailment relation predicted for
each edit. A generic deletion (edit 1) generates the @ relation. A substitution with
high string similarity (edit 2) leads to the ≡ relation, as do a match (edit 4), and
the insertion of a semantically vacuous auxiliary (edit 8). The hyponym (edit 3)
and hypernym (edit 5) substitutions generate A and @, respectively. The implicative
deletion (edit 6) generates |, according to its implication signature, and the insertion
of negation (edit 7) generates the ∧ relation.

The fourth column of table 7.2 shows the effective monotonicity at the locus of
each edit. (We present monotonicity classes, rather than the more general projectivity
signatures, for simplicity and compactness.) The effective monotonicity for edits 1
through 6 is computed from the syntactic parse for p, while the effective monotonicity
for edits 7 and 8 is computed from the syntactic parse for h. In p, refuse to is identified
as a downward-monotone operator whose scope is its sentential complement, and
without is identified as a downward-monotone operator whose scope is its argument
noun phrase. Consequently, edits 1 and 5 occur in an upward-monotone context
(since they fall within the scope of two downward-monotone operators), while edits
3 and 4 occur in a downward-monotone context (since they fall within the scope of
just one downward-monotone operator), and edit 2 occurs in an upward-monotone
context (since it doesn’t fall within the scope of any downward-monotone operators).
Meanwhile, in h, not is identified as a downward-monotone operator whose scope
is the sentence in which it appears. Consequently, edit 8 occurs in a downward-
monotone context (since it falls within the scope of a downward-monotone operator),
while edit 7 occurs in an upward-monotone context (since it doesn’t fall within the
scope of any downward-monotone operators).

The fifth column of table 7.2 shows how the lexical entailment relations (from
the third column) are projected into atomic entailment relations, according to the
effective monotonicity shown in the fourth column. The only noteworthy case is edit
3, where the lexical entailment relation A is projected into atomic entailment relation
@ by a downward-monotone context.

The sixth and final column of table 7.2 shows the cumulative join of the atomic
entailment relations in the fifth column. Initially, these are unremarkable: @ joined

CHAPTER 7. THE NATLOG SYSTEM 140

with either ≡ or @ yields @. But at edit 6, we find that @ joined with | yields |, and
at edit 7, we find that | joined with ∧ yields @ again. The final entailment relation in
this line, @, is NatLog’s final (and correct) answer for our example problem.

7.8 Evaluation on the FraCaS test suite

The FraCaS test suite (Cooper et al. 1996) of NLI problems was one product of the
FraCaS Consortium, a large collaboration in the mid-1990s aimed at developing a
range of resources related to computational semantics. The FraCaS problems contain
comparatively simple sentences, and the premise and hypothesis sentences are usu-
ally quite similar, so that just a few edits suffice to transform p into h. Despite this
simplicity, the problems are designed to reflect a broad diversity of semantic and infer-
ential phenomena. For this reason, the FraCaS test suite has proven to be invaluable
as a developmental test bed for the NatLog system and as a yardstick for evaluating
its effectiveness. Indeed, the test suite was created with just such an application as
its primary goal. As the authors write:

In light of the view expressed elsewhere in this and other FraCaS de-
liverables ... that inferential ability is not only a central manifestation of
semantic competence but is in fact centrally constitutive of it, it shouldn’t
be a surprise that we regard inferencing tasks as the best way of testing
an NLP system’s semantic capacity.2

Despite having been designed expressly for the purpose of evaluating NLI systems,
the FraCaS test suite went largely unexploited for more than a decade. In fact, to
our knowledge, we are the first to have undertaken a quantitative system evaluation
using the complete FraCaS data set.3

2Cooper et al. (1996), p. 63.
3Sukkarieh (2003) uses a handful of FraCaS examples in a manual evaluation of her McLogic for-

malism for knowledge representation and inference, but does not undertake a complete, quantitative,
or automatic evaluation.

CHAPTER 7. THE NATLOG SYSTEM 141

7.8.1 Characteristics of the FraCaS test suite

The FraCaS test suite contains 346 NLI problems, each consisting of one or more
premise sentences, (usually) followed by a question and an answer. Figures 1.1 and
1.2 show a representative selection of FraCaS problems.

Questions and hypotheses. While the original FraCaS test suite expresses the
“goal” of each problem as a question, the standard formulation of the NLI task involves
determining the entailment relation between a premise and a declarative hypothesis.
Thus, for the purpose of this work, we converted each FraCaS question into a declara-
tive hypothesis, using an automatic tool which first generates a syntactic parse of the
question and then applies a few simple tree-transformation rules. The results were
then manually reviewed for grammaticality. Very few corrections were needed, mostly
involving replacing negative-polarity items such as any. (For example, the question
Did any accountant attend the meeting? was automatically transformed into the hy-
pothesis Any accountant attended the meeting. Any was then manually changed to
Some.)

Answer types. Most FraCaS problems are labeled with one of three answers: yes,
no, or unk.4 This three-way formulation of the NLI task was introduced in sec-
tion 5.2.2, where we identified the yes label with the entailment relation, the no

label with the contradiction relation, and the unk label with the compatibil-

ity relation. We can also identify each of these three labels with a union of relations
in B, as described in section 5.6.3: yes corresponds to

⋃
{≡,@}, no corresponds

to
⋃
{∧, |}, and unk corresponds to

⋃
{A,`,#}. The distribution of answers is not

balanced: about 59% of the problems have answer yes, while 28% have answer unk,
4Actually, the answers are not completely standardized, and quite a few contain qualifiers, such

as, “Yes, on one possible reading”. However, in most cases, the given answer can be straightforwardly
identified with one of the values yes, no, or unk. But 12 of the 346 problems (about 3%) do not fit
neatly into this scheme. Four problems lack questions and answers altogether, and in the remaining
eight problems, the answer is too ambiguous or complex to be clearly identified with one of the
three labels. Examples of such answers include “Yes on one scoping; unknown on another scoping”,
“Not many”, and “At most two”. These 12 problems were omitted from the evaluation described in
section 7.8.2.

CHAPTER 7. THE NATLOG SYSTEM 142

and 10% have answer no. Consequently, a most-common-class classifier can achieve
respectable accuracy simply by guessing yes on every problem.

Multiple-premise problems. Of the 346 FraCaS problems, 154 (about 45%) con-
tain multiple premises: 122 problems contain two premises, 29 problems contain three
premises, two problems contain four premises, and one problem contains five premises.
These multiple-premise problems were excluded from the evaluation described in sec-
tion 7.8.2. As we noted in section 6.4, an important limitation of the inference method
implemented by NatLog is that, unlike first-order logic, it provides no general mech-
anism for combining information from multiple premises. However, this limitation is
not unique to NatLog: it is faced by all other NLI systems of which we are aware. To
be sure, most NLI systems—including NatLog—can accept a premise which contains
multiple sentences. Indeed, recent RTE data sets have included an ever-greater pro-
portion of problems with multi-sentence premises. But, for the most part, solving such
problems requires nothing more than extracting information from a single sentence.
By contrast, the inference problems shown in figure 1.2 cannot be solved without
combining information from multiple sentences. Because NatLog relies on analyzing
entailment relations across a single chain of atomic edits, it cannot effectively handle
such problems. But nor can other systems developed for the RTE challenge.

Sections. The FraCaS test suite is divided into nine sections, each focused on a
specific category of semantic phenomena: (1) quantifiers, (2) plurals, (3) anaphora,
(4) ellipsis, (5) adjectives, (6) comparatives, (7) temporal reference, (8) verbs, and
(9) attitudes. Of course, some of these sections will be more amenable than others to
the natural logic approach: we hope to do well with quantifiers, but expect to make
little headway with ellipsis, anaphora, or temporal reference.

7.8.2 Experiments and results

We evaluated the NatLog system on a subset of the FraCaS data containing 183
single-premise inference problems (representing about 53% of the complete FraCaS
data set). The test set excluded multiple-premise problems (for reasons discussed in

CHAPTER 7. THE NATLOG SYSTEM 143

System P % R % Acc %
baseline: most common class 55.7 100.0 55.7
bag of words 59.7 87.2 57.4
NatLog 2007 68.9 60.8 59.6
NatLog 2008 89.3 65.7 70.5

Table 7.3: Performance of various systems on 183 single-premise FraCaS problems
(three-way classification). The columns show precision and recall for the yes class,
and accuracy.

section 7.8.1) and a handful of other problems which lack a well-defined answer (see
footnote 4).

The NatLog system depends on alignments (that is, edit sequences connecting
p and h) from an outside source. For these experiments, we generated alignments
automatically using a very simple dynamic programming algorithm similar to the
Levenshtein string edit distance algorithm (Levenshtein 1966), applied at the token
level. The results from this automatic alignment were then manually reviewed and
corrected.

Table 7.3 shows the results of the evaluation, along with some comparisons. As
a baseline, we show results for a most-common-class classifier, which achieves perfect
recall for the yes class (because it always guesses yes), but mediocre precision and
accuracy (equal to the proportion of yes answers in the test set). A slightly stronger
comparison is provided by a bag-of-words model like the one described in chapter 2.
Relative to the most-common-class classifier, this model achieves lower recall, but
slightly better precision and accuracy. Table 7.3 also shows results from an evaluation
of an earlier version of the NatLog system, reported in (MacCartney and Manning
2007).

The current (2008) version of the NatLog system achieves overall accuracy of over
70%, representing a 27% reduction in error from the 2007 version and a 33% reduction
in error from the baseline. A particularly noteworthy and gratifying result is the high
figure for precision: over 89% for the current system. Errors in which NatLog wrongly
predicts yes have fallen 66% from the 2007 version and 76% from the baseline.

CHAPTER 7. THE NATLOG SYSTEM 144

§ Section # P % R % Acc %
1 Quantifiers 44 95.2 100.0 97.7
2 Plurals 24 90.0 64.3 75.0
3 Anaphora 6 100.0 60.0 50.0
4 Ellipsis 25 100.0 5.3 24.0
5 Adjectives 15 71.4 83.3 80.0
6 Comparatives 16 88.9 88.9 81.3
7 Temporal reference 36 85.7 70.6 58.3
8 Verbs 8 80.0 66.7 62.5
9 Attitudes 9 100.0 83.3 88.9
Sections 1, 2, 5, 6, 9 108 90.4 85.5 87.0
All sections 183 89.3 65.7 70.5

Table 7.4: Performance of NatLog on 183 single-premise FraCaS problems, broken
out by section. The columns show the number of problems, precision and recall for
the yes class, and accuracy.

Not surprisingly, NatLog’s performance varies considerably over the different sec-
tions of the FraCaS test set. Table 7.4 shows results broken down by section. In
the section concerning quantifiers, which is both the largest and the most amenable
to natural logic, all problems but one are answered correctly.5 We also answer all
problems but one correctly in the (admittedly small) section on attitudes, which in-
volves implicatives and factives. As we anticipated, performance is mediocre in four
sections concerning semantic phenomena (anaphora, ellipsis, temporal reference, and
verbs) not relevant to natural logic and not modeled by the system. But in the other
five sections (covering about 60% of the problems), we achieve accuracy of 87%, a
reduction in error of 61% from the 2007 version of the system. What’s more, precision
is high in nearly every section: even outside its areas of expertise, the system rarely
predicts entailment when none exists.

5In fact, the sole exception is disputable, since it hinges on whether many refers to proportion
(apparently, the view held by the FraCaS authors) or absolute quantity.

CHAPTER 7. THE NATLOG SYSTEM 145

guess

gold

yes no unk total
yes 67 4 31 102
no 1 16 4 21

unk 7 7 46 60
total 75 27 81 183

Table 7.5: Confusion matrix for NatLog on the FraCaS test suite (all sections).

7.8.3 Discussion

The confusion matrix shown in table 7.5 reveals an interesting property of the NatLog
system. By far the largest category of confusions are those where the answer is yes

but we guess unk. This reflects both the bias toward yes in the FraCaS data,
and the system’s tendency to predict unk (entailment relation #) when confused:
given the rules for joining entailment relations, the system can predict yes only if all
atomic-level predictions are either @ or ≡.

In fact, almost two-thirds of all errors made by NatLog are cases where NatLog
wrongly predicted unk. As we noted in section 5.6.3, joining a chain of predicted
atomic entailment relations will tend toward a less-informative result (namely, #) if
the chain contains any “noise” in the form of mistaken predictions. Consequently,
NatLog tends to predict # whenever it runs into trouble, and in this sense, unk is
NatLog’s default response.

It may be instructive to examine the remaining categories of errors more closely.
The examples referred to in the following text are shown in figure 7.3.

Gold unk, guess no. There were seven errors in this category, and all involved
cases where a lexical substitution generated the | relation, which was (wrongly) pro-
jected to the top level without change (and any other edits generated ≡ or @). Prob-
lem 277 is representative of these mistakes. (Three other cases are highly similar to
this one, while the remainder are broadly similarly.) The edit sub(1991, 1992) is
correctly predicted to generate lexical entailment relation |; however, NatLog acts as

CHAPTER 7. THE NATLOG SYSTEM 146

§1: Quantifiers

56 p Many British delegates obtained interesting results from the survey.
h Many delegates obtained interesting results from the survey. unk

§2: Plurals

109 p Just one accountant attended the meeting.
h Some accountants attended the meeting. no

§4: Ellipsis

176 p John said Mary wrote a report, and Bill did too.
h John said Bill wrote a report. yes

§5: Adjectives

217 p John is a cleverer politician than Bill.
h John is cleverer than Bill. unk

§7: Temporal reference

277 p Smith lived in Birmingham in 1991.
h Smith lived in Birmingham in 1992. unk

304 p Smith wrote a report for two hours.
h Smith wrote a report. unk

Figure 7.3: Examples of errors made by NatLog on the FraCaS test suite.

CHAPTER 7. THE NATLOG SYSTEM 147

if the verb lived projects | (from a temporal modifier) without change, when in fact
it should project | as #. Note the discrepancy between implementation and theory:
in section 6.2.5, we noted explicitly that most verbs project | as #. True, we also
observed there that verbal constructions which encode functional relations, such as
was born in, do project | as |; however, lived is not such a verb. This type of error
could be corrected without much difficulty.

Gold unk, guess yes. Each of the seven errors in this category involved a deletion
edit for which NatLog rightly predicted lexical entailment relation @, but wrongly
assumed that this relation would be projected without change to the top level. The
sole error made in the section on quantifiers (problem 56) is disputable, since it hinges
on whether the quantifier many refers to proportion (and thus is non-monotone in
its first argument—apparently the view held by the FraCaS authors), or to absolute
quantity (and thus is upward-monotone in its first argument). In this author’s view,
the latter reading is more intuitive, and NatLog’s answer of yes is in fact correct.
The remaining errors in this category involved adjectives, comparatives, and temporal
reference, and are typified by problems 217 and 304.

Gold yes, guess no. All four errors in this category involve ellipsis, and all are
more-or-less hopeless cases for NatLog. Problem 176 is a typical example. The align-
ment used by NatLog in this problem includes the deletion of the second (elliptical)
clause in p, and straightforward linear alignment of the first clause in p to h, including
the edit sub(Mary, Bill). For this edit, NatLog (rightly) predicts the lexical entail-
ment relation |, and consequently produces answer no for the problem. While there
is an alignment which could have led NatLog to the correct answer (namely, the one
which matches each token in h to the equal token in p, and deletes all other tokens in
p), it is unreasonable to expect an aligner to produce it, since that alignment appears
preferable only to one who grasps the phenomenon of ellipsis.

Gold no, guess yes. The sole error in this category was problem 109. NatLog
predicts yes because it (rightly) assigns lexical entailment relation @ to the edit

CHAPTER 7. THE NATLOG SYSTEM 148

sub(one, Some), and because it does not model the restrictive semantics of Just.
Note that yes would be the correct answer if not for the s on accountants in h; thus,
a further reason for NatLog’s mistake is that it systematically (and intentionally)
ignores morphology.

Since the NatLog system was developed with FraCaS problems in mind, these
results do not constitute a proper evaluation on unseen test data. On the other hand,
the system does no training on FraCaS data, and has had no opportunity to learn
its biases. (Otherwise, accuracy on §4 could not fall so far below the baseline.) The
system not only answers most problems correctly, but usually does so for valid reasons,
particular within its areas of expertise. All in all, the results fulfill our main goal in
testing on FraCaS: to demonstrate the representational and inferential adequacy of
our model of natural logic.

7.9 Evaluation on the RTE test suite

Because the FraCaS data set is comparatively small, and because it has not been
used to evaluate other NLI systems, making comparisons difficult, we chose also to
evaluate NatLog using a larger, better known collection of NLI problems from the
PASCAL RTE Challenge, which was introduced in section 1.3.2.

7.9.1 Characteristics of the RTE test suite

The RTE test suites differ from the FraCaS test suite in several important and relevant
ways. (See figure 7.4 for some example problems.) First, the RTE data sets are
much larger. Second, the goal of RTE is binary classification (as in section 5.2.1),
rather than three-way classification. Third, instead of textbook examples of semantic
phenomena, RTE problems are more natural-seeming, and the premises are much
longer than in FraCaS.

Due to the character of RTE problems, we do not expect NatLog to be a good
general-purpose solution to solving all RTE problems. One reason is that most RTE
problems depend on forms of inference, such as paraphrase, temporal reasoning, or

CHAPTER 7. THE NATLOG SYSTEM 149

71 p As leaders gather in Argentina ahead of this weekends regional talks,
Hugo Chávez, Venezuela’s populist president is using an energy windfall
to win friends and promote his vision of 21st-century socialism.

h Hugo Chávez acts as Venezuela’s president. yes

85 p Mr. Fitzgerald revealed he was one of several top officials who told Mr.
Libby in June 2003 that Valerie Plame, wife of the former ambassador
Joseph Wilson, worked for the CIA.

h Joseph Wilson worked for CIA. no

788 p Democrat members of the Ways and Means Committee, where tax bills
are written and advanced, do not have strong small business voting
records.

h Democrat members had strong small business voting records. no

Figure 7.4: Illustrative examples from the RTE3 development set.

relation extraction, which NatLog is not designed to address. Another reason is
that in most RTE problems, the edit distance between p and h is relatively large.
More atomic edits means a greater chance that errors made in lexical entailment
classification or entailment projection will propagate, via entailment joining, to the
system’s final output. (Given the rules for entailment joining, the system can answer
yes to an RTE problem only if all atomic-level predictions are either @ or ≡.) Rather,
in applying NatLog to RTE, we hope to make reliable predictions on a subset of
RTE problems, trading recall for precision. If we succeed, then we may be able to
hybridize with a broad-coverage RTE system to obtain better results than either
system individually—the same strategy that was adopted by Bos and Markert (2006)
for their FOL-based system.

7.9.2 Experiments and results

In order to evaluate NatLog’s effectiveness on RTE problems, we used data from the
RTE3 test suite. In these experiments, we used alignments generated by the alignment
component of the Stanford RTE system (chapter 4) as input to our entailment model.

CHAPTER 7. THE NATLOG SYSTEM 150

System Data % Yes P % R % Acc %

NatLog dev 22.5 73.9 32.4 59.3
test 26.4 70.1 36.1 59.4

Stanford dev 50.3 68.7 67.0 67.3
test 50.0 61.8 60.2 60.5

Hybrid, balanced dev 50.0 70.3 68.2 68.8
test 50.0 65.5 63.9 64.3

Hybrid, optimized dev 56.0 69.2 75.2 70.0
test 54.5 64.5 68.5 64.5

Table 7.6: Performance of various systems on the RTE3 test suite (two-way classi-
fication). The columns show the data set used (development or test, 800 problems
each), the proportion of yes predictions, precision and recall for the yes class, and
accuracy.

Recall that in the Stanford system, an alignment is a map from h words to p words.
An h word can be aligned to any p word, regardless of position; multiple h words can
be aligned to the same p word; and there is no notion of phrase alignments. When
we translate such alignments into the NatLog representation described in section 7.3,
each pair of aligned words generates a sub edit (or, if the words are identical, an
eq edit). Unaligned p words yield del edits, while unaligned h words yield ins

edits. Where possible, contiguous sequences of word-level edits are then collected
into equivalent phrase edits. While the result of this translation method cannot be
interpreted as a conventional edit script (there is no well-defined ordering of edits,
and multiple edits can operate on the same input phrases), we find that this poses no
great impediment to subsequent processing by the entailment model.

The first rows of table 7.6 show the performance of NatLog on RTE3 development
and test sets, as well as the performance of the Stanford RTE system. The overall
accuracy of the NatLog system is not particularly impressive (below 60%), mainly
due to the fact that most RTE problems involve types of inference where natural
logic is of little help. However, relative to the Stanford system, NatLog achieves high
precision on its yes predictions—above 70%—suggesting that combining the NatLog

CHAPTER 7. THE NATLOG SYSTEM 151

and Stanford systems using a hybridization strategy may be effective. For comparison,
the FOL-based system of Bos and Markert (2006) attained a similarly high precision
of 76% on RTE2 problems, but was able to make a positive prediction in only about
4% of cases. NatLog makes positive predictions far more often—in about 25% of
cases. Thus, NatLog achieves six times the coverage of the Bos & Markert system,
with nearly the same precision.

The Stanford system makes yes/no predictions by thresholding a real-valued in-
ference score. To construct a hybrid system, we adjust the Stanford inference scores
by +∆ or −∆, depending on whether or not NatLog predicts yes. We choose ∆

by optimizing development set accuracy, while adjusting the threshold to generate
balanced predictions (that is, equal numbers of yes and no predictions). As an ad-
ditional experiment, we fix ∆ at this value and then adjust the threshold to optimize
development set accuracy, resulting in an excess of yes predictions. (Since this opti-
mization is based solely on development data, its use on test data is fully legitimate.)
Results for these two cases are shown in the last rows of table 7.6. The parameters
tuned on development data were found to yield good performance on test data. The
optimized hybrid system attained an absolute accuracy gain of 4% over the Stanford
system, corresponding to an extra 32 problems answered correctly. This result is
statistically significant (p < 0.05, McNemar’s test, 2-tailed).

7.9.3 Discussion

The gains attributable to NatLog are exemplified by problem 788 (figure 7.4). NatLog
sanctions the deletion of a restrictive modifier and an appositive from the premise,
and recognizes that deleting a negation generates a contradiction; thus it correctly
answers no. On the other hand, there are many RTE problems where NatLog’s
precision works against it. For example, NatLog answers no to problem 71 because
it cannot account for the insertion of acts as in the hypothesis. Fortunately, both the
Stanford system and the hybrid system answer this problem correctly.

Chapter 8

Conclusions

In this dissertation, we have explored a range of approaches to the problem of nat-
ural language inference (NLI): first, the robust, but imprecise, bag-of-words model
(chapter 2), which predicts inferential validity via approximate matching of lexical
content; next, the Stanford RTE system (chapter 4), which preserves the approximate
matching strategy, but seeks to add a bit more precision; and finally, natural logic
(chapters 5 and 6) and the NatLog system (chapter 7), which aims to address the
subset of NLI problems requiring substantially greater semantic precision. We have
also examined the problem of alignment for NLI (chapter 3), which plays a role in
each of these approaches. What have we learned about the problem of NLI, and what
are the most promising directions for future research in this area? This final chapter
seeks to address these questions.

8.1 Contributions of the dissertation

This dissertation has examined the problem of natural language inference from a
number of angles, and we hope to have made important contributions in several
different areas.

In chapter 2, we developed a bag-of-words model for NLI and evaluated it on
several RTE problem sets. While the basic form of the model is not novel, the
specific details of its construction are original. Perhaps our most important finding

152

CHAPTER 8. CONCLUSIONS 153

was the wide variation in the intrinsic difficulty of the various RTE problem sets, as
measured by the yardstick of this very simple model.

In chapter 3, we undertook the first systematic investigation of the problem of
alignment for NLI. We examined the relation between alignment in NLI and in ma-
chine translation (MT), and presented a number of arguments for the unsuitability
of MT aligners to the NLI alignment task. We made the first comparative evalu-
ation of bag-of-words, MT, and NLI aligners on an NLI alignment task. And, we
proposed a new model of alignment for NLI—the MANLI system—and showed that
it significantly outperforms rival approaches, by exploiting external lexical resources
in a supervised learning paradigm, by including contextual features to aid in aligning
function words, and by allowing multi-word phrases to be aligned as units.

In chapter 4, we introduced the Stanford RTE system, which was among the first
NLI systems to make a clear separation between alignment and entailment determi-
nation. This crucial innovation enables the Stanford RTE system to make predictions
of inferential validity which are based, not merely on the degree of alignment, but
also on global features of the aligned 〈p, h〉 pair motivated by semantic theory. The
Stanford RTE system is thereby able to attain substantially greater precision than
simple overlap models such as the bag-of-words model presented in chapter 2.

Seeking still greater precision, we then presented the most important contribution
of the dissertation: a new model of natural logic which extends the monotonicity
calculus of van Benthem and Sánchez-Valencia to incorporate semantic exclusion
and implicativity. We began in chapter 5 by defining an expressive inventory of
entailment relations—the set B of seven basic entailment relations—which includes
representations of both semantic containment and semantic exclusion. We showed
that the relations in B are both mutually exclusive and (if vacuous expressions are
excluded) mutually exhaustive, so that every pair of (non-vacuous) expressions can
be assigned to some relation in B. We also described the algebra of joins for relations
in B, and explained how to compute such joins automatically.

In chapter 6, we introduced the concept of projectivity signatures, which gener-
alizes the concept of monotonicity classes to cover the exclusion relations. We then

CHAPTER 8. CONCLUSIONS 154

described a general method for determining the entailment relation between two sen-
tences p and h, by (1) finding a sequence of atomic edits which transforms p into h;
(2) predicting a lexical entailment relation for each edit; (3) propagating the lexical
entailment relation generated by each edit upward through the semantic composition
tree of the sentence to which the edit is applied, according to the projectivity signa-
tures of intermediate nodes; and (4) joining the resulting entailment relations across
the edit sequence. And, we showed how to provide a unified account of inferences
involving implicatives and non-factives under the same framework.

Finally, in chapter 7, we described the NatLog system, the first robust, general-
purpose system for natural logic inference over real English sentences. NatLog con-
tains two key innovations: (1) it learns to predict lexical entailment relations by using
machine learning techniques and exploiting a variety of manually and automatically
constructed sources of information on lexical relations; and (2) it identifies expres-
sions with non-default projectivity and computes the likely extent of their arguments
in a syntactic parse using hand-crafted tree patterns. We demonstrated the practical
value of the NatLog system in evaluations on the FraCaS and RTE test suites. On
the FraCaS test suite, we showed NatLog attained high accuracy on most sections
(excluding sections not relevant to natural logic, such as ellipsis), and high precision
on all sections. On the RTE test suite, we showed that adding NatLog as a component
in the broad-coverage Stanford RTE system led to substantial accuracy gains.

In addition to these specific contributions just outlined, we hope to have achieved
something greater through this program of research: namely, to have shown that nat-
ural logic, far from being merely a formal plaything of logicians and semanticists, has
relevance and applicability to the real-world challenges of open-domain NLI, and con-
sequently constitutes a topic ripe for the attention of NLP researchers. And indeed,
there are indications that our work in this area has begun to catalyze related work
by other investigators. For example, Schoenmackers et al. (2008) built on our work
on inferences involving monotonicity in their exploration of scaling textual inference
to the web, while Danescu-Niculescu-Mizil et al. (2009) were motivated by our model
of natural logic to seek methods for unsupervised discovery of downward-entailing
operators.

CHAPTER 8. CONCLUSIONS 155

8.2 The future of natural language inference

What does the future hold for research on natural language inference? One of the most
important learnings to emerge from work in this area is that the kinds of inference
covered by the NLI task are too diverse for any single approach to provide a complete
solution. Consider, for example, the following inference:

p The First Family’s flight to Paris left Washington at 11am
and lasted six hours.

h The First Lady was not in France at 2pm.

While h is not a strict logical consequence of p, most people would not hesitate to
accept that h follows from p, and thus the inference is valid by the definition of the
NLI task. And the reasoning involved is straightforward—one need not possess the
deductive genius of Sherlock Holmes to arrive at h. And yet recognizing the validity
of the inference depends on several different kinds of expertise: first, the knowledge
that the First Lady is a member of the First Family, and that Paris is in France; next,
the capacity to handle inferences involving containment and negation; moreover, the
ability to perform simple clock arithmetic; and finally, an aptitude for basic spatial
reasoning. In short, there is no silver bullet.

So, going forward, we’ll need to look at ways to combine different kinds of rea-
soners, with different areas of expertise—including not only models based on lexical
overlap (such as the bag-of-words model presented in chapter 2) and models of natural
logic (like NatLog), but also reasoners with specialized expertise in temporal, spatial,
and mathematical reasoning; systems which excel in relation extraction; and systems
with a facility for commonsense reasoning. Now, some of these components are closer
to reality than others, but even if we were satisfied with each of the individual com-
ponents, the key question is, how can we combine them to best advantage? Should
we apply each one independently, and then aggregate their results? What sort of
aggregation function should we use? Or, can we devise an architecture in which these
heterogeneous reasoners collaborate in a more fine-grained way, each contributing in-
dividual steps to an overall proof? These difficult questions will undoubtedly keep
the NLI research community busy for many years.

Bibliography

Adams, Rod. 2006. Textual Entailment Through Extended Lexical Overlap. In
Proceedings of the Second PASCAL Challenges Workshop on Recognizing Textual
Entailment.

Akhmatova, Elena. 2005. Textual entailment resolution via atomic propositions. In
Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entail-
ment.

Bar-Haim, Roy, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. 2006. The Second PASCAL Recognising Textual
Entailment Challenge. In Proceedings of the Second PASCAL Challenges Workshop
on Recognising Textual Entailment, pp. 1–9.

Bar-Haim, Roy, Ido Dagan, Iddo Greental, and Eyal Shnarch. 2007. Semantic Infer-
ence at the Lexical-Syntactic Level. In Proceedings of AAAI-07.

Bos, Johan, and Katja Markert. 2005a. Combining shallow and deep NLP meth-
ods for recognizing textual entailment. In Proceedings of the PASCAL Challenges
Workshop on Recognizing Textual Entailment, pp. 65–68.

Bos, Johan, and Katja Markert. 2005b. Recognising Textual Entailment with Logical
Inference. In Proceedings of EMNLP-05.

Bos, Johan, and Katja Markert. 2006. When logical inference helps determining
textual entailment (and when it doesn’t). In Proceedings of the Second PASCAL
Challenges Workshop on Recognizing Textual Entailment.

156

BIBLIOGRAPHY 157

Böttner, Michael. 1988. A note on existential import. Studia Logica 47(1):35–40.

Brockett, Chris. 2007. Aligning the RTE 2006 Corpus. Technical Report MSR-TR-
2007-77, Microsoft Research. url: ftp://ftp.research.microsoft.com/pub/

tr/TR-2007-77.pdf.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter
Estimation. Computational Linguistics 19(2):263–311.

Callison-Burch, Chris, Miles Osborne, and Philipp Koehn. 2006. Re-evaluating the
Role of BLEU in Machine Translation Research. In Proceedings of EACL-06, pp.
249–256.

Chambers, Nathanael, Daniel Cer, Trond Grenager, David Hall, Chloe Kiddon, Bill
MacCartney, Marie-Catherine de Marneffe, Daniel Ramage, Eric Yeh, and Christo-
pher D. Manning. 2007. Learning Alignments and Leveraging Natural Logic. In
ACL-07 Workshop on Textual Entailment and Paraphrasing.

Chomsky, Noam. 1975. Questions of form and interpretation. Linguistic Analysis 1:
75–109.

Collins, Michael. 2002. Discriminative titleing methods for hidden Markov models.
In Proceedings of EMNLP-02, pp. 1–8.

Collins, Michael. 2003. Head-Driven Statistical Models for Natural Language Parsing.
Computational Linguistics 29(4):589–637.

Condoravdi, Cleo, Dick Crouch, Valeria de Paiva, Reinhard Stolle, and Daniel G.
Bobrow. 2003. Entailment, Intensionality and Text Understanding. Proceedings of
the HLT-NAACL 2003 Workshop on Text Meaning pp. 38–45.

Cooper, Robin, et al. 1996. Using the framework. Technical Report LRE 62-051
D-16, The FraCaS Consortium. url: http://www.cogsci.ed.ac.uk/~fracas/.

BIBLIOGRAPHY 158

Crouch, Dick, Roser Saurí, and Abraham Fowler. 2005. AQUAINT Pilot Knowledge-
Based Evaluation: Annotation Guidelines. Technical report, Palo Alto Research
Center. url: http://www2.parc.com/istl/groups/nltt/papers/aquaint_kb_

pilot_evaluation_guide.pdf.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2005. The PASCAL Recognising
Textual Entailment Challenge. In Proceedings of the PASCAL Challenges Workshop
on Recognising Textual Entailment.

Danescu-Niculescu-Mizil, Cristian, Lillian Lee, and Richard Ducott. 2009. Without a
‘doubt’? Unsupervised discovery of downward-entailing operators. In Proceedings
of NAACL-HL-09.

Dang, Hoa Trang, and Danilo Giampiccolo. 2008. The TAC 2008 Recognizing Textual
Entailment (RTE) Track. url: http://www.nist.gov/tac/tracks/2008/rte/.

Das, Dipanjan, and André F. T. Martins. 2007. A Survey on Automatic Text Summa-
rization. url: http://www.cs.cmu.edu/~nasmith/LS2/das-martins.07.pdf.

de Marneffe, Marie-Catherine, Bill MacCartney, and Christopher D. Manning. 2006.
Generating typed dependency parses from phrase structure parses. In Proceedings
of LREC-2006.

de Marneffe, Marie-Catherine, Sebastian Padó, and Christopher D. Manning. 2009.
Multi-word expressions in textual entailment: Much ado about nothing? In Pro-
ceedings of the ACL/IJCNLP 2009 Workshop on Applied Textual Inference (Tex-
tInfer 2009).

de Marneffe, Marie-Catherine, Anna Rafferty, and Christopher D. Manning. 2008.
Finding contradictions in text. In Proceedings of ACL-08.

de Salvo Braz, Rodrigo, Roxana Girju, Vasin Punyakanok, Dan Roth, and Mark Sam-
mons. 2005. An inference model for semantic entailment and question-answering. In
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI),
pp. 1678–1679.

BIBLIOGRAPHY 159

DeNero, John, Dan Gillick, James Zhang, and Dan Klein. 2006. Why Generative
Phrase Models Underperform Surface Heuristics. In Proceedings of the ACL-06
Workshop on Statistical Machine Translation, pp. 31–38.

Dolan, Bill, Chris Quirk, and Chris Brockett. 2004. Unsupervised construction of
large paraphrase corpora. In Proceedings of COLING-04.

Fellbaum, Christiane, et al. 1998. WordNet: an electronic lexical database. Cambridge,
Mass: MIT Press.

Finkel, Jenny Rose, Trond Grenager, and Christopher D. Manning. 2005. Incorporat-
ing Non-local Information into Information Extraction Systems by Gibbs Sampling.
In Proceedings of ACL-05, pp. 363–370.

Fowler, Abraham, Bob Hauser, Daniel Hodges, Ian Niles, Adrian Novischi, and Jens
Stephan. 2005. Applying COGEX to recognize textual entailment. In Proceedings
of the PASCAL Challenges Workshop on Recognising Textual Entailment.

Fraser, Alexander, and Daniel Marcu. 2007. Measuring Word Alignment Quality for
Statistical Machine Translation. Computational Linguistics 33(3):293–303.

Fyodorov, Yaroslav, Yoad Winter, and Nissim Francez. 2000. A Natural Logic Infer-
ence System. In Proceedings of the 2nd Workshop on Inference in Computational
Semantics (ICoS-2).

Giampiccolo, Danilo, Hoa Trang Dang, Bernardo Magnini, Ido Dagan, and Bill Dolan.
2008. The Fourth PASCAL Recognizing Textual Entailment Challenge. In Pro-
ceedings of the TAC-08 Text Analysis Conference.

Giampiccolo, Danilo, Bernardo Magnini, Ido Dagan, and Bill Dolan. 2007. The Third
PASCAL Recognizing Textual Entailment Challenge. In Proceedings of the ACL-07
Workshop on Textual Entailment and Paraphrasing.

Glickman, Oren, Ido Dagan, and Moshe Koppel. 2005. Web based probabilistic
textual entailment. In Proceedings of the PASCAL Challenges Workshop on Rec-
ognizing Textual Entailment.

BIBLIOGRAPHY 160

Grice, H. Paul. 1975. Logic and conversation. Syntax and Semantics 3:41–58.

Haghighi, Aria, Andrew Ng, and Christopher D. Manning. 2005. Robust textual in-
ference via graph matching. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP-05).

Harabagiu, Sanda, and Andrew Hickl. 2006. Methods for Using Textual Entailment
in Open-Domain Question Answering. In Proceedings of ACL-06, volume 44, p.
905.

Harabagiu, Sanda, Andrew Hickl, and Finley Lacatusu. 2006. Negation, Contrast,
and Contradiction in Text Processing. Proceedings of AAAI-06.

Harmeling, Stefan. 2007. An extensible probabilistic transformation-based approach
to the Third Recognizing Textual Entailment Challenge. In ACL-07 Workshop on
Textual Entailment and Paraphrasing.

Hickl, Andrew, and Jeremy Bensley. 2007. A Discourse Commitment-Based Frame-
work for Recognizing Textual Entailment. In ACL-07 Workshop on Textual Entail-
ment and Paraphrasing.

Hickl, Andrew, John Williams, Jeremy Bensley, Kirk Roberts, Bryan Rink, and Ying
Shi. 2006. Recognizing Textual Entailment with LCC’s GROUNDHOG System. In
Proceedings of the Second PASCAL Challenges Workshop on Recognizing Textual
Entailment.

Hobbs, Jerry R., Mark Stickel, Paul Martin, and Douglas D. Edwards. 1988. Inter-
pretation as abduction. In Proceedings of ACL-88, pp. 95–103.

Jiang, Jay J., and David W. Conrath. 1997. Semantic similarity based on corpus
statistics and lexical taxonomy. In Proceedings of the International Conference on
Research in Computational Linguistics.

Jijkoun, Valentin, and Maarten de Rijke. 2005. Recognizing textual entailment
using lexical similarity. In Proceedings of the PASCAL Challenges Workshop on
Recognizing Textual Entailment, pp. 73–76.

BIBLIOGRAPHY 161

Karttunen, Lauri. 1971. Implicative verbs. Language 47(2):340–358.

Klein, Dan, and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In
Proceedings of ACL-03.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-
erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,
Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine translation. In Proceedings of ACL-07,
demonstration session.

Lacatusu, Finley, Andrew Hickl, Kirk Roberts, Ying Shi, Jeremy Bensley, Bryan
Rink, Patrick Wang, and Lara Taylor. 2006. LCC’s GISTexter at DUC 2006:
Multi-Strategy Multi-Document Summarization. In Proceedings of DUC-06.

Lakoff, George. 1970. Linguistics and natural logic. Synthese 22:151–271.

Landauer, Thomas K., and Susan T. Dumais. 1997. A solution to Plato’s problem:
The Latent Semantic Analysis theory of the acquisition, induction and representa-
tion of knowledge. Psychological Review 104(2):211–240.

Levenshtein, Vladimir I. 1966. Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals. Soviet Physics Doklady 10:707.

Levy, Roger, and Galen Andrew. 2006. Tregex and Tsurgeon: tools for querying
and manipulating tree data structures. In Proceedings of LREC-06. url: http:

//nlp.stanford.edu/software/tregex.shtml.

Liang, Percy, Ben Taskar, and Dan Klein. 2006. Alignment by Agreement. In Pro-
ceedings of NAACL-06. url: http://www.cs.berkeley.edu/~pliang/papers/

alignment-naacl2006.pdf.

Lin, Dekang. 1998. Automatic retrieval and clustering of similar words. In Proceedings
of COLING/ACL-98, pp. 768–774.

BIBLIOGRAPHY 162

MacCartney, Bill, Michel Galley, and Christopher D. Manning. 2008. A phrase-based
alignment model for natural language inference. In Proceedings of EMNLP-08.

MacCartney, Bill, Trond Grenager, Marie-Catherine de Marneffe, Daniel Cer, and
Christopher D. Manning. 2006. Learning to Recognize Features of Valid Textual
Entailments. In Proceedings of NAACL-06.

MacCartney, Bill, and Christopher D. Manning. 2007. Natural logic for textual
inference. In ACL-07 Workshop on Textual Entailment and Paraphrasing.

MacCartney, Bill, and Christopher D. Manning. 2008. Modeling semantic contain-
ment and exclusion in natural language inference. In Proceedings of the 22nd In-
ternational Conference on Computational Linguistics (Coling-08).

MacCartney, Bill, and Christopher D. Manning. 2009. An extended model of natural
logic. In Proceedings of the Eighth International Conference on Computational
Semantics (IWCS-8).

Malakasiotis, Prodromos, and Ion Androutsopoulos. 2007. Learning Textual En-
tailment using SVMs and String Similarity Measures. In Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 42–47.

Marcu, Daniel, and William Wong. 2002. A phrase-based, joint probability model
for statistical machine translation. In Proceedings of EMNLP-02, pp. 133–139.

Marsi, Erwin, and Emiel Krahmer. 2005. Classification of semantic relations by
humans and machines. In ACL-05 Workshop on Empirical Modeling of Semantic
Equivalence and Entailment.

McCallum, Andrew, and Wei Li. 2003. Early results for named entity recognition
with conditional random fields, feature induction and web-enhanced lexicons. In
Proceedings of CoNLL-2003.

Meyers, Adam, et al. 2004. The NomBank project: An interim report. In HLT-
NAACL 2004 Workshop: Frontiers in Corpus Annotation, pp. 24–31.

BIBLIOGRAPHY 163

Minnen, Guido, John Carroll, and Darren Pearce. 2001. Applied morphological
processing of English. Natural Language Engineering 7(3):207–223.

Moldovan, Dan, Christine Clark, Sanda Harabagiu, and Steve Maiorano. 2003. CO-
GEX: A logic prover for question answering. In Proceedings of NAACL-2003.

Nairn, Rowan, Cleo Condoravdi, and Lauri Karttunen. 2006. Computing relative
polarity for textual inference. In Proceedings of ICoS-5 (Inference in Computational
Semantics).

Och, Franz Josef, and Hermann Ney. 2003. A Systematic Comparison of Various
Statistical Alignment Models. Computational Linguistics 29(1):19–51.

Padó, Sebastian, Marie-Catherine de Marneffe, Bill MacCartney, Anna Rafferty, Eric
Yeh, and Christopher D. Manning. 2008. Deciding entailment and contradiction
with stochastic and edit distance-based alignment. In Proceedings of the Text Anal-
ysis Conference (TAC-2008).

Padó, Sebastian, Michel Galley, Dan Jurafsky, and Christopher D. Manning. 2009.
Robust machine translation evaluation with entailment features. In Proceedings of
ACL-09.

Raina, Rajat, Andrew Ng, and Christopher D. Manning. 2005. Robust textual
inference via learning and abductive reasoning. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI).

Ritter, Alan, Doug Downey, Stephen Soderland, and Oren Etzioni. 2008. It’s a
Contradiction—No, it’s Not: A Case Study using Functional Relations. In Pro-
ceedings of EMNLP-08.

Romano, Lorenza, Milen Kouylekov, Idan Szpektor, Ido Dagan, and Alberto Lavelli.
2006. Investigating a generic paraphrase-based approach for relation extraction. In
Proceedings of EACL 2006.

Sánchez Valencia, Victor. 1991. Studies on Natural Logic and Categorial Grammar.
PhD thesis, University of Amsterdam.

BIBLIOGRAPHY 164

Sánchez Valencia, Victor. 1995. Parsing-driven inference: Natural logic. Linguistic
Analysis 25:258–285.

Schoenmackers, Stefan, Oren Etzioni, and Daniel S. Weld. 2008. Scaling Textual
Inference to the Web. In Proceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing (EMNLP-08), pp. 79–88.

Stalnaker, Robert. 1968. A theory of conditionals. Studies in Logical Theory 2:
98–122.

Stalnaker, Robert. 1992. Notes on conditional semantics. In Proceedings of the 4th
Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 316–327.

Sukkarieh, Jana Z. 2001. Quasi-NL Knowledge Representation for Structurally-Based
Inferences. In Proceedings of the 3rd Workshop on Inference in Computational
Semantics (ICoS-3).

Sukkarieh, Jana Z. 2003. An expressive efficient representation: Bridging a gap
between NLP and KR. In Proc. of the 7th International Conference on Knowledge-
Based Intelligent Information and Engineering Systems, pp. 800–815.

Tatu, Marta, and Dan Moldovan. 2005. A semantic approach to recognizing textual
entailment. In Proceedings of HLT/EMNLP 2005, pp. 371–378.

Tatu, Marta, and Dan Moldovan. 2007. COGEX at RTE3. In Proceedings of ACL-07.

van Benthem, Johan. 1988. The semantics of variety in categorial grammars. In
J.V.B.W. Buszkowski and W. Marciszewski (eds.), Categorial grammar, pp. 33–55.
John Benjamins.

van Benthem, Johan. 1991. Language in action: categories, lambdas and dynamic
logic. Studies in Logic 130.

van Benthem, Johan. 2008. A brief history of natural logic. Technical Report PP-
2008-05, Institute for Logic, Language & Computation. url: http://www.illc.

uva.nl/Publications/ResearchReports/PP-2008-05.text.pdf.

BIBLIOGRAPHY 165

van der Sandt, Rob A. 1992. Presupposition projection as anaphora resolution.
Journal of Semantics 9(4):333–377. url: http://jos.oxfordjournals.org/cgi/

content/abstract/9/4/333.

van Eijck, Jan. 2005. Natural logic for natural language. url: http://homepages.

cwi.nl/~jve/papers/05/nlnl/NLNL.pdf.

Vogel, Stephan, Hermann Ney, and Christoph Tillmann. 1996. HMM-based word
alignment in statistical translation. In Proceedings of COLING-96, pp. 836–841.

Voorhees, Ellen. 2008. Contradictions and justifications: Extensions to the textual
entailment task. In Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics.

Witten, Ian H., and Eibe Frank. 2005. Data Mining: Practical machine learning tools
and techniques, 2nd edition. Morgan Kaufmann.

Zanzotto, F.M., A. Moschitti, M. Pennacchiotti, and M.T. Pazienza. 2006. Learning
textual entailment from examples. In Proceedings of the Second PASCAL Chal-
lenges Workshop on Recognising Textual Entailment.

