
Sequence-to-sequence
Models

CIS 530, Computational Linguistics: Spring 2018

John Hewitt & Reno Kriz
University of Pennsylvania

Some concepts drawn a bit transparently from Graham Neubig’s excellent

Neural Machine Translation and Sequence-to-sequence Models: A Tutorial
https://arxiv.org/pdf/1703.01619.pdf

Deep learning! Now even deeper!

We’ve already seen RNNs for language modeling

The memory
vector, or “state” .

Only

We’ve already seen RNNs for language modeling

The “word vector”
representation of
the word.

The RNN function,
which combines
the word vector
and the previous
state to create a
new state.

The memory
vector, or “state” .

Only use

We’ve already seen RNNs for language modeling

The “word vector”
representation of
the word.

The RNN function,
which combines
the word vector
and the previous
state to create a
new state.

The memory
vector, or “state” .

Only use neural

We’ve already seen RNNs for language modeling

The “word vector”
representation of
the word.

The RNN function,
which combines
the word vector
and the previous
state to create a
new state.

The memory
vector, or “state” .

Only use neural nets

We’ve already seen RNNs for language modeling

Only use neural nets The “word vector”
representation of
the word.

The RNN function,
which combines
the word vector
and the previous
state to create a
new state.

The memory
vector, or “state” .

How does the RNN function work?
The RNN function takes the current RNN state and a word vector and produces a
subsequent RNN state that “encodes” the sentence so far.

RNN
function

:= + +

Learned weights representing how to combine past
information (the RNN memory) and current information (the
new word vector.)

1 2 3

How does the prediction function work?
We’ve seen how RNNs “encode” word sequences. But how do they produce
probability distributions over a vocabulary?

Only use neural

softmax() =

A probability distribution over the vocab, constructed from the
RNN memory and 1 last transformation (in green.) The
softmax function turns “scores” into a probability distribution.

4

Want to predict things other than the next word?
The model architecture (read: “design”) we’ve seen so far is frequently used in
tasks other than language modeling, because modeling sequential information is
useful in language, apparently.

Only use neural nets
Here’s our RNN
encoder,
representing the
sentence.

Want to predict things other than the next word?
The model architecture (read: “design”) we’ve seen so far is frequently used in
tasks other than language modeling, because modeling sequential information is
useful in language, apparently.

Only use neural nets

ADV VB ADJ NNS

Predict
parts of
speech!

Want to predict things other than the next word?
The model architecture (read: “design”) we’ve seen so far is frequently used in
tasks other than language modeling, because modeling sequential information is
useful in language, apparently.

Only use neural nets

ADV VB ADJ NNS

Or syntax!

General idea: build a representation
The method of building the representation is called an Encoder and is frequently
an RNN.

Only use neural nets

Each memory vector in the encoder attempts to represent the sentence so far, but
mostly represents the word most recently input.

General idea: generate the output one token at a time
The model that takes the encoded representation and generates the output is
called the Decoder, and, errrr, is also generally an RNN.

Only use neural nets

Jiri

General idea: generate the output one token at a time
The model that takes the encoded representation and generates the output is
called the Decoder, and, errrr, is also generally an RNN.

Only use neural nets

Jiri naanị

General idea: generate the output one token at a time
The model that takes the encoded representation and generates the output is
called the Decoder, and, errrr, is also generally an RNN.

Only use neural nets

Jiri naanị netwọk

General idea: generate the output one token at a time
The model that takes the encoded representation and generates the output is
called the Decoder, and, errrr, is also generally an RNN.

Only use neural nets

Jiri naanị netwọk nụ

General idea: generate the output one token at a time
The model that takes the encoded representation and generates the output is
called the Decoder, and, errrr, is also generally an RNN.

Only use neural nets

Jiri naanị netwọk nụ

Encoder (seq)

Decoder (2seq)

How is it trained?
In practice, training for a single sentence is done by “forcing” the decoder to generate gold
sequences, and penalizing it for assigning the sequence a low probability. Losses for each
token in the sequence are summed. Then, the summed loss is used to take a step in the right
direction in all model parameters (including word embeddings!) (stochastic gradient descent.)

neural nets

P(Jiri|encoder) = .7
P(naanị|encoder) = .15
P(netwọk|encoder) = .1
P(nụ|encoder) = .5

How is it trained?
In practice, training for a single sentence is done by “forcing” the decoder to generate gold
sequences, and penalizing it for assigning the sequence a low probability. Losses for each
token in the sequence are summed. Then, the summed loss is used to take a step in the right
direction in all model parameters (including word embeddings!) (stochastic gradient descent.)

neural nets

P(Jiri|encoder) = .7
P(naanị|encoder) = .15
P(netwọk|encoder) = .1
P(nụ|encoder) = .5

Jir
i

na
an

ị

ne
tw

ọk nụ

.7

How is it formalized? How is it trained?
In practice, training for a single sentence is done by “forcing” the decoder to generate gold
sequences, and penalizing it for assigning the sequence a low probability. Losses for each
token in the sequence are summed. Then, the summed loss is used to take a step in the right
direction in all model parameters (including word embeddings!) (stochastic gradient descent.)

neural nets

P(Jiri|encoder) = .7
P(naanị|encoder) = .15
P(netwọk|encoder) = .1
P(nụ|encoder) = .5

JiriGOLD:
Loss

-log(.7)

Jir
i

na
an

ị

ne
tw

ọk nụ

.7

Sentence-level training
Almost all such networks are trained using cross-entropy loss. At each step, the network
produces a probability distribution over possible next tokens. This distribution is
penalized from being different from the true distribution (e.g., a probability of 1 on the
actual next token.)

-log(.7)
Jiri

1

0

Sentence-level training
Almost all such networks are trained using cross-entropy loss. At each step, the network
produces a probability distribution over possible next tokens. This distribution is
penalized from being different from the true distribution (e.g., a probability of 1 on the
actual next token.)

-log(.7)
Jiri naanị

1

0

-log(.5)

Sentence-level training
Almost all such networks are trained using cross-entropy loss. At each step, the network
produces a probability distribution over possible next tokens. This distribution is
penalized from being different from the true distribution (e.g., a probability of 1 on the
actual next token.)

-log(.7)
Jiri naanị netwọk nụ

1

0

-log(.5) -log(.6) -log(.4)

Sentence-level training
Almost all such networks are trained using cross-entropy loss. At each step, the network
produces a probability distribution over possible next tokens. This distribution is
penalized from being different from the true distribution (e.g., a probability of 1 on the
actual next token.)

-log(.7)
Jiri naanị netwọk nụ

1

0

-log(.5) -log(.6) -log(.4)sum() = 1.07
Minimize
This!

How is it formalized?
Let ht be the RNN hidden state at timestep t:

How is it formalized?
Let ht be the RNN hidden state at timestep t:

Let xt be the input vector at timestep t:

How is it formalized?
Let ht be the RNN hidden state at timestep t:

Let xt be the input vector at timestep t:

The RNN equation posits 2 matrices and 1 vector as parameters:

Whx integrates input vector information.

How is it formalized?
Let ht be the RNN hidden state at timestep t:

Let xt be the input vector at timestep t:

The RNN equation posits 2 matrices and 1 vector as parameters:

Whx integrates input vector information.

Whh integrates information from the previous timestep.

How is it formalized?
Let ht be the RNN hidden state at timestep t:

Let xt be the input vector at timestep t:

The RNN equation posits 2 matrices and 1 vector as parameters:

Whx integrates input vector information.

Whh integrates information from the previous timestep.

bh is a bias term. (What function does this perform?)

How is it formalized?
Let ht be the RNN hidden state at timestep t:

Let xt be the input vector at timestep t:

The RNN equation posits 2 matrices and 1 vector as parameters:

Whx integrates input vector information.

Whh integrates information from the previous timestep.

bh is a bias term. (What function does this perform?)

The RNN equation is: ht = tanh(Whxxt + Whhht−1 + bh)

How is it formalized?
For prediction, we take the current hidden state, and use it as features in what is
more or less a linear regression.

Glossing over this slide is totally reasonable. Also feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

How is it formalized?
For prediction, we take the current hidden state, and use it as features in what is
more or less a linear regression.

Let dt be our decision (e.g., word, POS tag) at timestep t. Let D be the set of all
possible decisions. Let st-1 be the most recent decoder hidden state.

Glossing over this slide is totally reasonable. Also feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

How is it formalized?
For prediction, we take the current hidden state, and use it as features in what is
more or less a linear regression.

Let dt be our decision (e.g., word, POS tag) at timestep t. Let D be the set of all
possible decisions. Let st-1 be the most recent decoder hidden state.

dt = argmaxd’ ∈ D p(d’ | x1:n,d1:t-1)

Glossing over this slide is totally reasonable. Also feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

How is it formalized?
For prediction, we take the current hidden state, and use it as features in what is
more or less a linear regression.

Let dt be our decision (e.g., word, POS tag) at timestep t. Let D be the set of all
possible decisions. Let st-1 be the most recent decoder hidden state.

dt = argmaxd’ ∈ D p(d’ | x1:n,d1:t-1)

p(* | x1:n,d1:t-1) = softmaxD(WDhst-1+bD)

Glossing over this slide is totally reasonable. Also feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

How is it formalized?
For prediction, we take the current hidden state, and use it as features in what is
more or less a linear regression.

Let dt be our decision (e.g., word, POS tag) at timestep t. Let D be the set of all
possible decisions. Let st-1 be the most recent decoder hidden state.

dt = argmaxd’ ∈ D p(d’ | x1:n,d1:t-1)

p(* | x1:n,d1:t-1) = softmaxD(WDhst-1+bD)

Note that WhDst-1+bD produces a vector of scores. The softmax function
normalizes scores to a probability distribution by exponentiating each dimension,
and normalizing by the sum. For some choice k of K, p(k) = escore(k)/ ∑k’ ∈ K escore(k’)

Glossing over this slide is totally reasonable. Also feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

The information bottleneck and latent structure

Only use neural nets

Jiri naanị netwọk nụ

Given the diagram below, what problem do you foresee when translating
progressively longer sentences?

The information bottleneck and latent structure

Only use neural nets

Encoder (seq)

We are trying to encode variable-length structure (e.g., variable-length sentences)
in a fixed-length memory (e.g., only the 300 dimensions of your hidden state.)

The last encoder hidden state is the
bottleneck -- all information in the
source sentence must pass through it
to get to the decoder.

Finding a solution to this problem was
the final advance that made neural
MT competitive with previous
approaches.

The information bottleneck and latent structure

Only use neural nets

Jiri naanị netwọk nụ

The key insight is related to the word alignment work we did last week. We allow
the decoder to look at any encoder state, and let it learn which are important at

each time step!

Learning to pay attention

Jiri

Step 1: Take the decoder state, and compute an affinity αi with all encoder states.

Attention summarizes the encoder,
focusing on specific parts/words.

α4
α3α2α1α0

The affinity function, , is a
dot product, or something
similar.

: = αi

Learning to pay attention

Jiri

Step 1: Take the decoder state, and compute an affinity αi with all encoder states.

Attention summarizes the encoder,
focusing on specific parts/words.

α4
α3α2α1α0

Learning to pay attention

Jiri

Step 2: Normalize the scores to sum to 1 by the softmax function.

Attention summarizes the encoder,
focusing on specific parts/words.

α4
α3α2α1α0

softmax

Learning to pay attention

Jiri

Step 2: Normalize the scores to sum to 1 by the softmax function.

Attention summarizes the encoder,
focusing on specific parts/words.

α4
α3α2α1α0

softmax
a4

a3a2a1a0 Note that ∑i=1,2,3,4ai = 1

Learning to pay attention

Jiri

Step 3: Average the encoder states, weighted by the a distribution.

Attention summarizes the encoder,
focusing on specific parts/words.

a4a3a2a1a0 1 1 1 1 1

This weighted average

Is called the context
vector.

Focus of context vector over encoder states

Learning to pay attention

Jiri

Step 3: Average the encoder states, weighted by the a distribution.

Attention summarizes the encoder,
focusing on specific parts/words.

In this example, since “Jiri”
means “use”, the attention
will focus on the vectors
around “use”.

Only use neural nets

Learning to pay attention
Step 4: Use the context vector at prediction, concatenating it to the decoder state.

Attention summarizes the encoder,
focusing on specific parts/words.

softmax() =

This vector has the current decoder information, , but also a
focused summary of the encoder, .

4

Jiri

Probability distribution
over the vocabulary

Attention Formalization
Attention computes the affinity between the decoder state and all encoder
states.There are many affinity computation methods, but they’re all like a dot
product.

Let there are n encoder states. The affinity between encoder state i and the
decoder state is αi. The encoder states are h1:n, and the decoder state is st-1.

Let αi = f(hi, st-1) = hi
Tst-1

Let weights a = softmax(α).

Let the context c = ∑i=1:nhiai. (Note that this is a weighted average.)

Glossing over this slide is totally reasonable. Feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

Attention Formalization
Attention is used at prediction as extra information in the final prediction.

Reminder, we let the context c = ∑i=1:nhiai. (Weighted average of encoder states.)

Glossing over this slide is totally reasonable. Feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

Attention Formalization
Attention is used at prediction as extra information in the final prediction.

Reminder, we let the context c = ∑i=1:nhiai. (Weighted average of encoder states.)

Let the notation [s;c] mean the concatenation of vectors s and c.

dt = argmaxd’ ∈ D p(d’ | x1:n,d1:t-1)

(same as before, without attention)

Glossing over this slide is totally reasonable. Feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

Attention Formalization
Attention is used at prediction as extra information in the final prediction.

Reminder, we let the context c = ∑i=1:nhiai. (Weighted average of encoder states.)

Let the notation [s;c] mean the concatenation of vectors s and c.

dt = argmaxd’ ∈ D p(d’ | x1:n,d1:t-1)

p(* | x1:n,d1:t-1) = softmaxD(WD(2h)[st-1;c]+bD)

So, the only difference is that the final prediction uses the context vector
concatenated to the decoder state to make the prediction.

Glossing over this slide is totally reasonable. Feel free to
check your phone, ping your Bitcoin investment, see if your
The Boring Company® (Not a) Flamethrower has shipped.

Empirical considerations
There are a lot of “hyperparameter” choices that can greatly affect the quality of
your model. In short, take parameters from papers/tutorials, and grid search
(try many combinations of parameters) around them.

RNN variants: LSTMs have a different (much better) recurrent equation.

Hidden state sizes: larger: more memory! Requires more data.

Embedding sizes: more representation power! Requires more data.

Learning rate: the step size you take in learning your parameters! Start this
“large”, and cut it in half when your training stops improving development set
performance.

Empirical considerations
There are a lot of “hyperparameter” choices that can greatly affect the quality of
your model. In short, take parameters from papers/tutorials, and grid search
(try many combinations of parameters) around them.

Regularization: “dropout” prevents overfitting by making each node in your
hidden state unavailable for an observation with a given probability. Try
some values around .2 to .3.

Batch size: The number of observations to group together before performing a
parameter update step. Larger batches: less fine-grained training, many more
observations per minute, especially on GPU.

Case study: text simplification
Text simplification is the process in which a text is transformed into an equivalent
text that can be more easily read by a broader audience (Saggion, 2017).

Simplification can be used as a preprocessing tool for improving performance of
many NLP end-tasks such as parsing, SRL, summarization, Information Retrieval etc.

Case study: text simplification
Text simplification is the process in which a text is transformed into an equivalent
text that can be more easily read by a broader audience (Saggion, 2017).

Simplification can be used as a preprocessing tool for improving performance of
many NLP end-tasks such as parsing, SRL, summarization, Information Retrieval etc.

“There’s just one major hitch: the primary purpose of education is to develop
citizens with a wide variety of skills.”

“The purpose of education is to develop many skills.”

Case study: text simplification

Text simplification can be thought of in part as monolingual machine translation.

Problem: The most common rewrite operation is copying from the complex
sentence to the simple sentence.

- One solution: Add in reinforcement learning (Zhang and Lapata 2017), to
encourage the model to use other rewrite operations, such as deletion,
substitution, word reordering.

A brief introduction to Reinforcement Learning

The reinforcement learning framework (Sutton and Barto, 1998)

Case study: text simplification

Basic encoder-decoder model, from (Zhang and Lapata, 2017).

Case study: text simplification

Encoder-Decoder model with reinforcement learning (Zhang and Lapata, 2017).

employ V -> N, Agent employer

employ V -> N, Passive employee

employ V -> N, Result employment

employ V -> Adj, Potential employable

employable V -> Adj -> N, Stative employability

Derivational morphology

Encoder (seq) Decoder (2seq)

- Process of generating new words from
existing words

- Changes semantic meaning
- Often a new part-of-speech

c o m p o s e

c

V
E

R
B

-N
O

M

o m p o s i

Derivational morphology

Derivational morphology: search

g r

g

uo n d

i

n

m e n t

f i c a t i o n

s

e r

i q

Reference Sheet

The “word vector”
representation of the
word.

The RNN function,
which combines the
word vector and the
previous state to create
a new state.

The memory vector,
or “state” . Color
denotes whether
encoder or decoder.

A learned parameter
matrix

Whx integrates input vector
information.

Whh integrates information from the
previous timestep.

bh is a bias term.

dt is our decision at timestep t.

The RNN equation is:

ht = tanh(Whxxt + Whhht−1 + bh)

dt = argmaxd’ ∈ D p(d’ | x1:n,d1:t-1)

p(* | x1:n,d1:t-1) =

softmaxD(WDhst-1+bD)

