
ARTIFICIAL INTELLIGENCE 155

GUS, A Frame-Driven Dia|og System

Danie l G. Bobrow, Ronald M . Kaplan, Mart in Kay,
Donald A. Norman, Henry Thompson and
Terry Winograd

Xerox Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304, U.S.A.

Recommended by Don Walker

ABSTRACT
GUS is the first o f a series o f experimental computer systems that we intend to construct as part o f
a program of research on language understanding. In large measure, these systems will fill the role
o f periodic progress reports, summarizing what we have learned, assessing the mutual coherence o f
the various lines o f investigation we have been following, and saggestin# where more emphasis is
needed in future work. GUS (Genial Understander System) is intended to engage a sympathetic and
highly cooperative human in an English dialog, directed towards a specific goal within a very restricted
domain o f discourse. As a starting point, G US was restricted to the role o f a travel agent in a con-
versation with a client who wants to make a simple return trip to a single city in California.

There is good reason for restricting the domain o f discourse for a computer system which is to
engage in an English dialog. Specializing the subject matter that the system can talk about permiis
it to achieve some measure o f realism without encompassing all the possibilities o f human knowledge
or o f the English language. It also provides the user with specific motivation for participating in the
conversation, thus narrowing the range o f expectations that GUS must have about the user's pur-
poses. A system restricted in this way will be more able to guide the conversation within the boundaries
o f its competence.

1. Motivation and Design Issues

Within its limitations, ous is able to conduct a more-or-less realistic dialog. But
the outward behavior of this first system is not what makes it interesting or signifi-
cant. There are, after all, much more convenient ways to plan a trip and, unlike
some other artificial intelligence programs, (;us does not offer services or furnish
information that are otherwise difficult or impossible to obtain. The system is
i nteresting because of the phenomena of natural dialog that it attempts to model

tThis work was done by the language understander project at the Xerox Palo Alto Research
center. Additional affiliations: D. A. Norman, University of California, San Diego; H. Thompso6,
University of California, Berkeley; and T. Winograd, Stanford University.

Artificial Intelligence 8 0977), 155-173

Copyright © 1977 by North-Holland Publishing Company

156 D . G . BOBI~OW ET AL.

and because of the principles of program organization around which it was de,
Signed. Among the hallmarks of natural dialogs are unexpected and seemingly un-
predictable sequences of events. We describe some of the forms that these can take
below. "We then go on to discuss the modular design which makes the system
re!atively insensitive t o the vagaries of ordinary conversation.

1.1. Problems of natural dialog

The simple dialog shown in Fig. 1 illustrates some of the language-understanding
problems we attacked. (The parenthesized numbers are for reference in the text). The
problems illustrated in this figure, and described in the paragraphs below, include
allowing both the client and the system to take the initiative, understanding indirect
answers to questions, resolving anaphora, understanding fragments of sentences
offered as answers to questions, and interpreting the discourse in the light of known
conversational patterns.

1.1.1. Mixed initiative

A typical contribution to a dialog, in addition to its more obvious functions, con-
veys an expectation about how the other participant will respond. This is clearest
in the ease of a question, but it is true of all dialog. If one of the participants has
very particular expectations and states them strongly whenever he speaks, and ff
the other always responds in such a way as to meet the expectations conveyed,
then the initiative remains with the first participant throughout. The success of
interactive computer systems can often be traced to the skill with which their
designers were able to assure them such a dominating position in the interaction.
In natural conversations between humans, however, each participant usually
assumes the initiative from time to time. Either clear expectations are not stated
or simply not honored.

GUS attempts to retain the initiative, but not to the extent of jeopardizing the
natural flow of the conversation. To this extent it is a mixed-initiative system (see
Carbonell [5, 6]). This is exemplified in the dialogue at (1) where the client volun-
teers more information than GUS requested. In addition to his destination, the client
gives the date on which he wants to travel. Line (3) illustrates a ease where the client
takes control of the conversation. GUS had found a potentially acceptable flight and
asked for the client's approval. Instead of either giving or denying it, the client
replied with a question of his own.

1.1.2. Indirect answers

It is by no means always clear what constitutes an answer to a question. Frequently
the purported answer is at best only a basis on which to infer the information
requested. For example, when ous asks "Whatt ime do you want to leave?" it is
seeking information to constrain the selection of a flight, client's res onse t o

• • P " .

this question, a t (2), does constrain the flight selection, b u t only indirectly. In
Artificial Intelligence8 (1977), 155--17a : -

. . . . i

GUS, A FRAME-DRIVEN DIALOG SYSTEM 157

general, the kinds of inference necessary to interpret indirect answers can be very
complex, GUS can handle the problem in its simpler manifestations, thanks largely
to the very narrow expectations it has about the subject matter and the client's goals.

1.1.3. Resolving anaphora
A central issue in dialog is ensuring that both parties understand a given word or
phrase as referring to the same object or event (see [19, Chap. 3] for a discussion of
the general problem of reference). One problem occurs when a short phrase refers
back to something that was introduced earlier. Gus provides for this problem in
some of its simpler manifestations. At line (3), for example, the client's query refers
to the flight mentioned in Gus's immediately preceding utterance. In (4) there is a
reference to the flight mentioned earlier in the conversation, at (2). Note that "next
flight" in (3) was to be interpreted relative to the order of flights in the airline guide
whereas "first one" in (1) refers to the order in which the flights were mentioned.
Another implicit referent underlies :he use of "Friday" to specify a date in (6).
Resolution of this reference requires some complicated reasoning involving both
the content and the context of the conversation. Since May 28 has been given as
the departure date, it must presumably be the following Friday that the client has
in miud. On the other hand, suppose that the specifications were reversed and

GUS:

(1) Client:
GUS:

(2) Client:
GUS:

(3) Client:
GUS:

(4) Client:
GUS:

(5) Client:
GUS"

(6) Client:
GUS:

(7) Client:
GUS:

Hello. My name is GUS. I can help you plan a simple trip by air.
Where do you want to go ?
I want to go to San Diego on May 28
What time do you want to leave ?
I must be in San Diego before 10 am
Would you like P.S.A. flight 102 that arrives at 9.15 am ?
What is the next flight ?
Air California flight 310 that leaves at 8.30 am and arrives at 10.00 am
I'll take the first one
In what name should I make a reservation, please ?
Dan Bobrow
I have confirmed the following flight:
P.SA. flight 102 on Wednesday May 28 from San Jose to San Diego
tha~. leaves at 7.30 am and arrives at 9.15 am.
What date do you want to return on ?
On Friday in the evening.
Would you like the flight that leaves at 7.45 pm ?
That's fine.
I have confirmed the following flight:
P.S.A. flight 307 on Friday May 30 from San Diego to San Jose
that leaves at 7.45 pm and arrives at 9.30 pm
Thank you for calling. Goodbye.

FIG. I. A transcript of an actual dialog with GUS.

Artificial Intelligence 8 (1977), 155-173

158 D.G. BOBROWET AL.

Friday had been given as the departure date at line (1). It would then be most
readily interpretable as referring to the Friday immediately folloging the conversa-
tion.

1.1.4. Sentence fragments
Utterances in natural conversation are by no means always complete sentences.
This is not to say that there are no rules governing the ways in which fragments
can be used. We collected a number of dialogs between people and examined the
sentence fragments that occurred" most appeared as answers to di~,ect questions.
Furthermore, a rule can almost invariably be derived from a question that will
convert a fragmentary answer into a complete sentence expressing the same infor-
mation. For example, the client's response in (5) to the request for a name is not a
sentence but, when inserted in the blank space in the skeleton "You should make
the reservation in the name of ", it yields a sentence. Normal processing of the
sentence so constructed gives the required interpretation of the fragment. This works
even for the fragment in (6) which is not even a complete phrase. 2

These skeletons are systematically related, in the sense of transformational
grammar, to the corresponding questions. The blank space in the skeletons usually
occurs at the end. If Sgall and the linguists of the modern Pragae school are right,
then this follows from a strong tendency to organize sentences so that given infor-
mation comes at the beginning and new information at the end. In this case, the
given information is clearly that which is shared by the question and its answer.

1.1.5. Conversational patterns
Conversations conform to patterns, which are still only poorly understood, and
there are specialized patterns that are used in special circumstances such as tho~;e
that obtain in a travel agency. Realism requires t/lat c;us fit its conversational
strategy to these patterns. For example, flights are usually specified by departure
time, but in response to (2), GUS specifies an arrival time, because the client had
• specified the arrival time to constrain the choice of flights. This is in accordance
with a typical conversational convention; a speaker says as little as will suffice to
communicate the point to be made. Grice [11] calls these conventions conversa-
tional postulates and implicatures.

It seems also to be important to use conversational implicatures with respect to
the goals of the client and the system in interpreting and generating the dialog (see
[10] for a general discussion of this issue). For example, in (1) the client says where
he wants to go. GUS interprets this as a request for an action, that is, inserting the
appropriate information into the travel plan being generated.

1.2. Principles of program organization
One of the major methodological issues we addressed in designing and building
Gus was the question of modularity. We realize that language understanding systems,

z The SKI speech system (Walker, et al. [23]) uses a number of other techniques for handling a
different set of fragments.
Artificial Intelligence 8 (1977), 155-173

GUS, A FRAME-DRIVEN DIALOG SYSTEM 159

and other systems exhibiting some degree of intelligence, will be very large and
complicated programs, and the flow of processing within them will be correspond-
ingly complex. As Simon [27] has pointed out, one wa.y of reducing the complexity
of a system is to decompose it into simpler, more readily comprehensible parts, and
to develop and debug these in isolation from one another. When the separate
modules have been constructed, however, the task cf integrating them into a single
system still remains. This can be difficult: truly complex systems are more than
just the sum of their parts. The components, when put together, interact in subtle
but important ways. We implemented Gus in order to determine whether a modular
approach for a dialog system was at all feasibIe and to test our notions of what
reasonable, lines of decomposition might be. We are aware of alternative decom-
positions, and are not committed to this one; it was convenient give~ the program
modules already available, and the issues we wished to focus on. GUS provided a
context in which to explore tools and techniques for building and integrating
independent modules.

The major knowledge-oriented processes and structures in GUS--the morpho-
logical analyzer, the syntactic analyzer, the frame reasoner, and the language
generatormwere built as independent processes with well defined languages or data
structures to communicate across the interfaces. They were debugged separately,
and tied together by means of an .~verall asynchronous control mechanism.

1.2.1. Control

The organization of the system is based on the view that language-understanding
systems must operate in a multiprocess environment [12, 14]. In a system with
many knowledge sources and a number of independent processes, some part of the
mechanism must usually be devoted simply to deciding what shall be done next.
Gus puts potential processes on a central aoenda. GuS operates in a cycle in which
it examines this agenda, chooses the next job to be done, and does it. In general,
the execution of the selected task causes entries for new tasks to be created and
placed on the agenda. Output text generatio~ can be prompted by reasoning pro-
cesses at any time, and inputs from the client are handled whenever they come in.
There are places at which information from a later stage (such as one involving
semantics) are: fed back to an earlier stage (such as the parser). A supervisory process
can reorder the agenda at any time. This process is similar in function to the control
module in the BBN Speechlis system [20, 25] except that it can resume processes
which are suspended with an active process state. Preserving the process state is
necessary because the flow in the system is not unidirectional" for example, the
state of the syntactic analysis cannot be completely abandoned when domain
dependent translation starts. If a semantically and pragmatically appropriate inter-
pretation of an utterance cannot be found from the first parsing, the syntactic
analyzer must resume where it was suspended. INTERLISP'S coroutine facility makes
it possible to completely preserve the active state of the various processes [2, 22].

Artificial Intelligence $ (1977), 155-173

160 D.G. BOBROW ET AL.

1.2.2. Procedural attaci~ment

Broadly speaking, procedural attachment involves redrawing the traditional
boundary between program and data in such away as to give unusual primacy to
data structures. Most of the procedures that make up a program, instead of operat-
ing on separate data structures, are linked to those structures and are activated
when particular items of data are manipulated in particular ways, This technique
lies at the heart of the reasoning component which is described in more detail later.
It pro,~ides a natural way of associating operations with the classes or instances of
data on which they are to operate. It is in someways extensions of ideas found in
SiMULA [7] and SMALLTALK [9].

1.2.3. Monitoring and debuyoing
In a multiprocessing system with processes triggered by procedures attached to
complex data structures special tools are needed for programmers to monitor the
flow of control and changes in the data structures. Tightly linked with the agenda
scheduler there is a central monitor with knowledge about how to summarize the
current actions of the system. The monitor interprets special printing instructions
associated with potential actions and particular items of data. In effect, the principle
of procedural attachment has been extended to debugging information.

1.2.4. External data-bases

We believe that an important application of specialized dialog systems like GUS
may be to help users deal with large files of formatted data. In the travel domain,
the Official Airline Guide is such an external data-base, ous can use an extract of
this data-base, but the information in the file does not form part of its active
working memory for the same reason that the information in the Official Airline
Guide does not have to be memorized by a travel agent. Only that portion of the
data base relevant to a particular conversation need be brought into the working
memory of the system.

2. Processes and Knowledge Bases

Fig. 2 illustrates the knowledge structures and processes in ~us. Each numbered
row corresponds to a single knowledge based process in the system. The input to
each process is shown in the left hand column. Eaqh input is labelled witha number
in parentheses indicating the row number of the process which produces it. Pro-
cesses usually provide input to the ones listed below them. The third column names
the process which produces the output structures specified in the fcarth column,
using for the processing the permanent knowledge bases specified in column two.
Fig. 3 shows the output structures of the earlier stages of processing of the sentence
"I want to go 1~o San Diego on May 28", Starting with an input string of characters
typed by the client, a sequence of words is identified by a lexical analyzer consisting
of a dictionary lookup process and a morphological analysis. The analysi~ program
Artificial Intelligence 8 (1977), 155- 173

GUS, A FRAME-DRIVEN DIALOG SYSTEM 161

Input Structures Permanent Knowledge
Structures

Processes

I. Text String Stem dictionary: Dictionary lookup:
(input) Morphological Morphological

rules analysis
2. Query context (6) : Transition net Syntactic analysis

Chart (1) grammar
3. Parsing of a Case-frame Case-frame

sentence (2) dictionary analysis
4. Case-frame Speech patterns: Domain dependent

structure (3) Domain specific translation
frame forms

5. Frame change Prototype frames Frame reasoning
descriptions (4, 5) : and attached
Current frame procedures
instances (5)

6. Output response Dialog query map: Response
description (5) Flight description generation

template
FIG. 2. Knowledge structures and processes in GUS.

Outpu Structures

Ch~rt of word data
structures

Parsing of a sentence

Case-frame
structure
Frame change
description

Frame change
descripti~,ls
Output response
descriptions:
Current frame
instances
English text:
Query context

has access to a main dictionary of more than 3,000 stems and simple idioms and a
body of morphological rules specifying how the information in the dictionary can
be used to partition character sequences into known lexical items [16]. The output
of this stage is a chart [15], a table of syntactic and semantic information for use
by the parser.

The syntactic analyzer is based on the General Syntactic Processor [12]. Using a
transition-network grammar and the chart, the parser builds one or more canonical
syntactic structures, depending on whether or not the sentence is syntactically
ambiguous. It finds one parse, and can continue to find others if the sentence is
ambiguous and the first parse is rejected as uninterpretable by a later process. The
syntactic analysis of the input sentence i~ shown in Fig. 3.

The case-frame analysis uses linguistic ~nowledge associated with individual
lexical items to relate their appearance in can, ' ical syntatic structures to their uses
in a semantic environment. It uses a dictionary of case-frames based on the ideas
of case grammar originated by Fillmore [8]; see Bruce, [4] for a general review of
case systems. This component uses knowledge about s:Lch things as selectional
restrictions and the manping between surface cases (including prepositions) and
semantic roles. As seen in Fig. 3, the cases for GO are AGENT, TO-PLACE, and DATE.

As we have already .observed, interpretation of an utterance must include
knowledge of conversational patterns for the appropriate domain. Domain depen-
dent interpretations of utter~.nces were implemented by a simple structure-matching
and reconstruction program that operates on case-frames. The example in Fig. 3
illustrates how the domain-dependent translation module handles a common con-
versational pattern for the travel domain: it interprets a statement of desire (the
WANT]E) as an instruction to insert the specified event into the trip plan being

Artificial Intelligence 8 (1977), 155-173

162 • D. G, BOagOW ET AL.

CLIENT:~I want to go to San D i e g o on M a y 28

[S M O O D = D C L . . . the syntactic analysis of the input
SUBJ - [NP HEAD - [PRO CASE = NOMIN

N U M B E R = S G R O O T = I]]
P V E R B = IV T E N S E -- P R E S E N T R O O T -- W A N T] I H E A D = W A N T
OBJ = IS MOOD = FOR-TO

SUBJ = I
HEAD = [V TENSE = PRESENT ROOT = GO]
M O D S = (

[PP PREP = [PREP ROOT = TO]
POBJ = [NP HEAD = [NPR PROPERTYPE = CITY-NAME

ROOT = SAN-DIEGO]]]
[PP PREP - [PREP ROOT = ON]

POBJ = [NP HEAD = [NPR PROPERTYPE = DATE-NAME

MONTH = MAY DAY = 28]]])]]
[CLIENT DECLARE .. . the ca,~e-frame structure

(CASE FOR WANT/E (TENSE PRESENT)
(AGENT (PATH DIALOG CLIENT PERSON))
(EVENT (CASE FOR GO (TENSE PRESENT)

(AGENT (PATH DIALOG CLIENT PERSON))
(TO-PLACE (CASE FOR CITY

(NAME SAN-DIEGO)))
(DATE (CASE FOR DATE

(MONTH MAY)
(DAY 28]

CMD: [CLIENT DECLARE . . . the domain depet~dent translation, a
(FRAME ISA TRIP-LEG . . . frame change description

(TRAVELLER (PATH DIALOG CLIENT PERSON))
(TO-PLACE (FRAME ISA CITY

(NAME SAN-DIEGO)))
(TRAVEL-DATE (FRAME ISA DATE

(MONTH MAY)
(DAY 28]

Fro. 3. Processing the client's first utterance.

constructed. In addition, the case frame involving c_,o is transformed into a descrip-
tion of the TRIP-LEG which is part of the planned trip, with the AGENT of C,O becom-
ing the TRAVELLER in the TRU'-LEO and the DATE becoming the TRAVEL-DATE. This
simple translation mechanism is obviously very limited; in a more realistic system,
the purposes of the client would have t o be:understood more d e e p l y .

GUS, A FRAME-DRIVEN DIALOG SYSTEM 163

producing a mixed initiative dialog system. It uses the frame change description
(labelled CMD in Fig. 3) to fill in the appropriate information in the trip plan it is
building and trigger associated reasoning, as described later.

The generation of output English is guided by a query-map, a set of templates
for all the questions that might be asked by the system. (;us uses a table lookup
mechanismto find theappropriate template and generates the English by filling in
the template form. This simple generation mechanism is sufficient for the dialog
system; generation was not one of the areas of substantial work.

The module that generates questions for the client simultaneously produces one
or more skeletons into which his responses can be inserted, if they do not prove to
be sentences in their own right. What is being done here is surprisingly simple and
works well for most of the fragments we have encountered in response to simple
wn-questions. Note that the language generator communicates with the syntactic
analyzer using English phrase fragments rather than using a specially constructed
formalism. This contrasts with other approaches to the fragment problem, in which
the various components of the system are more deeply affected.

3. The Reasoning Component

3.1. F~ames

It is widely believed in artificial intelligence that intelligent processing requires both
large and small chunks of knowledge in which individual molecules have their own
sub-structure. Minsky's 1975 paper on frames discusses the issues and suggests
some directions in which to proceed. But, as Minsky stated, his ideas were not
refined enough to be a basis for any working system. Our intuitions about the
structure of knowledge resemble Minsky's in many ways, and we have appropriated
the word frame. However, our conceptions are by no means identical to Minsky's,
and the two notions should not be confused. The frame structures used in this
system were a first step towards a more comprehensive knowledge representation
language whose current development is described in [3].

Frames are used to represent collections of information at many levels within
the system. Some frames describe the sequence of a normal dialog, others represent
the attributes of a date, a trip plan, or a traveller. In general, a frame is a data
structure potentially contaiping a name, a reference to a prototype frame, and a set
of slots. Frame names are included primarily as a mnemonic device for the system
builders and are not involved in ~t~y of the reasoning processes. In fact, names are
not assigned to any of the temporary frames created during a dialog.

If one frame is the prototype of another, then we say that the second is an
instance of the first. A prototype serves as a template for its instances. Except for
the most abstract frames in the permanent data base, every frame in GUS is an
instance of some prototype. Most instances are created during the process of
reasoning, although some (for example those representing individual cities) are in
the initial data base.

Artificial Intelligence 8 (1977), 155-173

164 D.~. BOrn, ~wEr M.,.

A frame's important substructures and its relations to other frames are defined
in its slots. A slot has a slot-name, a filler or value, and possibly a set of attached
procedures. The value of a slot may simply be another frame or, in the case of a
prototype, it may be a description constraining what may fill t he corresponding
slot in any instance of the given frame. Fig. 4 shows the prototype frame for date
and the specific date May 28, which has no external name. The fact that it i s an
instance of date is indicated by the keyword IsA followed by the prototype name.

The date prototype illustrates several of the ways in which the values for instance
slots can be described. For example, the slot labelled MOm'H specifies that only a
name can be used as value; that is, only a lit~al LiSP atom. ¢~US interprets a stan-
dard set of type terms such as name, integer, list, and string. The slot of W~g~AY
stipulates that a value for that slot must be a member of the list shown in the
frame. The slot DAY can 0nly be filled by an integer between 1 and 31. The terms
BOtmDED-I~rrEGER and MEMm~t have no special meaning to the interpreter. Any
usP function may occur in this position as a predicate whose value must be non-
NIL for any object filling the slot.

Not all of the slots of an instance frame need to be filled in. For example, in
May 28, only the MONTH, and DAY are filled in, and not the WEEKDAY. A prototype
frame provides slots as placeholders for any data that might be relevant, even
though it may not always be present. Only those slot values which are required
for the current reasoning process need be put into instances.

[DATE
MONTH
DAY
YEAR
WEEKDAY

a. Prototype for date

[ISA DATE

NAME
(BOUNDED-INTEGER 1 31)
INTEGER
(MEMBER (SUNDAY MONDAY TUESDAY
WEDNESDAY THURSDAY FRIDAY SATURDAY)]

MONTH MAY
DAY 28]

b. The instance frame for May 28

FIG. 4. Examples of frames.

3.2. Procedural attachment

We have already referred to procedural attachment, a concept first discussed by this
name by Winograd [25], as a central feature of Gus. Procedures are attached to a
slot to indicate how certain operations are to be performed which involve either
the slot in the given frame or the corresponding slot in its instances, We have found
that there are many slots for which some processing is best done: by idiosyncratic
pr.ocedures. For example, there may be special ways o f finding ~lers for them or
for doing other kinds of reasoning about them. This m i ~ t include verifying that

Int #ig n s 0977). 1s -173
A r i : ' :

Gus, A FRAm~.-DmVEN DIALOG SYSTEM 165

the value in an instance is consistent with other known information or propagating
information when the slot value is obtained.

The procedures associated with slots fall into two general classes" servants and
demons. Demons are procedures that are activated automatically when a datum is
inserted into an instance. ~eroants are procedures that are activated only on demand.
The expanded date prototype in Fig. 5 contains examples of both classes. On the
slot WEEKDAY there is a demon marked by the keyword WHE~TILLE!D and a servant
marked by the keyword TOFILL. When a value is filled into the WEEKDAY slot of a
date instance, the W ~ L E D statement on the prototype causes the interpreter
to invoke the demon Fm'DDATEFgOMDAY. This procedure attempts, to compute the
appropriate date to ill! the other slots in the frame, using the name of the day just
entered and contextual information to identify the value uniquely.

The servant GIrrWL~KDAY on the same slot is only invoked when the name of the
week day is needed. The requirement is satisfied by calling the LiSP procedure
GErbVEEKDAY with the current instance as an implicit argument. The servant
attached to the slot YEAR indicates how a default value can be filled in. If the year
is given by the client, then this servant will never be activated. However, if the client
does not mention the year explicitly, the syste~n will fill in the default value 1975
when any part of the reasoning process calls for it.

[DATE
MONTH
DAY
YEAR
WEEKDAY

NAME
(BOUNDED-iNYEGER 1 31)
INTEGER (TOFILL ASSUME 1975)
(MEMBER (SUNDAY MONDAY TUESDAY

WEDNESDAY THURSDAY FRIDAY SATURDAY))
(WHENFILLED FINDDATEFROMDAY)
(TOFILL GETWEEKDAY))

SUMMARY (OR (LIST MONTH DAY) WEEKDAY))]

Fro. 5. The frame for date with attached procedures and summary form.

The system provides a number of standard servant procedures. ASKCLIENT causes
the client to be asked for information that will determine the value of the slot.
CREATELMSTANCE indicates that a new instance of a specified prototype should be
created and inserted at that location. Some of the values of the newly created frame
may be filled in by the procedure, others may be left to be filled through later
reasoning or interaction with the client. In addition to standard servants, the builders
of the system can program special procedures to compute appropriate values, such
as the G~rvc~EKDAY mentioned earlier.

3.3. Summarizing data stmcture~
In Fig. 5, the frame for date includes a slot with the special name SUMMARY. A
S I ~ R Y ~lot appears only in a prototype frame, never in an instance. It gives a

Artificial Intelligence 8 (! 977), 155-173

12

166 D . G. ~ BOBROW ET AL

format for describing the instances of the prototype to help programmers monitor
and debug the system. Thus, instances of date will be described by printing the
month and day, e.g. (May 28) or, if they are not known, just the day of the weelc

4. Using Frames to Direct the Dialog

Frames are used at several levels to direct the course of a conversation. At the top
level, GUS assumes that the conversation will be of a known pattern for making trip
arrangements. To conducta dialog, the system first creates an insamce of the dialog
frame outlined in Fig. 6. It goes through the slots of this instance attempting to find
fillers for them in accordance with the specifications given inthe prototype. When
a slot is filled by a new instance of a frame, the slots of that instance are filled in
the same way. Gus follows this simple depth-first, recursive process, systematically
completing work on a given Slot before continuing to the next. This is how GUS
attempts to retain the initiative in the dialog. Notice, however, that slots may occa-
sionally be filled out of sequence either through information volunteered by the
client or by procedures attached to previously encountered slots.

In Fig. 6, boldface atoms are frame names, representing pointers to other frames.
(Substructures for the frames for Person, Date, City, PlaceStay, TimeRange, and
Flight are not shown.) Each of the slots shown in Fig. 6 must be filled in during
the course of the dialog, usually by invoking a servant attached to the prototype
slot. The servants for some slots calculate the desired values from other known
data, or (as in the case of frames like TripSpecification) simply create a new frame.
The servant ASKCLIE~r obtains information needed to fill a slot by interrogating
the client. The default organization of a dialog is determined by the order of the
slots which have ASKCL]EI~T as servant, since appropriate questions wiii be asked
if those slots have not been filled by the time they are encountered.

Now let us follow the system as it goes through part o f a dialog, with special
emphasis on the process of filling in the slots of frames. The dialog and the relevant
information about the state of the system are shown in Fig. 7. This figure is the
beginning of an actual transcript of a session, and the information shown there is
provided to allow us (in the role of system builders) to follow the actions of the
system.

The dialog starts when ~us outputs a standard message ("Hello. My name is
GUS. I can help you plan a simple trip by air."). At that point, Gus knows that it is
about to conduct a dialog on travel arrangements, so it creates an instance of the
prototype Dialog frame shown in Fig. 6 and starts to try to fill its slots. (From now
on, all numbers in parentheses refer to the correspondinglines of the frames of Fig. 6.
All references to the dialog refer to Fig. 7.) The slot Ct.mNT at (1) contains a servant
which fills this slot, when necessary, by creating a new instance of Person. This is
indicated in the first line of the transcript of Fig. 7, whore the instance of person is
shown as {ISA PE~o~}. After the slot is filled in, a demon associated with the: Ct.I~NT
slot is trigg~,red, which then puts the same person instance in the ~AWLL~ slot in
(16). GUS fills the Now slot in (2) by constructing a frame instanc~ for today's date.
Artzficial Intelligence 8 (1977), 155-173

(3US, A FRAME-DRIVEN DIALOG SYSTEM 167

It then creates a TripSpeeifieation instance (3), summarized by ROUNDTRIP TO ? in
the transcript of Fig. 7, to fill the TOPIC slot (3).

At this point the Dialog frame has been completely filled in so GUS proceeds to fill
in the slots of the TripSpecitieation frame. In (4), a HOMEPORT which is a City is
required; GUS assumes, on the basis of an attached servant, that the home port is
Palo-Alto. There is no attached servant to find the FOR~XGNPORT in (5), so GUS just

Slots Fillers
Dialog

(1) CLIENT Person
(2) NOW Date
(3) TOPIC Trip

Specification
TripSpecifieation

(4) HOMEPORT City

(5) FOREIGNPORT City

Servants Demons

Create
GetDate
Create

Default--
Palo Alto

(6) OUTWARDLEG TripLeg Create
(7) AWAYSTAV PlaeeStay
(8) INWARDLEG TripLeg Create

Trip]Leg
(9) ~tOMPLACE City FindFrom

HOMEPORT
(10) TOI'LACE City AskClient
(11) TRAVELDATE Date AskClient
(12) DWl'ARTURESPEC TimeRange AskClient
(13) ARRIVALSPEC TimeRange

(14) PROPOSEDFLIGHTS (SetOfFlight)
(15) FLIGHTCHOSEN Hight Ask Client
(16) Tl~VELLEg Person Ask Client

F~o. 6, An outline of key frame structures for our dialog.

Link to TRAVELLER

Link to OUTWARDLEG,
AWAYSTAY, INWARDLEG

Propose-Flight-By-Departure
Propose-Flight-By-Arrival,
Link to DEPARTURESPEC

leaves that slot empty for the moment. When a TripLeg instance is created for the
outward leg of the journey, GUS begins trying to fill its slots. A servant for fROM-
PLACE specifies that it should be filled with the city used for HOMEPOPT in the Trip
Specification frame, so PaloAlto is filled in. II~e first slot which has an ASKCLIENT
servant is at (10), which requires a city to fill the TOPLACE in the TripLeg, which
is the OUTWARVLWG of the TripSpecifieation (6). t~us issues the comm~.nd (CMD)
shown at the bottom of Fig. 7, which directs the generation of the English question.
This is done by a rather elaborate table look up: the result is shown as the last line
of Fig. 7.

Artificial Intelligence $ (1977), 155-173

168 " " I D~ O. e O n O W ~ A L

We continue the trace of the analysis in Fig. 8, starting with the client's r e s p o ~
to the question. The domain ~ n d e n t translation contains the information needed
to ~ the frame slots. The result of the client's English input is that both the
TOPLACE (10) and theTRAVL~DA~ (1I) of the TripLeg are filled in;i

GuS: Hello. My name is GUS. I can help youplan a simple t r ipby air. :
CLIENT - {~A PERSON} in {ISA DIALOG}
TODAY - (M A Y 15)in {ISA DIALOG}
TOPIC - (ROUNDTRIP TO ?) in {ISA DIALOG}
HOME-PORT - PALO-ALTO in (ROUNDTR1P TO 7)
FROM-PLACE -- PALO-ALTO in (TRIP TO 7)
CMD: (GUSQUERY (DIALOG TOPIC TRIP-SPECIFICATION

OUTWARD-LEG TRIP-LEG TO-PLACE CITY))

GUS" Where doyou want to go ?

F~Q. 7. The beginning of the transcript for the dialog.

The system then continues working its way through the entire tree specified by
the frames, asking questions of the client. Many of the slots have demons which
propagate information to other places in the data structure. For example, when
the city that fills the slot FO~GNTORT (5) is found, Gus will insert that same City
as the place to stay in the AWAYSTAY (7). The FOr,~Gm'OgT city also serves as the
destination of the OUTWARDLVO of the trip and the starting point of the return trip
(the mWARDLEG). To handle this information, ous establishes two instances of the
frame TripLeg, one for the outward leg, the other for the inward leg, and puts the
city names in the appropriate slots.

Once a departure specification (some time range before, near or after the desired
flight departure) is determined, a demon attached to DEPARTURESPEC calls a pro-
gram which uses this information to propose a flight. Each proposed flight is added
to the slot for PROPOSEDFLmHTS (14). This slot can be used to resolve anaphoric
references to flights, based on the order of their mention in the conversation. Qus
then tries to determine which of the flights is appropriate to fill in the FLmm"
CHOSEN slot (15). When that has been determined, it will ask for the name of the
traveller and confirm the flight.

Many of the slots are marked in such a way that they need not be filled for the
dialog to be completed. For example, the arrival specification (13) in each TripLeg
frame is never requested. This slot is provided as a place to put constraints about
the arrival of the flight, if the client volunteers information constraining the desired
arrival time. Demons associated with that slot would then be activated ~o propose

flight based m the arrival time. In a similar way, the AWAYSTAY slot in the trip
specification (7), is never 9.sked for. If the client specifies something about the time
range of the AWAYSTAY, 8.S h e did in the dialog of Fig. I, there is ap l ace to store
that information in the frame structure and a demon to put it into the ~ppropriate
TripLeg.
Artificial Intell'wence 8 (1977), 155-173

(]US, A FRAME-DRIVEN DIALOG SYSTEM 169

CLIENT: Iwant to go to Saa Diego ~n May 28
CMD: [CLIENTDECLARE . . . the domain dependent translation

(FRAME ISA TRIP-LEG
(TRAVELLER (PATH DIALOG CLIENT PERSON))
(TO-PLACE (FRAME ISA CITY

(NAME SAN-DIEGO)))
(TRAVEL-DATE (FRAME: ISA DATE

(MONTH MAY)
(DAY 28]

TO-PLACE = SAN-DIEGO in (TRIP TO ?) . . . filling in the requested information

TRAVEL-DATE - (MAY 28) in (T~ ~P TO SAN-DIEGO) . . . and the volunteered
information

dowhen TO-PLACE is put in (TRIP TO SAN-DIEGO) . . . propagating information to
other slots

(LINK TRIP-SPECIFICATION FOREIGN-PORT CITY)

FxG. 8. The reasoning from the first input utterance.

GUS: What date do you want to return on ?
The context of the next answer is:
(I WANT TO RETURN ((ON) (,SKIP,)))--

. . . a query generated by GUS

• . . The expected context of the query
response

CLIENT: On Friday in the evening
CMD: [CLIENTDECLARE . . . the domain dependent translation, including context

(FRAME ISA TRIP-LEG
(TRAVELLER (PATH DIALOG CLIENT PERSON))
(TRAVEL-DATE (FRAME ISA DATE

(WEEKDAY FRIDAY)))
(DEPARTURE-SPEC (FRAME ISA TIME-RANGE

(DAY-PART EVENING]
WEEKDAY - FRIDAY in {ISA DATE}
dowhen WEEKDAY is put in {ISA DATE} . . . triggering a demon to find the Friday's date

(FINDDATEFROMDAY)
DAY--- 30 in (MAY 30)
DAY-PART - EVENING IN {ISA TIME-RANGE} . . . evening is interpreted as

around 7.30 pm

DEPARTURE-SPEC --- (AT 7.30 PM) in (TRIP TO PALO-ALTO)
dowhen DEPARTURE-SPEC is put in (TRIP TO PALO-ALTO)

(PROPOSE-FLIGHT-BY-DEPARTURE) . . . this demon proposes a flight using a
departure spec

GUS: Would you like the flight that leaves at 7.45 pm 9
CLJENT: That's fine.

Fxo. 9. Processing a sentence fragment.

Artificial Intelligence 8 (1977), 155-173

170 D.G. BOBROW El" AL

Fig. 9 illustrates how a sentence fragment is processed. Gus asks "What date do
you want to return on?" Generation of the question also generates a context for
the expected interprete.tion of the next answer. The context is an inverted form of
the question; that is, "I -~'~nt to return" is a potential prefixto the next response.
The preposition "on." may be optionally inserted in this prefix. The client responds
"on Frioay in the evening". Since this is not a sentence, the question context is
used in the interpretation and the actual parsed structure which is interpreted is
derived from the sentence "I want to return on Friday in the evening."

The time is taken as a departure specification and the date is specified in terms of
the day of the week. The day of the week is filled into the appropriate place and
date, and then the demon associated with that slot in date is activated. That demon
computes the date relative to the previous date specified in the conversation. The
phrase evening is taken as being equivalent to "around 7.30 pm". From this depar-
ture specification, GUS proposes the flight that leaves nearest to that time. Informa-
tion is provided to the client about the leaving time, not the arrival time, because
the client constrained the choice of flight by leaving time.

This simple dialog illustrates holy Gus attempts to control a conversation by
fitting it to the mold laid down in a structure of related frames. It has a place pre-
pared Jn this structure for each piece of information that might potentially be used
for making travel arrangements. It also has a strategy that will cause the pieces of
information that the client must supply to be elicited in a natural order. The sequence
of slots in the frames determines the usual course of the conversation, but it will
change if, for example, the client volunteers information or asks questions.

5. Real and Realistic Dialogs
There is an important difference between real and realistic conversations. The
simple'dialog in Fig. 1 is a realistic conversation that was actually carried on with
Gus. It is much coo easy to extrapolate from that conversation a mistaken notion
that 6us contained solutions to far more problems than it did. To get an idea of
some problems that ~us does not approach, we collected a variety of travel dialogs
that clients of a full-fledged system (perhaps the final version of (3us) might expect
to conduct. We did:t~:is by simulating.the system, asking the clients to arrange for
round trip air flights between Palo Alto and San Diego, typing all queries and
responses on the computer terminal, and pretending that a computer system was
interacting with them. In fact, the role of GUS was played by an experimenter sitting
at another computer terminal, airline guide, travel books, and calendar in hand,
responding to the client. 3

The two participants--client and experimenter--were each seated in independent,
individual sound-isolated experimental booths. They communicated with a special
experimenta ! program (designed for tutorial instruction) that presented the experi-
menter's responses in a block presentation, so it appeared as a realistic approxima-

3 The experimental dialogs were collected by Allen Munro in the LNR research laboratory at
the University of California, San Diego.

Artificial Intelligence 8 (1977), 155-173

GUS, A FRAME-DRIVEN DIALOG SYSTEM 171

tion of a computer output, without the slow typing rate that would occur otherwise.
The system delays were approximately what one would expect for the operation
of a complex prod, ram (10 to 60 seconds response time).

Some of the problems we found ~-1ere unexpected. For example; people spent a
lot of time telling us about their thought processes and reasons. They made excuses
for changing their minds. They hedged a lot about what they wanted. Fig. 10(a)

o u s : Do you want a flight leaving at 4.00 pm
CLIENT: Do you have ~omething a little closer to 7 ?
GUS: Do you want the flight at 7.00 pm?

(a) Interpreting politeness

ous: Do you want the flight arriving at 8.00 pm?
CLIENT" When does it leave?
GUS: 6.30 pm
CLIENT: How much?
o u s : $25.50 round trip

(b) Some pronominal reference problems

o u s : When would you like to return ?
CLIENT: I would like to leave on the following Tuesday, but I have to be back

before my first class at 9 am.
(c) Giving a reason for flight preference

Flo. 10. Fragments of real dialogs, with a Ferson simulating the role of GUS.

illustrates a type of conversational interaction our current system cannot even
begin to handle. When the system proposes a flight at 4 pro,. the client requests
something a little closer to 7. A literal interpretation of that request would be to
find a flight that is as close to 4 pm as possible, but in the direction of 7 pro: per-
haps the 5.00 pm flight. That, of course, is not at a!l what was desired by the client.
The human experimenter made the natural response of offering the flight that left at 7.

Fig. 10(b) indicates some pronominal reference problems which we did not attack
at all. When the client says "when does it leave" it is quite obvious that he wants the
departt, re time of the flight referred to in the previous sentence. For his question
"how much," a response that "all of the plane leaves" seems somewhat inappro-
priate. In this case, the client is not referring to ,he previous system response, but
rather i~ asking about the cost of the flight. But ,, response such as "how much"
can sometimes refer to the previous system response. Suppose the system had just
stated "They serve food on that flight." In this case, the client's query could be
appropriately interpreted by the system as referring t{., the quantity of food. GUS
cannot solve the problem of determining when a response is meant to refer to the
previous question and when it is not.

Fig. 10(c) illustrates how people provide extra information about their motiva-
tions. In a sys+em with a better model of human needs and desire,.~, this would be
useful for suggesting alternatives that might otherwise be ruled out.

Artificial Intelligence 8 (1977), 155-173

172 v , G, e o e R o w Fr AL

6. C¢~¢iusions

Computer programs in general, and programs intended to model human perfor-
manc~ in particular, suffer from an almost iatoler~.ble delicacy. If their users depart
from the behavior expected of*~hem iv the minutest detail, or ffapparently insigui'
ficant adjustments are made in their structure, their perforwance does not usually
change conm~e~urately. Instead, they turn to simulating g,'oss aphasia or death.
The hope, which has been at least partially realized in Qvs, is that the notions of
procedural attachment and scheduling, as well as being realistic cogniti~:= models,
will make for more robust systems. We were pleased, for example, by the way the
system's expectations could evolve in the course of a single conversation. The cl~.ent
would occasionally seize the initiative, volunteering information that was not as~:ed •
for or refusing to answer a question as asked and ous was able to respond appro-
priately in many cases. It would be misleading to press these claims too far. Gus
never reached the stage where it could be turned loose on a completely naive client,
however cooperative. But, to one familiar with other systems of the same general
kind, the impression of increased robustness is clear.

~us represents a beginning step towards the construction of an intelligent lan-
guage understanding ~;ystem. GUS itself is not very intelligent, but it does illustrate
what we believe to be essential components of such a system. An intelligent lan-
guage understander must have a high quality parser, a reasoning component, and
a well structured data base of knowledge. The knowiedge is of several types, from
language specific information and expertise in the topic areas in which it can con-
verse to broad general knowledge of the world that must be used to interpret
people's utterances. This knowledge tends to be taken for granted by most native
speakers of the language, hence often left for the listener to infer. The system must
be capable of giving direction to the conversation, but it m ~ t also be flexible
enough to respond to novel directions set by the clients. The system must be able
to make use of a large external data base and to understand what information
must be retrieved and processed in depth. There must be an intimate connection
between its representation of structural knowledge and the procedures used to
process knowledge. A general framework for representing knowledge must be able
to encompass all the different necessary forms of knowledge. In our future studies
of Gus, we intend to broaden the general framework for representing knowledge,
as well as to increase the power of the components of the system. Preliminary steps
in this direction include the development of improved systems for language analysis
[16] and a knowledge representation language (KRL: [3]).

REFERENCES
1. Bobrow, D. G. and Collins, A. M. (Eds.), Representation and Understanding: Studies in

Cognitive Science (Academic Press, New York, 1975).
2. Bobrow, D. G. and Wegbreit, B., A model and stack implementation of multiple environments,

Comm. ACM, 16 (1973) 591--603.
3, Bobrow, D. G. and Winograd, T., An overview of KRL, a Knowledge Representation Lan-

guage, Cognitive Sci. 1 (1)(1977).
Artt'/icial Intelligence 8 (1977), 155-173

GUS, A FRAME-DRIVEN DIALOG SYSTEM 173

4. Brace, B., Case systems for natural language, Artificial Intelligence 6 t1975) 327-360.
5. Carbonell, J. R., AI in CAI: An artificial intelligence approach to com~uter-aided instruction,

IEEE Trans. Man-Machine Syst. 11 (1970) 190-202.
6. Carbonell, J. R., Mixed-initia.*ive man-computer instractional dialogues, Unpublished Ph.D.

dissertation, Massachusetts Insti*-~t,, of Technology, Cambridge, MA (1970)o
7. Dahl, O. J., and Nygaard, K.~ SIMULA - an A L G O L ~ d Simulation Language, Comm.

ACM 9, (1966) 671-678.
8, Fillmore, C., The case for case, in: Bach, E. and Harw~, R. T. (Ed~..), Universals in Linguistic

Theory (Holt, New York, 1968).
9. Goldberg, A. and Kay, A. (Eds.), SMAt&TALK-72 instruction manual, Xerox Palo Alto Research

Center SSL-76-6. Palo Alto, CA (1976).
Gordon, D. an6 Lakoff, G., Conversational postulatgz, Papers from Aeventh Regional Meeting,
Chicago Lin~m;~stic Seciety, Chicago. University o~ Chicago ~.haguistics Department (1972).
Grice, H. P., ! ~gic and conversa,~ion, in: Cole, P. and Morgan~ J. L., (Eds.), Studies in Syntax.
Volume III (S,:mi~'~r Press, New York, 1975).
Kaplan, R., A general syntactic processor, in: R. Rustin (Ed.), Natural language processing
(Algorithmics Press, New York, 1973).
Kaplan, R., A multi-processing approach to natural language, Proc. 1973 Nat. Comput. Conf.
(AFIPS Press, Montvale, NJ, 1973).
Kaplan, R., On process models for sentence analysis, in: Norman, D. A., Rumelhart, D. E.,
and the LNR Research Gte'ap, Explorations in Cognition (Freeman, San Francisco, 1975).
Kay, M., The MIND system, in: Rustin, R. OEd.), Natural language processing (Algorithmics
Press, NY, 1973).
Kay, M. and Kaplan, R., Word recognition, Xerox Palo Alto Research Center, Palo Alto,
CA (1976).
Minsky, M. A., fran~work for representing knowledge, in: Winston, O. (Ed.), The psychology
of Computer Vision (McGraw-Hill, NY, 1975).
Reddy, D. R., Erman, L. D., Fennell, R. D. an:l Neely, R. B., HEARSAY speech under-
standing system: An example of the recognition process, Proc. Third Int. Joint Conf. Artificial
Intelligence, Stanford University (August 1973).
Norman, D. A., Rumelhart, D. E. and the LNR Research Group, Explorations in cognition,
(Freeman, San Francisco, 1975).
Rovner, P., Nash-Webber, B. and Woods, W. A., Control concepts in a speech understanding
system, Proc. IEEE Symp. Speech Recognition. Carnegie-Mellon University (April 1974).
Simon, H., Sciences ofthe Artificial (Massachusetts Instim,e of Tecbnology l~::~s, Cambridge,
/VIA, 1969).
Teitelman, W., 1NTERLISP reference manual, Xerox Palo Alto Research Center, Palo Alto,
California (December 1975).
Walker, D., Paxton, W., Robinson, J., Hen&ix, G., Deutsch, B., and Robinson, A., Speech
understanding research, Annual report, Project 3804, Artificial Intelligence Center, Stanford
Research Institute (1975).
Winograd, T., Frames and the declarative procedural controversy, in: Bobrow, D. G., and
Collins, A. M., (Eds.), Representation and Understanding (Academic Press, New York, 1975).
Woods, W. A., Motivation and o,werview of BBN SPEECHLIS: An experimental prototype
for speech understanding research, Proc. IEEE Syrup. Speech Recognition, Carnegie-Mellon
University (April 1974).

t0.

11.

12.

13.

14.

15.

16.

17.

18.

19.

0.

21.

22.

23.

4.

5.

Received M a y 1976

Artificial Intelligence 8 (197,'), 155-173

