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Introduction

For our project we built a system that separated the results of a Google search (or any list of URLs) into different groups.  Such as system would clearly be useful as a major advance in search technology.  For example, when searching for the word “Guinness”, it would probably aid browsing if the results were separated into, say, three separate groups: those related to the beer, those related to the world records, and those related to the actor (Alec Guinness).  

We decided to use clustering techniques to tackle the problem.  This solution seemed to be reasonable because clustering is performed unsupervised (i.e. without any sort of training data), and we of course would not have any kind of training data to go along with our lists of websites.  In fact, some search engines already use some sort of clustering, such as Vivisimo.  While many other web searches, such as Yahoo! and Google, classify search results into categories in a pre-defined hierarchy, true clustering would obviate the need for such hand-built hierarchies and would be much more flexible (and useful) in the way it clustered search results.

Background

The purpose of clustering is to separate data elements (in this case web pages) into distinct groups such that similarities within groups are very high and similarities across groups are low.  There are two basic structures of clustering: hierarchical clustering and non-hierarchical, or flat, clustering.  In hierarchical clustering, objects are placed in their most specific clusters, and these clusters then act as sub-clusters to larger clusters, and so on, forming a basic tree structure where all objects are part of the highest, most general cluster.  In non-hierarchical clustering, objects are placed in only one cluster, and the relation between clusters is not really important.  In our system, we performed non-hierarchical clustering, assigning documents to separate clusters and not trying to define relationships between the clusters.

Another difference between clustering structures is whether they make hard or soft assignments.  In hard assignment objects are put into one cluster and only one cluster.  In soft assignment objects are allowed to be only partly assigned to a cluster or assigned to multiple clusters.  In our system we make hard assignments, although one could also make a case for a system that put some webpages in multiple clusters if they applied to both. 

There are several techniques for flat clustering.  The most simple algorithm, and the one we used, is K-means.  In K-means, it is known beforehand how many clusters there are supposed to be.  Furthermore, each data element is represented by a set, or vector, of features.  These features could be the word count of the document, the x and y coordinates of some point, etc.  The centroid of each cluster is a vector of an equal number of features as the data elements that represents the average of the data elements within the cluster.  The centroids are initially set randomly (though we diverge from this), and after they are set each data element is assigned to the cluster with the closest centroid.  The centroids of each cluster are then recalculated as the average of all of the data elements within the cluster, and the data elements are afterwards reassigned.  This iteration continues until the clusters stop changing.  

Although K-means a standard clustering algorithm, it is usually effective.  Some similar clustering techniques are Clustering By Committee, or CBC, and average agglomerative clustering.  In CBC, the centroids are calculated as the average of just some of the members of a cluster.  This lessens the impact of outliers and data elements that only really sort of belong in the cluster.  In average agglomerative clustering, each pair of data elements are compared, and the most similar pair is made into a cluster whose centroid is the average of the two.  This process is then repeated, but now the centroid of the new cluster replaces the data elements belonging to it.  In other words each point is now compared to each other point or cluster, and the most similar pair forms a new cluster. This continues until the desired number of clusters is achieved.

An example of a system that uses techniques like these for document clustering is the Scatter/Gather interface designed at Xerox PARC.  The Scatter/Gather interface begins with a certain number of very general document clusters.  The user then chooses a subset of these clusters, the documents of which are then rescattered and reassigned to more specific clusters (hence the Scatter/Gather name).  By this method, the user is able to create more and more specific clusters from which to choose text documents.  The clustering used in this interface is similar to K-means, though probably more complicated.  In fact, the Scatter/Gather interface provided some of the basis for our method of feature selection, as we also tried to define features as words that would appear in certain documents but not others.     

The other basic non-hierarchical clustering technique is to use the EM algorithm.  Here you view each cluster as a Gaussian mixture (a normal distribution, bell curve), or as cause that helps create the underlying data.  For each object you can compute the probability that each cluster, or Gaussian, caused that object.  Like all EM algorithms, it is an iterative process in which you estimate the parameters, in this case of the Gaussian mixtures, and use these parameters to calculate the underlying data, in this case what clusters the object belong to (or partly belong to).  Although the EM algorithm seems significantly different from the K-means technique, it is really just a soft clustering K-means algorithm where objects can belong to multiple clusters (or Gaussians).

The Problem

With this brief overview of clustering, we now present our process of creating a clustering system for Google searches.  We wanted to take a list of Google search results from a and to determine in an unsupervised manner which sets of documents were related to each other.

We built data sets of the first several hundred search result URLs from various Google searches.  Our clustering program takes these URLs as input, attempts to download the referenced documents, and clusters those that download successfully.

Feature Selection

After the program downloads the documents, it scans each document for English words, and assembles a list of these words.  While these words could all be regarded as features for clustering, choosing relevant features is one of the major hurdles in text clustering.  We took the basic idea from the Scatter/Gather application (done at Xerox PARC) of comparing the counts of words present in multiple documents, yet made several alterations in order to reduce the dimensionality of the feature set.  This is necessary given the immense size of the list of words present in a set of, for example, two hundred web documents, and also allows us to perform clustering over the features we really care about, not just any words.

One fairly straightforward improvement was to rule out some of the most common words in English from the list.  We took out around 40 of the most common words (mostly comprising pronouns, prepositions, etc.), allowing our program to pay more attention to more substantive words.  We also performed the simple stemming operation of removing the plural “s” from the end of words.  These improvements help cut down on some of the “noise” - that is, certain non-indicative words may appear more often in some documents than others due to sheer chance, or some words may appear in the plural in some documents and in the singular in others, and by eliminating some of these distinctions, we can more effectively select useful features.

We then selected our feature set by choosing words which appeared a large number of times in a small set of documents, since this combination seems to intuitively indicate that a word is useful for identifying related documents.  We performed this by ranking words according to their score on the equation

norm ( average count when present ) * ( 1 – norm ( documents where present ) )

where norm is a normalization function.  We also decided to rule out words that appeared in fewer than 5% of the documents, which allowed us to ignore certain oddities of the web, such as small, non-English words appearing 18 times on one page but not on any others.

By ranking the features this way, we were able to take a small set of features that seemed to be indicative of the topic of a document.  A sample feature list, taking the top 20 features for the search query “jaguar”, follows, indicating the word, the average number of times the word appeared in a document when it appeared at least once, the number of documents the word appeared in, and the score based on these figures.

Word
avgCWP
nDocs
Score

review
4.333
12
0.206

mac
3.812
16
0.181

os
3.642
14
0.173

part
2.947
19
0.14

atari
2.916
12
0.138

car
2.828
35
0.134

black
2.75
8
0.13

game
2.733
15
0.13

apple
2.625
8
0.125

mk
2.375
8
0.113

content
2.285
7
0.108

team
2.25
8
0.107

write
2.235
17
0.106

new
2.161
62
0.102

magazine
2.111
9
0.1

xj
2.071
14
0.098

club
2.052
19
0.097

member
1.916
12
0.091

type
1.9
10
0.09

model
1.875
16
0.089

Clearly, feature selection is effectively choosing some of the words most indicative of different types of jaguar pages – the car, the Mac OS product, the Atari video game product.  Some indicators of the feline jaguar, including “tail” and “forest”, scored slightly farther down the list.

From this list, our program simply chose the top F features, where F is a constant determined by the user.  A more intelligent program might try to determine a cut-off for where features stop being useful, or try to choose an appropriate number to maximize the effectiveness of the clustering algorithm itself.  In testing, we found that giving the clustering algorithm too few features meant it did not have enough information to effectively cluster the documents.  On the other hand, giving it too many tended to bog it down with useless information and noise.  For our purposes and the size of our data sets, we picked a number in the middle, giving the algorithm enough information to distinguish documents while disregarding less useful features.

Feature Value Determination

Once we determined which features to use, we set the values for each feature for each document to the following:

norm [ Sum for each appearence ( 1 / distance from appearence i to search word ) ]

Thus, we set the value much higher for features that appear in close vicinity to some appearence of the search word in the document, and we give a feature that appears several times points for each appearence.  This seems to make sense, especially given the proven success of n-gram models in several areas of natural language processing.  It turns out that the few words around the key word give a lot more information about it than words even slightly farther away.  We wanted to represent that linguistic assumption in our algorithm, so we factored the distance in as shown above.

Clustering

The clustering task, fundamentally, receives a group of documents whose feature weights have been calculated and arranges them into clusters based on feature similarity.  Our initial approach to this problem, called "k-means clustering", performs the following algorithm:

1)  Choose k centroids in n-space (where n is the feature dimensionality)

2)  Assign each document to one of k clusters, where membership is determined based upon mean-squared error (a "hard" assignment)

3)  Recompute the cluster center (or "centroid") based upon cluster membership.  

4)  If convergence criterion is met, quit.  Otherwise, back to step 2.

We chose K-means because it is relatively easy to implement and leaves a lot of room for modifications and extensions within the algorithm.  Also, k-means has O(n) time complexity, where n is the number of documents(or "patterns") we give it to cluster.  K-means allowed us to minimize computation time spent on clustering itself and spend more time on feature selection and centroid selection, while still returning clusters in a few seconds.  We'll walk through the algorithm and explain our initial implementations and developments of each subtask:

1)  Our first simplification (and one that k-means requires) was that we ask the user to determine the number of partitions into which documents will be grouped.  We realized that unsupervised clustering without  this specification is a much more complicated task, where the clustering algorithm must not only choose initial centroid weights and partitions, but must determine exactly how many groupings are appropriate.  This would require a clustering heuristic which, as a pre-processing step, tries to extract pattern densities in n-space before clustering the patterns.  Either this, or an entirely different clustering method, in which the number of groupings arise organically, rather than as a pre-specified quantity.  We chose to simplify this part of the problem and to focus on implementing an effective k-means clusterer.  Although the final product is less powerful and useful when the user must specify the number of groupings, we greatly improve accuracy and time complexity when we don't require the program to make this decision.  With more time, we would certainly explore other clusterers (like an Agglomerative Clustering algorithm) whose partitions are determined on the fly.

Once we know the number of partitions we wish to make, there is the issue of choosing initial centroid weights.  The simplest way to do this is to assign a random weight for each feature in each cluster.  Our initial implementation employed this method.  Each feature received a weight between 0.0 and 1.0.  This performed very poorly.  Initial centroid selection is extremely important in k-means clustering: bad cluster selections can be so close together that they are indistinguishable, or so far apart that no patterns get assigned to one or another.  In most cases, a local minimum is reached, but the global minimum is not.  We observed that, in the vast majority of cases, all but a few patterns got assigned to one cluster, even when their features were quite dissimilar.  This was caused by a) the high (25 or so) dimensionality of our problem and b) the fact that these dimensions are generally correlated, and the random assignments of each feature weight individually did not account for this.  What we wanted were initial centroids that would pull the data apart: centroids that would have high initial membership, but that were substantially different so that they did not accumulate patterns that should be clustered.  Of course, we can't predict these outright, but we went about designing a method for choosing centroids that would give us better results by meeting these criteria.  We maintain that random assignments are terrible for this problem because there are many interrelated dimensions.  For example, if "car", "auto", and "cat" are dimensions for the "jaguar" search, an initial assignment of (.9, .2, .8) to a cluster is entirely unreasonable.  "car" and "auto" appear .  Though we cannot explicitly encode this information, we chose to gain a good approximation with the following method:

1)  Choose a random pattern from the data set.

2)  If the pattern does not have a substantial number of features  (i.e. has non-zero magnitudes in only a small fraction of dimensions) go back to 1.

3)  If the pattern is very similar to any of the already assigned centroids, go back to 1.

4)  If we're not finding another candidate after hundreds of tries, unassign the last centroid and go back to step 1.

5)  Assign the pattern to be a centroid.  If we have enough centroids, quit.  If not, go back to 1.

Note that we choose actual documents to represent the centroids.  This way we have initial weights that are reasonable(i.e. they are present in the data), and we presumably capture some of the correlation between certain features by choosing actual documents.  We also eliminate candidate patterns which have very few features : a document with too many zero weight gives no information for clustering- it only attracts documents in which feature words did not appear- it doesn't attract those with feature similarity in the sense of the same words appearing on like pages.  We require that candidate patterns contain at least ( t  / (n * 2)) non-zero features, where t is the number of features and n is the number of clusters.  So with 25 features and 2 clusters, we would only consider a document to be a centroid if it contained 6 non-zero features (i.e. 6 of the feature words appeared on the page).  We hand-tuned this equation, although it does presume that distinct clusters, in this case, will have at least 6 features which distinguish them.  This is, indeed, an assumption, but the equation works well because it accounts for the number of features and the number of clusters.

We also make a "similarity" measurement between patterns to rule out centroids that are too close to each other.  At first we used a simple distance calculation, but we realized this failed because zero-weights were representing similarities that we didn't want to capture.  For example, two documents of (.1, .1, .0) and (.2, .2, .0) should probably be grouped together in our case, but would have the same distance measurement at (.1, .1, .0) and (.0, .0, .0): two documents which are not similar.  This problem results from our using word counts as features: positive feature weights are MUCH more telling that zero weights, and we want to group non-zero feature weights together, even if difference between them is high.  

So, our "similarity" function calculates a similarity index: how many non-zero features do the pages have in common?  If they have lots, then they are probably quite similar.  If not, they aren't.  Our function keeps a score for each possible centroid by calculating how many features are unique to it relative to other centroids.  If it has more than (numFeatures/numClusters) unique features, we assign it.

This centroid selection heuristic gives us centroids that capture like-features, and are relatively distinct without being unreasonable.  The addition of this heuristic greatly increased performance, on the order of +20- 30% accuracy in 2 cluster cases and around +10% for 3 cluster cases.

2) We'll quickly discuss how we calculate the "distance" from one pattern to a centroid to determine membership upon each iteration.  Initially, we used a simple mean-squared error calculation, where the difference between each feature weight on the pattern and centroid was squared and summed to produce an MSE statistic.  This was minimized to find cluster assignment.  The performance was only slightly above baseline.  We realized that the problem was the same as before: if one document has a zero weight and another does not, we want to represent a dissimilarity much greater than the difference between the positive feature and 0.  A rough example: If one document A contains the word "cat "2 times, and document B contains it 30 times, and document C contains the word "cat" 0 times, we want to represent the information that C is more different from A then B is.  So, we modified our distance calculation function.

For each weight, if one of the two compared patterns have a zero-weight, we count the difference to be 1.0 (the maximum).  If both patterns have zero-weight, we count the difference to be 1.0 (under the presumption that if neither contain a feature, they are not similar with respect to it).  If both patterns have a weight, we count the difference to be the actual weight difference squared.  We toyed with the parameters here, and the ones above seem to do the best job of generating accurate comparisons of patterns.  We saw improved performance, on the order of 5-10%, with our new "distance" function. It most certainly captures the observation that zero weights demonstrate dissimilarity not represented by the MSE alone.  It could certainly be improved, however.  With more time, we'd like to investigate ways to appropriately capture the present/non-present feature difference, with something more precise and perhaps more mathematically sound than a hand-tuned formula.  

3)  To determine the new weights for this assignment, we make a calculation that "centers" the centroid among all those patterns that belong to it.  For each feature, we set the centroid's feature weight to the mean of all member patterns' weight for this feature.  This is exactly as described by the k-means procedure, and didn't present any problems for us.  It makes sense conceptually: if we've done our clustering well, the new centroids represent a template for pattern membership: an average of already assigned documents.

4)  Although there are many possibilities for convergence criteria, we chose, to start, to stop iterating when no patterns are reassigned over a particular iteration.  This seems to be the most constraining criteria for convergence, but we never encountered any serious time problems as a result, so we kept it.  If one iteration produces no assignments, clearly no additional iterations will, so our algorithm terminates and returns the assignments as they are.

Data Collection/Testing

Evaluating clustering is itself a very difficult task.  By nature, data elements often have an arbitrary number of features, and thus there are an arbitrary number of ways to group them.  For example, books could be grouped by author, title, subject matter, word count, etc.  Furthermore, even when you do decide on what categories you wish to group objects, there still may be some that appear to belong to more than one category or none.

For this reason we tried to make our evaluation as easy as possible by carefully choosing what lists of webpages we would cluster.  First we decided that we would try to cluster webpages by subject matter.  Or more specifically, by what sense of the search word was being used in the webpage (e.g. beer vs. world records, for Guinness).  (Note: this is still different from word-sense disambiguation because it is unsupervised).  To make this distinction easier, we tried to use search words where the different senses, and in turn the accompanying subject matter, were very different (e.g. car vs. panther, for Jaguar).  This allowed us to go through our lists of webpages and assign a category to each, throwing out those that did not fall into one of the common categories.  Using these assignments, we created corresponding .ans files for each .links file.  At the top of each .ans file we wrote how many categories there were and below we wrote a string on each line for each category (1 through # of categories, e.g. beer, records, actor).  Each time the WebCluster program ran, it wrote the category assignments, integers, to a file, clusters.out.  We then ran the compare.java program on this file and the corresponding .ans file.  

Now because the numbers assigned to each group by the WebCluster program probably did not correspond to the same numbers assigned to each group in the .ans file, we went through and chose the best fitting assignments.  For example, if the WebCluster assigned the numbers (0, 1, 2) for the three clusters, and the change of (0 = 2, 1 = 1, 2 = 0) produced the most agreement (correct answers) with the .ans file this was the assignment we made.  Our compare.java program exhaustively explored all of the factorial(numClusters) possible assignments to see which produced the most correct answers.  It then kept track of all of these changes, and printed out the WebCluster’s guesses for each website, whether it was right, and if it was wrong, what the correct answer was.  It also printed out the number of correct groupings and the percent of correct groupings (accuracy).  

It seemed reasonable to choose the best possible assignments because the clustering is unsupervised (i.e. there is no training data) so there is no way WebCluster would know what numbers to assign to each cluster.  Furthermore, assuming decent performance, which we did achieve, someone using the program would quickly figure out which group corresponded to Guinness the beer, and which corresponded to Guinness the world records.   

Results

The following table presents results for two search words, “guinness” and “jaguar”.  All tests below use 25 features and 200 URLs (of which many are non-HTML or unreachable).  The table lists the number of usable documents, the number classified correctly, the percentage classified correctly, and the average and baseline percentages for the data set.  We test each word using different sets of links, either the full set or a set pared down to a more-easily distinguishable subset of those.


Word
Clusters
Baseline %
Our Score %








Guinness 
3
58 (all beer)
58



2
54 (all beer)
77








Jaguar
4
58 (all car)
52



2
50
72

Clearly, our system does well above baseline when the data forms a small number of distinct groups.  Just as clearly, when presented with a large amount of diverse data that doesn't neatly fall into separate clusters, it has trouble distinguishing.  This is to be expected, and we would suggest that with the addition of some of the potential future improvements presented above, performance might vastly increase.

Sources

1) http://citeseer.nj.nec.com/jain99data.html
2) http://www2.parc.com/istl/projects/ia/sg-overview.html
3) http://citeseer.nj.nec.com/leouski96evaluation.html
4) Manning and Schutze, Foundations of Statistical Natural Language Processing
