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Maximum Entropy Text Classification by Political Stance

Can we determine a writer’s stance towards a partisan political issue simply by analyzing the wording he/she uses?  On a related topic, (Turney 2002, Pang et al. 2002) were able to roughly classify reviews of movies and cars as either positive or negative.  Both found that it was difficult to significantly improve on simple techniques. Pang et al used three different algorithms: a Naïve Bayes model, a Maximum Entropy model, and a Support Vector Machine model to classify movie reviews as positive or negative.  Despite looking at various features such as filtering and labeling Part of Speech and emphasizing different areas of the review such as the beginning and end, their best result was a simple unigram model. Turney used a simple Pointwise Mutual Information model to also classify movie reviews which did not prove to be as effective as Pang’s model.  More interestingly for our purposes, he compared the difficulty in classifying many different types of reviews, including movies, cars, banks, and travel locations.  Car reviews proved easier to classify whereas movies were the hardest, probably because movie reviewers were more likely to criticize many things such as the acting or script but still say they enjoyed the movie.

But what about politics?  This problem is harder in several ways. First, political stances are more subtle, and don’t usually correspond to valenced language. For example, pro-choice advocates would not describe abortion as “excellent.” They might instead argue that abortion is bad, but a woman’s freedom to choose is more important. Advocates of lower taxes would not call taxation “lame,” but might instead argue for how changes could invigorate the economy. 

Also, judging corpora is much more subtle than it would be for movie reviews. While Senators and Congressmen are under pressure to follow a set party line, the vast majority of the U.S. population isn’t. Many groups will fall somewhere between the Democrats and Republicans, and others will have entirely orthogonal views.
However, one factor makes this task easier than movie reviews: politicians are careful to use language that puts their own views in the best possible light. “Pro-choice” and “pro-life” advocates, for example, might use these two phrases to describe themselves, but would probably describe their opponents as “anti-choice” or “pro-abortion.” In the case of Social Security, Democrats describe Bush’s reform package as creating “private” accounts, while Republicans use the more friendly-sounding “personal” accounts. This suggests that it may be possible to distinguish stances on a particular subject based on surface features alone.

For this project, we chose to focus on the issue of Social Security because it is controversial, specific, timely, and highly partisan. Bush proposed a detailed set of reforms for his second term, and now, when Senators and editorialists discuss Social Security, they are usually arguing for or against this one set of reforms. Because the proposed changes are so controversial, we could find hundreds of statements, articles, and speeches written about Social Security in the last few months. Finally, because most people who write about Social Security are either for or against Bush’s reform package, we are more likely to find a clean split between two sides than we would for most other issues.  However, our results are general and should apply to any equivalent issue.
The ability to distinguish political stances automatically would have several applications. First, publicly editable references such as Wikipedia leave open the worry that someone with a partisan agenda will rewrite the page for a hot-button issue such as Social Security to favor his own side. It would probably be helpful, therefore, if new posts could be red-flagged for possible bias, so that moderators could then check to see if the posts are partisan propaganda.  Additionially, a news search engine such as Google News could label its articles based on partisan stance to ensure a balanced set of results, or allow users to filter out or choose articles based upon a particular stance.
Building a Corpus


In order to train and test our classifier, we had to build our own corpus of texts about social security that were classified based on their political stance.   This was not a trivial task, both in terms of effort and because there was a great deal of potential to introduce systemic biases into the classifier based upon how we constructed the corpus.   Even a fair corpus, if limited in scope, could restrict the applicability of the classifier or lead to training based upon factors besides political stance.


The texts of our corpus came from two main sources, mainly to make reading texts easier for the program. The first was Senators’ official websites.  We searched each Senator’s website and looked for issue statements or transcripts of speeches that related to Social Security, and we were able to find such information for roughly half the Senators.  Since these statements were fairly unambiguous it was simple to categorize them as for or against Bush’s reform proposal.  Yet for the same reason, and also because these statements were often short and narrowly focused on Social Security, these texts represented a fairly limited scope for training upon.

 Our second and primary source was the LexisNexis database of news articles.  LexisNexis archives congressional testimony as well as news articles from many local, national, and international newspapers (we found one editorial arguing against Bush’s proposal from a Lebanese newspaper).  We looked at virtually every article in the database mentioning “Social Security” from the last two weeks of May, as well as all such articles from national newspapers since the beginning of February. While this meant that our corpus was more biased in favor of recent texts since we had so many articles from late May, we decided that any biases from this would be more desirable than biases that would result from just taking the first search results from a more wider time range, since the first group of results tended to be focused on congressional testimony and detailed studies rather than the traditional editorials and news articles.   Naturally not all of these articles were classified, as we would get many articles on unrelated subjects such as identity theft of social security numbers. 


Hand-classifying these news articles for our corpus was a considerably more difficult and subjective task.  We quickly realized that what we should classify on was “political stance” and not “political bias”, since which side an article was advocating was much less subjective to determine than whether an article was biased or not.  Any article that reported on an event and acknowledged the arguments of both sides without taking an explicit stance was classified as “NEUTRAL”, whereas those which supported Bush’s reform bill were classified as “REPUBLICAN ” and those which opposed it were classified as “DEMOCRAT”. These words from here on will be used as the names of our three categories, and they were chosen more for convenience since naturally there are some Democrats who support Republican proposals and vice versa. Ultimately we ended up with 84 REPUBLICAN, 79 DEMOCRAT, and 72 NEUTRAL articles. We randomly distributed the files for each category into 60% training, 20% validation, and 20% test.
This classification did mean that articles in each category were often of certain characteristic types.  Congressional testimony always fell into the categories of REPUBLICAN and DEMOCRAT and never neutral, at least in the examples we found.  There was a disproportionately high amount of stump speeches by Bush that made up the REPUBLICAN corpus.  Columns, editorials, and letters pages usually fell into one of the partisan categories.   Short, factual newswire and articles which were about political gamesmanship and focused mainly on whether or not the Social Security reform bill would pass were a large part of the NEUTRAL corpus.

Algorithms and Implementation


Since our task involved classification, we decided that a good model to use would be a maximum entropy model similar to what we used for the classification tasks in the third assignment.  For this purpose, we used the Stanford classifier available publicly online to implement our model.  This maximum entropy classifier package performed all the algorithmic complexities of supervised training on labeled data.  Our main task was choosing the features to characterize each text in our corpus.  To this end, we chose some standard features like unigrams, bigrams, and trigrams over words, but we also added some more fine-tuned features for analyzing the quotes in the texts and judging the verb tense.  Our rationale for choosing the features that we did is explained in the section below.


The actual implementation of the code for reading the corpus and extracting features was fairly straightforward.  When creating the corpus, we basically labeled the category of each text by prefixing the filename with the name for the category.  For example, all neutral texts were prefixed with the name “n” (e.g. “n003.txt” was the third neutral text).  After reading in all the texts, we tokenized the words within the texts in order to detect n-gram features.  For this purpose, we did not take into account sentence boundaries.  We just extracted each word in sequence, discounting punctuation.  Some of the texts had header information in addition to the actually body of the text.  We made sure to strip the header information away before using the tokens for n-gram features.  Some of our other features, like the quote-related features, required the use of regular expressions on string representations of entire texts.  Normally finding complex regular expression matches for such large strings would be somewhat inefficient, but since our corpus was relatively small, the time required was minute.

Deciding on Features


As mentioned above, the first features we implemented were standard n-gram features.  Following the lead of Pang et al., we encoded these n-grams features on the basis of mere presence in the text instead of frequency, since this yielded superior results.  We decided to implement unigrams, bigrams, and trigrams over the words in the text.  To keep the number of n-grams small, we made all the words lowercase before entering them as features.  As expected, the unigrams were the most important of the n-gram features, and the value of the other n-gram features decreased as n increased.  We actually tried to implement “tetragram” features also, but the improvement in accuracy was unnoticeable.  Since our corpus was fairly small, the tetragrams were probably too sparse to be of much use, so we just choose to limit our n-gram features at trigrams in order to keep the number of features manageable.  We also took a few other measures to limit the number of features.  All words had to have a minimum of 100 occurrences in the entire training set in order to be counted in the n-gram features.  This limited the number of features without much of a loss in performance, since rare words should not be influential as features anyway.  Towards the same end, we also ignored any words that had less than 5 letters.


Another feature we implemented that was similar to the n-gram features encoded for the unigrams that occurred in proximity to the words “Social Security.”  Since the topic of each of the texts was Social Security, we figured that the words occurring near “Social Security” would be particularly important in determining the opinion of the text.  Our results for classifying texts based on this feature alone (as described in the section below) confirm the usefulness of this feature.  We chose a distance of 10 words on either side of each occurrence of “Social Security” as the threshold for being counted in this feature.  These unigrams are recorded in a separate feature category as “NEAR-word”.


Another simple feature we implemented was publication data.  The texts that had header information contained the name of the text’s publisher.  We used regular expressions to extract this information and encoded it as a feature.  In some sense this might be considered “cheating,” since publishing information is not necessarily part of the body of the text itself.  But we justified the inclusion of the feature on the basis that human evaluation of a text’s bias often takes the text’s publisher into account.  Whatever the case, this single feature was not very influential in our model for all practical purposes anyway.


A more sophisticated class of features we implemented involved extracting and analyzing the quotes within a text.  We used regular expressions to extract every quote from the text, as well as the word immediately adjacent to the quote on either side.  Then we added a “quote” unigram feature for each word in the quote, with a separate class of unigram features for the context words surrounding the quote.  The rationale for these features was that most opinioned texts would have quotes that supported the particular opinion of the text, making the words in the quote particularly useful as features in indicating opinion.  We also added features for counting the number of quotes within the texts.  The reasoning for this was the fact that the neutral texts typically contained more quotes than the other texts, though the effect was small.  Additionally, we tried to add features for the average length of quotes, but the evidence from these features did not improve the performance of the system.  We also tried to tweak the number of context words surrounding each quote.  We attempted to set the cutoff at 3 and 5 instead of 1, but the accuracy seemed to decrease the more context words we added.  This seemed to demonstrate that the context words were not very indicative of particular categories.  One last parameter we tried to tweak was the number of words within the quote necessary for the quote to be considered.  All the features mentioned above involved quotes of any length, including many 1-word “quotes.”  We tried to set the threshold at 4 or 5 words in order to select only the actual quotes.  Unfortunately, this change decreased our accuracy, probably because there were very few actual quotes to begin with, making the feature too sparse to be reliable.

The last major set of features we implemented attempted to characterize the verb tense the text was written in.  The rationale for trying to do this was the hypothesis that neutral texts were more likely to be written in the past tense, since they consisted more of articles instead of editorials or speeches, which contain more present tense verbs.  Our techniques for extracting tense information were rudimentary but effective.  We basically examined each token to see if it ended with “ed,” “ing,” or “en,” or it was identical to the word “will.”  The “ed” and “en” features were supposed to indicate past tense, while the “ing” and “will” features indicated present and future tense.  After making counts of all the occurrences of words of each type, we compared these counts with the total count of words in the text to obtain percentages.  Then we built features to encode these percentages, as well as features for comparing the percentages of “ed” words vs. “ing” words and “en” words vs. “will.”  Confirming our suspicions, we round that “ed” words were strongly indicative of neutral texts, while “ing” and “will” words were strongly indicative of REPUBLICAN texts.  Moreover, the occurrence of a higher percentage of “en” words than “will” and of “ed” words than “ing” words both indicated that the text was probably neutral.

Results.

We wrote a baseline classifier that distinguished between REPUBLICAN and DEMOCRAT texts by tokenizing the text, and choosing DEMOCRAT as soon as it sees “private” or REPUBLICAN as soon as it sees “personal.” (If it sees neither, it chooses randomly.) When tested only on the Senators’ texts, the baseline classifier performed quite well, correctly identifying the party of 39 texts, out of 50. Although we predicted a high baseline for these texts, it is still surprising that looking for a single pair of words would be so successful. However, as we added more articles, baseline accuracy diminished, to 65% on the final test set. (The baseline was tested only on opinioned articles and did not consider neutral ones.) This makes sense, because newspaper editorialists are likely to be more creative in their choices of words, and don’t face the same kind of pressure to use the party’s official wording. 

Is there an upper bound to possible accuracy?  Although we had a specific set of standards in classifying our texts, a lot fell on the boundary between categories, and the distinction was fairly arbitrary. It is likely that humans reading the same sources and using our standards may disagree with us on a substantial percentage of the articles. Therefore, it is unrealistic to expect accuracies above 90%, no matter how good the system.

In our preliminary tests, our classifier was fairly good at distinguishing between Democratic and Republican senators: after training on 30 Senatorial texts, it correctly identified 17 of the remaining 20. However, when we tested on the final training set, which included editorials as well, accuracy dropped to 31 out of 40, or 77.5%. We expect this difference is probably due to the greater diversity among the articles. While Senators are pressured by their parties to give the official sales pitch, columnists are free to be more creative with their language. It makes sense, therefore, that surface features wouldn’t perform as well for articles.

Some articles’ stances were subtle enough that it did seem like they would be very hard to classify, and indeed many of these harder articles were ones that our classifier labeled incorrectly.  Many of the neutral articles quoted extensively from both Republicans and Democrats, meaning a lot of partisan language was included in neutral articles.  Sometimes partisan text focused mainly on refuting the other side.  For example, one article discussed how when President Bush traveled around the country to give speeches, most of the question-and-answer periods are staged by campaign managers to give the false impression that certain groups, especially youths, support Social Security reform. While clearly a DEMOCRAT text, the article didn’t really mention any of the standard liberal arguments against social security reform and did quote extensively from the Republican campaign managers who traveled around the country to push Bush’s plan.

When neutral texts were added to the training and test sets, accuracy dropped further, to 41 out of 54, or 75.93%. This drop is expected, because then there are 3 choices to choose from, rather than just 2. We were surprised the drop wasn’t even larger, because distinguishing neutral texts from opinioned ones is inherently harder than distinguishing the two sides. While one side is unlikely to use the other side’s terminology, news articles will have to use terms from at least one side. (For instance, what could a journalist call the proposed accounts besides “private” or “personal?”)

We also tested on other combinations, including neutral vs. opinionated, neutral vs. DEMOCRAT, and neutral vs. REPUBLICAN. These performed surprisingly well: 85.19%, 85.29%, and 82.35%, respectively. These look like promising numbers, but for reasons outlined below, we believe these numbers are inflated because of characteristics of our corpora. 

As predicted, “personal,” “private,” and their derivatives turned out to be useful features: any text using “personal” was likely to be REPUBCLIAN, and any text using “private” was likely to be DEMOCRAT or NEUTRAL. Other than these two, most useful unigrams served as markers for some of the common arguments used by either side. An amusing finding is that “history” was associated with DEMOCRAT, while “future” was associated with REPUBLICAN. (Republicans talk about benefits to “future retirees,” while Democrats cite the “lessons of history.) “Important” was linked with DEMOCRAT (several DEMOCRAT texts had phrases like “Social security is the most important domestic program…”). DEMOCRAT texts were more likely to mention “poverty” and the “disabled.” The most useful unigrams for recognizing neutral sources were “Democrats,” “Republicans,” and “congressional,” which are of course common in articles about the actions of Congress. Thus, it appears that much of the success in distinguishing NEUTRAL texts comes from features that distinguish news articles from editorials.


In order to judge the effectiveness of each of our features, we performed classification tests for each feature in isolation.  As expected, unigrams alone accounted for 72.22% accuracy in classifying between DEMOCRAT, REPUBLICAN, and neutral texts.  The next best performing features alone were the unigrams near occurrences of “Social Security,” which yielded a 66.67% accuracy.  This result is plausible, since the words near “Social Security” are very likely to play an influential role in characterizing the category of the text. For example, we expected words that connote danger like “crisis”  to indicate REPUBLICAN articles, but actually found that the opposite was true, likely because Democrats frequently argued that “there is no Social Security crisis.”  We also found that most of the n-grams found near “Social Security” were not that different from n-grams found across the entire texts, yet the feature still helped.  This is likely because some texts were about two or three different issues.  For example, many of the Bush stump speeches often talked about Iraq and Judicial Appointments in addition to Social Security.  Focusing on words near “Social Security” probably helped to focus training on relevant parts of the texts.  Bigrams and trigrams constituted the next most influential features at 62.96% and 64.81%, respectively.  The publication feature alone performed at 50%, while the quotes and verb tense features performed each at around 45%.  Though these percentages are considerably lower than the n-gram models, they still constitute an improvement over the 33.33% accuracy yielded by random guessing.   In addition, since the quote and verb tense features were fairly distinct from the n-gram features, they still had a fairly independent contribution to the accuracy when all the features were amassed together.  This is probably less true of the unigrams near “Social Security,” since many of these features were already encoded by the standard unigram features already.


In fact, our results indicate that the quote and verb tense features we developed improved the accuracy of the classifier.  Comparing the accuracy considering unigrams features, unigram and bigram features together, and unigram, bigram, and trigram features, we found that all three classifiers obtained the same 72.22% accuracy.  But when we added quote and verb tense features on top of these n-gram features, the accuracy increased to 74.07%.  When including all the rest of the features in our model, the accuracy improved further to 75.92%.  These results are summarized by the charts in the appendix. Because the combination of all features offered only moderate improvements over unigrams alone, there must be considerable overlap in what our different features picked up. 

Classifying neutrals without training on neutrals.
Unfortunately, this work on identifying neutral texts led us to worry about whether the classifier was really sorting neutral texts from opinionated ones, or simply classifying the text by type. Ideally, an opinion classifier shouldn’t rely on features such as the number of quotes which separate news from editorials. If the ultimate goal is to be able to take arbitrary texts and identify the author’s stance, only the content should be considered. Unfortunately, we couldn’t think of any single genre of writing that would contain both opinionated and neutral articles in ample supply, so most of our neutral texts were journal articles, while most of our opinioned ones were senators’ issue statements or editorials. 

We tried, therefore, to classify texts as DEMOCRAT, REPUBLICAN, or NEUTRAL without training on any neutral texts. This way, there would be no chance of the classifier unfairly picking up news-style features. Our assumption was that an article supporting one side would contain more evidence to support that classification than would a neutral article. This isn’t to say there would be no partisan language. For example, any article would refer either to “private” or “personal” accounts; what else would you call them?  However, neutral articles should contain, on average, fewer of these partisan buzzwords. Our algorithm was as follows:

· Train the MaxEnt classifier on all of the DEMOCRAT and REPUBLICAN texts in the training set. (It would, therefore, only have the labels DEMOCRAT and REPUBLICAN.) 

· Then, we would score each article in the validation set by the quantity of “positive” evidence for DEMOCRAT and REPUBLICAN. By positive evidence, we mean this: normally, the MaxEnt classifier scores a datum by adding up all the feature weights, which can be positive or negative. We took the positive evidence score to be the sum of only those weights which are positive.

· For each article, adjust its score to account for its length. 

Our first inclination was to use 


evidence / (log length + k),

where k was an arbitrary constant we could tweak on the validation set. Our reasoning was that a word is only added as a feature the first time it is encountered in a text. Generally, the number of distinct words in a text is proportional to the log of the length of the text. It would make sense, therefore, that evidence would at least roughly follow a log function. However, in practice the formula


evidence / length ^ 0.45

gave better results on the validation set, so we used it. (The main criterion for our fitting function was that the classifier should assign NEUTRAL to roughly the same percentage of short articles as it does long ones. We didn’t try to do this formally, but rather just eyeballed it, and 0.45 seemed about right.)

· For each of the validation sets (DEMOCRAT, REPUBLICAN, and NEUTRAL), compute the mean adjusted scores over that category for each label.

· Define the DEMOCRAT cutoff to be the arithmetic mean of the average adjusted DEMOCRAT scores for DEMOCRAT and NEUTRAL articles. Define the REPUBLICAN cutoff analogously.

Then, to classify a given text,

· Determine the classification given by the MaxEnt classifier (which will be either DEMOCRAT or REPUBLICAN).

· If it is labeled DEMOCRAT, check if its adjusted DEMOCRAT score is higher than demCutoff. If so, label it DEMOCRAT; otherwise label it NEUTRAL.

· If the text is labeled REPUBLICAN, do the analogous operation.

The results of this method were poor. When run on the test set, it got only 31 correct out of 54, or 57.4%. (This is especially discouraging, since we ran our original 2-class classifier on the same test set, and it got 32 correct without assigning a single NEUTRAL.) This suggests that the use of cutoffs probably isn’t of practical value for distinguishing NEUTRAL articles. Because the features used to distinguish the articles were identical to those in the previous section, we do not discuss the features again here.

Presumably, performance would improve somewhat if we’d used real curve fitting techniques. However, much of the poor performance probably stems from the inherent inability of n-gram features to determine a writer’s stance. The appendix shows four scatterplots; the first one shows DEMOCRAT evidence vs. length, the second shows REPUBLICAN evidence vs. length, the third shows the difference vs. length, and the last shows DEMOCRAT evidence vs. REPUBLICAN evidence. In these plots, the NEUTRAL articles seem hard to distinguish from the REPUBLICAN ones. 

Conclusions
We are pleased with the results we achieved with our MaxEnt model, but there is still considerable room for improvement. Most likely, any further improvements will require deeper analysis of the texts than what we have already done. For example, a system that can detect the important sentences in a text could provide features that more accurately represent the overall point of the text. Also, it would be important to check for negated sentences, such as “There is not a looming crisis,” so that these are not categorized the same way as the affirmative.  Additionally, a Word Sense Disambiguation system would help to decipher words which are used by both sides but with very different meanings, for example Democrats might use the word “save” in reference to individuals saving for their future without risking it in investments whereas Republicans might more often use the word “save” in the sense of “rescue”. Some richer features would also be possible with a broader corpus.  For example, we had many instances where the President would give a speech on Social Security and several other texts would comment or respond to it.  These types of references make up a good portion of many texts, and if we could search our corpus for what is being cited, we could use its classification to help determine the stance of the new article.  This would probably only be effective in combination with a more rigorous way to determine the context of quotes to see if they are being cited as support or used as a stance to argue against.  Finally, a system which allowed truly deep understanding of arguments and was able to form a logical construction of an article’s argument would be useful for determining what a text is advocating versus what it is using as a straw man argument.  However, a system such as this is itself a much more difficult task than simple categorization, to the point that if there were such a system that was reliable our task here would be rendered trivial. 
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