Finding experts in a given domain
Chihiro Fukami

Aswath Manoharan

Introduction:

The World Wide Web has vast amounts of information of various types ranging from news articles, academic papers, resumes and blogs. Consequently everything today, begins with a web search. From searching for reviews of nearby Thai restaurants, to finding show times for the Da Vinci Code, looking up the latest stock prices and searching for directions and maps before leaving on a trip, web searches have become ubiquitous. But web searches still present data in an unstructured form. Search engines present documents containing the search query as a series of links. The onus is still on the user to open each document, scan through it and extract whatever information he finds relevant and discard the rest. This is still a time-consuming process, made worse by the fact that not all the documents presented by the search engine might even be relevant. Even worse could be that the most relevant document is somewhere in 10th page of the search results. It is quite inconceivable that any user actually opens search results that deep.
One can imagine tools that automate this process. Such tools would scan through all the documents, extract relevant information, try to provide some sort of a structure to unstructured information and finally present this information in an interface that makes sense to what is being searched. For example, when a patient is searching for physicians in his area, instead of him just seeing a series of links, a potential tool could present just the names of physicians, their addresses and contact information, their specializations, their rates and office hours in a neat spreadsheet format. The user could sort this data on each of the different attributes; in case he wants to find the closest physician he could sort them by location, if he is penny conscious he could sort by their rates. The tool would extract all this information from the series of links that were the result from a search engine.
In this project, we attempt to build one such tool. Specifically we aim to find experts in a given field. People often search the web for experts in a particular field. Parents are on the lookout for the best tennis coaches for their prodigious kids. Recruiters and headhunters are constantly on the search for talent in particular fields. Attorneys need to scout for expert witnesses in some of their cases. Journalists need to interview experts for an article they are working on. Most of explorations begin with a simple web search such as “music industry experts” or “scholars in Latin American history”. Users are then confronted with a series of links just as always – we hope to alleviate their problem by trying to extract relevant information (experts) from the series of links.
Who is an expert?

The definition of an expert is itself quite nebulous and vague. For the purposes of this project we determined a few simple heuristics. All these heuristics were based on the fact that a web search would be the initial step. The heuristics are:
· If a name occurs in more than one document (we call this cross-document frequency), the name is likely an expert’s name. If we are searching for “Famous physicists”, it is likely that Albert Einstein’s name would occur in more than once document. The more news articles that talk about the same person, the more ‘expert’ the person is. Note this is different from raw frequency. A name could occur in the same document 100 times (in an interview with the person for instance), but if it does not occur in any other document, it gets a cross-document frequency of 1. A name that occurs once each in two different documents gets a cross document frequency of 2 and this gets a higher rank than the previous name that occurred 100 times in just 1 document.

· If a name is explicitly characterized as an expert. There are distinct patterns by which a name is characterized as an expert such as “Person X is a noted expert in Domain Y”. We attempt to capture such instance.

· If a person has won awards, has been quoted or his articles have been cited, he is probably an expert.

It needs to be emphasized that all these heuristics were determined before we began work on the project and one of the goals of this project was to explore how well each of the different heuristics worked.
Extracting Names:

A key component of the project was to extract names from documents. However this is not the primary focus of the project, hence we decided to use pre-existing packages to analyze a given text document, we used LingPipe, which is a Java library that contains programs for linguistic analyses of the English language. One of the demos that were part of the LingPipe package was a tool that takes a block of text, divides it into individual sentences, and then finds proper nouns (i.e. people’s names, locations, and organizations) within each of the sentences. The output is an XML file that categorizes each of these and tags them.

Because this demo directly connects to a database on a server that contains statistical data on sentence structures and categorized names, in the manner that we stored data in hashtables in previous assignments, instead of creating our own software, we wrote a program that basically communicates with the demo to input our own files and receive the resulting XML data. Further, our program parses through the XML and extracts people’s names, writing them to a file. This data is then passed to other modules.

We also looked at another open source package called Yamcha. However this required training data to be supplied and we did not want to spend time doing that. Lingpipe however came with a built in model. Hence we decided to go with Lingpipe.

Patterns of Expert Characterization:

As mentioned in an earlier section, most times in news articles, blogs, interviews, profiles and biographical sketches experts are often identified using a certain set of patterns. It is quite common to see phrases like, “Professor Angus Wallace, one of the foremost orthopedic surgeons…” or “Dr. Kain is an expert in science education for high school kids”. These patterns not only classify a name as an expert, they also distinguish names of experts and non-experts (such as the journalist who wrote the article) that occur in the same document. Our approach was to try to enumerate all these different patterns offline and then look for occurrences of these patterns in the search results given by a search engine.
Our solution is based on the DIPRE (Dual Iterative Pattern Relation Expansion) paper by Sergey Brin and the paper “Learning Surface Text Patterns for a Question Answering System” by Deepak Ravichandran and Eduard Hovy. Both the approaches are quite similar and use an iterative learning process to extract relevant patterns. In the DIPRE paper the goal was to extract all occurrences of books and authors from the World Wide Web. Briefly this is how their solution works: They start out with an initial seed of <book, author> pairs. The web is searched for all occurrences of this pair. Patterns that represent the connection between this pair such as “<Book> was written by <Author>” or “<Author> wrote <Book>” are extracted and represented as regular expressions. Then the patterns are searched for in the web and from the resulting set of patterns, new <book, author> pairs are extracted. A new set of patterns are extracted from these pairs and these patterns are in turn again searched. Thus this process is repeated iteratively until a large set of books and authors are extracted. A similar approach was used in the Ravichandran paper to extract question and answer patterns.
We used a similar approach. Our method differed from DIPRE in that instead of beginning with occurrence pairs and then proceeding to extract patterns, we performed our bootstrapping in the opposite direction. We began with an initial pattern and then proceeded to extract <expert, domain> pairs and from those pairs, extract further patterns and so on. There were two reasons why we did this:
· We realized that the patterns were highly specific and sensitive to the domain being searched. Searches of patterns extracted in this fashion would not yield further <expert, domain> pairs.
· The other problem was that since patterns are very specific to a particular domain, starting our iterative learning from an initial seed of <expert, domain> pairs would result in a very skewed and unrepresentative collection of patterns.
Here is the algorithm for learning different patterns:

1) Start with an initial seed pattern. In our experiments, we used a single pattern which was <Name> is an expert in <Domain>

2) Search for this pattern in a search engine. For example, we searched for the phrase “is an expert in” in Google.
3) Download the top 100 results.

4) Each document is converted into a standard text file with a sentence in each line. Extraneous details such as menu items, html tags are removed.
5) Sentences that contain the search phrase are extracted.
6) If the sentence has a name (recognized using a name density recognizer) it is extracted. The 10 words following the phrase are extracted as the domain. Thus we have a <name, domain> pair now. (In our experiments we relaxed the requirements a bit. Details further down).

7) Search for the name and domain in a search engine. We used “<Name>” + “<Domain>”

8) Apply steps 3,4,5

9) Extract text between the occurrence of a name and a domain. This constitutes a pattern.

10) Go to step 2.

In the following section, we outline some of the results we obtained during various steps of the iterative learning process. We began with an initial seed pattern:

<Name> is an expert in <Domain>

Applying the algorithm above resulted in 324 <Name, Domain> pairs. We present a sample of them in the table below:
	Name
	Domain

	Kenneth Manning
	Strawberries, Fruit quality and flavor

	Prof Wyn Grant
	Pressure groups and protest movements

	Bryan
	Enterprise Data Management

	Robert
	IT Architect

	George Loewenstein
	impact of emotions on decision-making

	Allan H. Meltzer
	international financial reform

	Nieto-Solis
	economics of the European Union (EU)

	Vaz
	Civil-military relations

	Richard Pfaff
	Middle East and world affairs

	Peter Gries
	Chinese Politics

	Don Anair
	Diesel Pollution

	Jonathan Dean
	International Peacekeeping

	Laura Grego
	Space security

	Edwin Lyman
	nuclear weapons policy

Though our seed pattern was (<Name>”is an expert in”<Domain>), we did not strictly adhere to this pattern when extracting pairs. As long as the <Name>, the search phrase (“is an expert in”) and the <domain> were in the same sentence, we extracted pairs. We found many examples like “Professor Angus Wallace, Chair of the Orthopedics Department in Queen’s College, is an expert in orthopedic surgery. For the most part, as long as the name and domain were in the same sentence even if they did not strictly adhere to the pattern, they were a valid <name, domain> pair.
Actually we went a step further than just looking at a single sentence. Many times we encountered text passages like:

Professor Angus Wallace studied medicine in Cambridge University. He is currently a faculty member in Queen’s college. He is an expert in Orthopedic Surgery.

Here, the <Name> and the <Domain> are not in the same sentence, but yet the connection between the two is obvious. We modeled this by noting that if only one name occurred in a paragraph and a domain was also encountered, it was quite likely that the name and domain were connected. Hence it is more accurate to say that the initial seed pattern is:

<Name> <some text> “is an expert in” <Domain>

We used this principle throughout. We relaxed our patterns to accommodate random text between an occurrence of a name and a domain as long as another name did not occur in between.

Pattern extraction from <Name, Domain> pairs:

Once we had these <Name, Domain> pairs, we first did a web search for them using a search query “<Name>” + “<Domain>” and downloaded the top 100 results. We extracted text between the occurrence of a <Name> and <Domain> as a pattern. This initially gave a large number of highly dubious patterns, especially if the name and domain are far apart in a sentence. So we limited patterns to 10 words or less. That eliminated a large number of the dubious patterns. Nevertheless, there was some minimal manual intervention involved in this step to ensure that the extracted patterns were okay.
Using the <Name, Domain> pairs obtained in the previous step, we extracted the following patterns:
	<Name> <text> “, an expert in” <domain>

	<Name> <text> “is an expert on” <domain>

	<Name> <text> “, a specialist in” <domain>

	<Name> <text> “specializes in” <domain>

	<Name> <text> “is a specialist in” <domain>

	<Name> <text> “is a world-recognized expert in” <domain>

 All of the above patterns are valid patterns. Particularly patterns 1 and 2 are subtle variants of the initial seed pattern that the algorithm picked up. A common variant of the phrase, “Prof Angus Wallace is an expert in orthopedic surgery” is to say “Prof Angus Wallace, an expert in orthopedic surgery, teaches in Queen’s College, London”. It might sound a little disappointing that given 324 <name, domain> pairs, we have managed to extract only 6 new patterns. However, that is unfortunately the nature of the problem space. In the DIPRE paper, the authors attempted to extract <book, author> pairs from pattern. They managed to extract several more patterns in every iteration. This is because the pair of <”William Shakespeare”, “Romeo and Juliet”> is likely to occur far more times in the web than any <name, domain> pair we are searching for. Despite the ubiquitous Prof Angus Wallace in this document, he probably occurs very few times in the web. Most of the other <name, domain> pairs occur just once and that too in the original seed pattern. However, given that we extract so many <name, domain> pairs even if a very few of them yield new patterns, we are in good shape.
Using the above patterns we extracted a further set of <Name, Domain> pairs. We extracted 924 pairs. We present a sample below:
	Dr. Andrew Oswald
	Oil markets and pricing

	Dr. Harriet Riches
	History of art

	Judith Abbot
	History of Medieval Europe

	Dr. Nath
	Neurofibromatosis

	Dr. Van Laeken
	Abdominoplasty surgery

	Dr. Magiaterra
	International Public health

	Susan
	Asian art

	Ms. Sheila Gladstone
	Employment Law

	Dr. Moazami
	Cardiac surgery

	Dr. Giunta
	Phalloplasty

	James Scott
	Southeast Asia

	Wanda Boda
	Biomechanics

	Lynn R. Chominsky
	Gamma ray astronomy

	Dr. Liebermen
	Cardiac rhythm disorders

	Dr. Hebert Dupont
	Travel Medicine

The interesting thing about the data above is that an unusually large number of experts in medicine-related fields. This is primarily because of two patterns that were extracted in the previous iteration:
	<Name> <text> “, a specialist in” <domain>

	<Name> <text> “specializes in” <domain>

The words “specializes in” and “a specialist in” are used quite often in conjunction with medical professionals and their associated domains. It is interesting to note that this pattern was extracted from a completely non-medical context. In the previous iteration one of the <name, domain> pairs was <Peter Gries, Chinese Politics> and when searching for that pair one of the sentences isolated was “Peter Gries is a specialist in Chinese Politics”. This example is illustrative of the power of this approach – correlating phrases and patterns from completely unrelated contexts.
Thus we continued the iterative bootstrapping learning process. At the end of the process, some of the patterns extracted were:

	<Name> <text> “, an expert in” <domain>

	<Name> <text> “is an expert on” <domain>

	<Name> <text> “is a world-recognized expert in” <domain>

	<Name> <text> “,a world-recognized expert in” <domain>

	<Name> <text> “an internationally renowned expert in” <domain>

	<Name> <text> “known for his work in” <domain>

	<Name> <text> “, a specialist in” <domain>

	<Name> <text> “, a specialist on” <domain>

	<Name> <text> “one of the foremost experts in” <domain>

	<Name> <text> “is a well-trained and experienced” <domain>

Most of the work in this part was automated. But however the act of typing in search queries in Google was manual. Therefore, there were obvious limitations to how many iterations we could learn from and also how many queries could be typed in a particular iteration. It is quite possible that with a completely automated process and an exhaustive search of the web of all instances extracted in each iteration, the results would be much better. Even with this semi-automated, randomized process the results were quite good. We have managed to extract a lot of patterns. As a proof of concept this was quite okay.

Maximum Entropy Classifier:

We built a maximum entropy classifier to address the third heuristic. This was built to classify sentences as a citation, a quote or an award. We used the same maximum entropy code that we developed in assignment 2. The features we used were quite obvious, such as presence of a quote character, presence of the word said or say for quotes, presence of the word ‘award’, ‘won’, ‘reward’ for awards and the presence of multiple names for a citation. However this was a stand-alone module and we did not integrate it with the rest of the algorithm. As future work, this module can be integrated with the name density recognizer to compute the rankings of experts (the more citations, awards, quotes a person has, the more ‘expert’ he is).
Testing Module:

The bootstrapping learning of patterns and the maximum entropy classifier learning are both done offline. There is no learning involved in computing cross-document frequency. The testing module makes use of the learning done offline. Results from a web search are extracted as a series of text files. The name density recognizer is then run on the text files to extract the names that occur in them. The cross-document frequency is computed for each name. Then each document is scanned to see if any of the patterns characterizing experts occurs. If such patterns occur then the name that occurs in proximity to a pattern is reported as an expert. As described above, we have been flexible here, if a name and pattern appear even in the same paragraph (provided no other name occurs here), this name is reported. Ideally, every line that has a name occurrence in it would be passed to the maximum entropy classifier which would classify the sentence as a quote, citation or award. But currently it is a stand alone module. In our current implementation, a lot of the modules are stand-alone components and do not interact which other. We had to run lot of the modules sequentially (extract text files first, run the name density recognizer on them, pass the output to and the text files to testing module). Our various components are in different languages too (the extractor is in C++, the iterative learning is in C#, the maximum entropy classifier is in Java, the module that interacts with the name density recognizer is in Java).
Results:

In order to test our methodology, we pretended we are users and tried to search for experts in different domains and see how our various heuristics performed. The notion of a specific domain is itself quite nebulous. But however, we tried a few different fields that could be called different domains. We tried to ensure that the domains are as diverse as possible to ensure that we understood how well our techniques worked.
French Politics:
Here, Cross-Document frequency did not yield any meaningful results. No name extracted occurred more than once. This is probably because none of the names encountered are ‘household names’ and hence do not occur more than once. Some of the names obtained are:

	Dr. Jim Shields

	Dr. Roger Duclaud-Williams

	Ahmad ash-Sheikh

	Byron Criddle

	Michael Gruter

All these above names were extracted after scanning for the patterns learned in the bootstrapping learning.
Famous Physicists:

In order to test whether cross-document frequency works, we tried this domain. The hope was that a search for “famous physicists” would result in some ‘household’ names, which would be present in more than one document. The results were mixed. Some names did indeed occur in more than one document. “Stephen Hawking” occurred in about 12 documents and “Fermi” occurred in 3 places. We expected to see Albert Einstein topping the list. After all who is a more famous physicist than him? Surprisingly enough, the name density recognizer did not even recognize “Einstein” as a name! On checking, we noticed that “Albert Einstein” indeed has a high cross-document frequency. It occurred in 49 documents. At least this shows that in principle cross-document frequency is a valid heuristic. Unfortunately we are constrained by the poor performance of the name-density recognizer.
It also extracted one instance using a pattern:

“Antonov, world-renowned specialist in Luminescence…”

Sports Medicine:

Again, here Cross-Document frequency did not yield any meaningful results. All the names extracted only occurred in a single document. No name occurred in more than one document. Based on the patterns learnt, we obtained a lot of names. Some of them are:

	Dr. John A. Lombardo

	Dr. Sherwin Ho

	Dr. Holly Benjamin

	Dr. Joshua Siegel

	Omar Darr

	Dr. Kelly

	Dr. Chandran

	Dr. Fisher

The algorithm performed very well in this domain. This was because of the patterns “is a specialist in” and “specializes in”. These patterns probably capture every expert in medicine! It is quite interesting that these patterns were extracted using non-medical <name, domain> pair! We obtained it from the pair <Peter Gries, Chinese Politics> when we found an occurrence of “Peter Gries is a specialist in Chinese Politics”.
In subsequent work, one can compute a ranking of all these experts based on the number of publications, citations, awards and quotes in news articles. This can either be done with the data from the results of the initial search or once a set of names have been identified, one could do a web search on just each of the names and compute a ranking based on that. We have a classifier to identify citations, quotes and awards, but it is not integrated with the rest of the system.
Discussion and Future Work:
We approached this project as mainly an exploration of ideas and a proof of concept. By that yardstick, the project has been a success. Though our results have not been spectacular, they have not been disastrous either. The results are good enough to indicate that this approach is indeed feasible and warrants further investigation in each of the many components. For example, some of our results were undoubtedly hampered by the poor performance of the name density recognizer. There is definitely scope for improvement there. A completely automated and exhaustive bootstrapping learning process could potentially learn many more patterns. The pattern recognition component alone deserves a closer look. We have gone beyond just using regular expressions. We have been flexible to capture patterns even if they did not occur in the same sentence, but occurred in the same paragraph if no other name occurred. There could be more powerful paradigms built for pattern representation. A more powerful maximum entropy classifier could be built and also integrated with the rest of the components. Integrating everything together could improve performance and also facilitate more exhaustive testing. The project had a very limited time frame and it did not permit us to develop a complete full-fledged product. Nonetheless, this avenue is a very promising area of further exploration and development.

Acknowledgements:

We thank Prof Chris Manning and Bill McCartney for their help and suggestions during the course of the project.

References:

[1] Extracting Patterns and Relations from the World-Wide Web, Sergey Brin
[2] Learning Surface Text Patterns for a Question-Answer system, Deepak Ravichandran, Eduard Hovy

