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Abstract 
 
Most current QA systems attempt to find answers to input questions by cleverly selecting 
portions of related documents. In this paper, we discuss an alternative approach for taking 
advantage of the large amount of pre-answered questions available on the web and 
finding a similar question that has already been answered. Our approach involves query 
transformation as breadth-first search with expansion by Wordnet and pruning by 
language model, in order to transform the question into the language of the question 
corpus. We use a combination of NLP and IR techniques to return the most relevant pre-
answered question. We discuss experimental results comparing our system to other QA 
systems. 
 
Introduction 
 
In the last several years, question answering systems have become very popular, as 
evidenced by the TREC QA competition. Standard search requires users to enter 
keywords to guide a search engine, but an interface that allows users to ask questions 
directly is much more intuitive for many users. Question answering systems are 
especially useful in that they allow a user to enter a question, and the system attempts to 
use the added context in the question to provide a better answer than simply extracting 
keywords for standard document search. 
 
Most current QA systems attempt to retrieve an answer from a set of documents, or 
generate an answer from a data source. We propose a slightly different approach. The 
internet contains vast amounts of knowledge including questions that have already been 
answered, along with those answers.  
 
This data exists in FAQs, Yahoo answers, Google answers, lawguru.com, and many other 
resources. Rather than answer the question ourselves, our QA system uses these already 
answered questions as the answers to an input question. Thus, our system attempts to find 
the most similar question to that of the user, and then hopefully the stored answer is also 
a good answer to the input question.  
 
We return the best several questions if they appear to be relevant, and let the user choose 
which answer he wants to see. If there are no relevant questions, we indicate that we do 
not have a stored answer, and a complete application could revert to standard information 
retrieval techniques. Our goal is a system that produces results with better precision than 
Yahoo answers, but still has reasonable performance. 
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Algorithms/Method 
 
Overall Description 
 
Given a set of questions and answers as a knowledge base, we take as input a user's 
question phrased as one to several English sentences. We then attempt to map the user's 
question to the questions and answers in our repository. Our system returns a set of 
ranked relevant question and answer pairs to the user. 
 
Note that this is distinctly different from traditional Information Retrieval in that we are 
attempting to map input questions to stored questions (that we already have answers to), 
as opposed to mapping input questions directly to documents. 
 
The core of our approach is an attempt to transform input questions into the language of 
the question corpus, and then find the closest matching repository question. The 
transformation is done by a breadth-first search via rewriting of words in the input 
question according to Wordnet synonyms, and pruning the search tree by removing low-
probability rewritten sentences according to a language model trained on the question 
corpus. Once the input question has been rewritten into language close to that of the 
question corpus, we run tf-idf information retrieval algorithms with only bigrams to find 
the closest questions. If the final scores are too low, we determine that there is no 
matching question/answer pair in the repository. A diagram of the process is below. 
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Figure 1: Overall data flow for our Question->Question system. 
 
Data 
 
We chose to use a subset of Yahoo questions as our question repository. This data was 
easily available to download with a web crawler, and contains a very large number of 
pre-answered questions. We obtained around 100,000 question/answer pairs from the 
health section of Yahoo questions, but there are many other categories as well. We used 
the health questions exclusively in the IR component of our process, but added about 
50,000 question/answer pairs from related sections (like pregnancy/parenting, etc.) for 
training the language model. We chose health because we initially wanted to limit our 
domain in order to apply domain-specific knowledge from some data source (expert 
system or semantic web, etc.) Our final project did not actually use a semantic web, so 
our system should generalize to other questions as well. 
 
Question Rephrasing 
 
Question rephrasing consists of several parts, which are described in the following 
subsections. 
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POS tagging 
 
As a preprocessing step, we tag each word in the input question with its part of speech. 
This is useful for limiting Wordnet to only expand word senses for the correct part of 
speech. We use the Stanford Log-Linear Part-Of-Speech Tagger for this step. 
 
Language Model 
 
In order to transform the input question into language similar to that of the question 
corpus, we use a language model to measure how likely a given sentence is in the 
question corpus. We chose to use our Good-Turing bigram language model with backoff 
from assignment 1 because it performs well and was easy to implement as we already had 
working code. We trained this model on the question corpus so that it emphasizes 
sentences which are likely to occur in the question corpus. We believe there to be enough 
data in the 140,000 repository questions that a unigram model would be insufficient, so 
we started with a bigram model, with the option to switch to a trigram model if memory 
and time permit. 
 
Rewriting words with Wordnet 
 
Each word has been tagged with its part of speech, and Wordnet is used to generate a list 
of related words to try during query rephrasing. Given a word and its part of speech, 
Wordnet typically contains several senses of the word (around 3 or 4), and each sense 
typically contains around 5-10 synonyms. We chose to generate words for nouns, verbs, 
and adjectives because they are usually the most important content words in each 
sentence, and expanding other words would significantly increase the computational time 
required for question rephrasing. Also, we chose to generate all synonyms of all senses 
for each word (but only for the proper part of speech). In our implementation, we used 
JWord, a Java version of Wordnet, for word rewriting. 
 
Rephrasing the question 
 
In order to rephrase the question into language similar to that of the question corpus, we 
perform a breadth-first search, guided by the language model. The search tree begins with 
the input question, and Wordnet is used to rewrite each important lexical word. We start 
by generating all sentences with rewrites of the first lexical word, and adding those 
sentences to the search tree. If necessary, we prune the search tree down to the 100 
sentences syntactically closest to the question corpus according to the language model. 
We then iteratively move to the next lexical word, rewrite it according to Wordnet 
synonyms, generate all rewrites of the sentences at the leaves of our search tree, and 
prune the search tree via the language model. Pseudocode for this process follows: 
 
Function RephraseQuestion (inputQuestion) 
  Tree searchTree(inputQuestion) 
  For (position = 0 to inputQuestion.numWords) { 
    String[] rewrites = currentQuestion.getNthWord(position).GetRelatedWords() 
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    For (each leafNode of the searchTree) { 
      currentQuestion = leafNode.getQuestion 
      for (each rewrite in rewrites) { 
        newQuestion = currentQuestion.replaceNthWord(position, rewrite) 
        leafNode.addChild(newQuestion) 
      } 
    } 
    Prune all leaf nodes except top 100 
  } 
  Return searchTree.getTop10Leaves() 
} 
 
Pruning with the language model 
 
Pruning is necessary because of the high branching factor. A typical question consists of 
about 10 words of which around 6 may be content words, and each content word may 
generate about 10 synonyms. Given these numbers, generating all sentences with all 
rewritten content words would result in 10^6 sentences, which is too costly in terms of 
computational time and memory. In addition, there are many sentences longer than this 
average, for which the problem is even greater. Furthermore, many of these sentences 
look nothing like proper English or any questions in the question corpus, so they will not 
contribute much value to the question matching procedure.  
 
To deal with this challenge, at each step of the search process, we prune the search tree 
down to the 100 most likely sentences according to the language model. This means that 
on each iteration of sentence rewriting (each iteration corresponds to rewriting one word 
for each leaf sentence with about 10 synonyms for that word), we typically start with 100 
sentences, grow to about 1000 sentences, and then prune down to 100 sentences again. At 
the end of this process, we want to end up with the 10 best rewritten sentences, so we 
hope that keeping 100 sentences after each iteration does not prune away too many 
potentially good sentences. Our intuition is that keeping around 10 times as many 
sentences as we actually want to end up with is reasonable, as the branching factor for 
each iteration is also 10, and we have a margin for error of one order of magnitude. An 
example portion of the search tree is shown below in figure 2. 
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Figure 2: Sample branching of question rephrasing search process. Note that nodes with 
dotted borders will be pruned off due to low language model probabilities. 
 
 
Ensuring relevant terms are expanded 
 
The language model works as a very weak yet computationally efficient word sense 
disambiguator.  Given a set of synonyms of a word, the language model does an 
extremely effective job of determining whether or not each of these synonyms 
appropriately fits into a candidate sentence.  Unfortunately, one drawback of using the 
language model to prune our search space is that very common words get expanded.  
Consider the following example: 
 
“Were Einstein and Godel very good friends?” 
 
The most common bigrams in this sentence are “very good” and “good friends”. Such 
terms and their synonyms will dominate the score given by the language model.  
Synonyms for “very”, “good”, and “friends” will populate the majority of expanded 
sentences.  Yet “Einstein” and “Godel” are the terms most relevant to the question.   In 
order to ensure our model expands the most relevant terms, we delineate our sentences 
into a number of positions.  Each position stores one word in the initial sentence and 
contains an associated weight.  Probabilities, as determined by the language model, are 
multiplied by their corresponding position weights when determining the full sentence 
probability.  In the rare case where a term is expanded to two words, only one of the two 
words is used to determine the probability of that position; therefore, all positions of all 
expanded sentences contain the same part of speech.  By default, each position was given 
a weight of one. 
 
Effectively any method could be used to determine the most relevant terms. We simply 
assume all nouns (except pronouns) are most relevant and give higher weights to 
positions containing nouns. 
 
Information Retrieval 
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Once we have chosen the 10 sentences most similar to the question corpus, we extract all 
bigrams from those sentences and create a term vector with those bigrams. Much like tf-
idf information retrieval, we then find the cosine between the generated term vector and 
the term vector for each repository question. The repository questions with the highest 
scores are returned as potential matches. If the scores are too low for all repository 
questions (according to a hand-tuned threshold), we then determine that our repository 
does not contain a question that is a good match. Information retrieval was implemented 
using Lucene. 
 
Bigrams vs. unigrams 
 
Note that typical tf-idf IR uses only unigrams for its term vectors, whereas we use only 
bigrams. We use bigrams because the order of words in a question is more important than 
in typical search/IR. For example, bigrams typically capture the context of the question 
(e.g. the subject precedes a verb, and the object follows a verb), and the short length of 
repository questions allows us to be more context-sensitive than if we were looking at the 
full contents of an answer document. 
 
Many IR solutions choose not to incorporate bigrams in their index. Indexing all bigrams 
leads to a blow up in the index size because of the number of unique bigrams and their 
associated entries. We can get away with this because we’re indexing questions much 
smaller than documents. 
 
By combining sentences, we have more bigrams to use for information retrieval. As each 
of these bigrams was generated by synonyms of input words, and these bigrams are likely 
to occur in the question corpus (because of the language model), these bigrams should be 
a good intermediate representation of the question that is suitable for tf-idf scoring, and 
should help precision. Note that we exclude unigrams because they cause noise in the 
data due to multiple word senses, and there should (hopefully) be enough bigrams to 
cover most phrases containing the constituent unigrams. 
 
Stop words and stemming 
 
Note that we do not use any stop words (unlike typical IR), because those pieces of our 
bigrams are useful for distinguishing parts of speech or word senses, while they do not 
provide much value in unigram IR. For example, “the fires” refers to burning objects, 
while “she fires” refers to an act of terminating someone’s employment or using a gun. 
We also chose not to stem, because is unclear how to stem bigrams, and stemming the 
component unigrams would lead to a loss of contextual information. 
 
Term frequency, and inverse document frequency 
 
In addition, we determined that idf was definitely important for our modified IR as it 
emphasizes the importance of bigrams that occur infrequently in the question corpus (and 
therefore contain more discriminatory power). For example, common phrases like “why 
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does” occur extremely often and we don’t want to place too much weight on those 
phrases. 
 
On the other hand, there was some internal debate as to the importance of using term 
frequency values. Tf values may be useful as they emphasize bigrams that occur 
frequently in a particular question. For example, “My cat is not potty trained, how can I 
potty train my cat?” contains “my cat” twice and “potty train” once or twice depending 
on stemming, and the question is clearly about those bigrams that occur twice. 
 
Results 
 
Testing methodology 
 
Our testing regimen included several instances of our program, and Yahoo’s question 
search as a benchmark. Our question repository contained approximately 100,000 
questions in health and related topic areas, and 50 reference questions. Similarly to older 
TREC competitions, we measured the Mean Reciprocal Rank of the first relevant 
repository question for each system. The rank is the position of the first relevant result 
(limited to the top 5 results), so the reciprocal rank is 1/4 if the fourth result is the first 
relevant result.  
 
The general population is constantly asking new questions, and is the best source of 
representative questions. Our 50 reference questions were chosen randomly from among 
the most recently asked and unresolved questions on Yahoo health to obtain a diverse, 
representative sample. Our primary goal was to outperform Yahoo question search, but 
we also mention results from other systems. Relevancy was manually determined by an 
unbiased judge who was unaware of which questions were from our systems and from 
Yahoo. Note that our judge actually looked at the answers linked to the result questions, 
and determined whether the answer was relevant to the input question. This is important 
because it demonstrates the effectiveness of our system at obtaining good answers even 
though the process only looks at question text. Our 50 reference questions can be found 
in appendix A. 
 
Results 
 
On our 50 reference questions, Yahoo question search scored an MRR of 0.1466. Our 
baseline system scored an MRR of 0.2382. This is a significant improvement, and 
demonstrates the success of our system. Further improvements on our system yielded 
even better results, as can be seen in the following graph. 
 
Version 2 contained a modification to idf calculations in the IR phase. After our initial 
run we noticed that sentences containing many common bigrams would match other 
sentences containing the same structure ignoring important uncommon bigrams.  For 
instance sentences like “Is there any natural way of getting rid of hayfever?” matched 
questions in our corpus containing the substring “Is there any natural way of getting rid 
of”. This occurs because the idf weight of “of hayfever” though large cannot compensate 
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for the combined weights of  the common bigrams.  To compensate for this we modified 
the comon idf score of  idf=log(N/d) to idf = log(N/d) + square_root(N/d).  This allowed 
uncommon bigrams to more frequently dominate question scores. 
 
Version 3 boosts the IR score of candidate bigrams containing a noun.  We found that 
some  relatively uncommon yet useless bigrams such as “a reasonable” dominated 
question similarity scores.  Adding weight to bigrams with nouns compensates for this 
effect. 
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Figure 3: Cumulative Mean Reciprocal Rank results of our systems. 
 
Note that top scores at recent TREC proceedings have been around 0.70, but their 
problem is significantly easier. Their set of documents is well defined, the questions are 
much less ambiguous, and questions are written in proper English. Also, all TREC 
questions contain answers in their corpus. Our questions are taken from the unresolved 
Yahoo questions with the hope that they have been answered in the past, but many of 
them have not. Also, most TREC questions are looking for short, factual answers (e.g. 
“What movies do James Dean appear in?”) while Yahoo questions tend to be more open-
ended (e.g. “Yeah I'm a teenager who needs help on weight?”), and are therefore more 
difficult to answer. 
 
We’ve included several interesting pairs of input questions and the repository questions 
they return. All these results were in the top 3 results for their input question, and are 
from our baseline system. 
 
Input: a sharp pain in the center of the chest breastbone area? 
Result: keep getting a throbbing pain in the middle of my rib cage . any idea what it could 
be? 
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Note that many words are different here, but the question rephrasing translated “sharp” to 
“throbbing” with Wordnet, and the language model scored it highly, so “throbbing pain” 
was found in the IR stage. It appears that Wordnet did not actually translate “chest 
breastbone” to “rib cage”, as several similar questions were also returned with other body 
parts in that part of the sentence, but there were enough bigram hits to make IR 
successful. Unigram IR would probably not correctly retrieve this question. 
 
Input: my contact lens ripped is there any way that i can buy like one 1 lens without 
having to buy a sixpack? 
Result: does anyone know where i can order contact lens without having a prescription 
verified?!?  
 
Note that Wordnet does some of the rewriting very well (e.g. “buy” -> “order”), so there 
are a few key bigrams used in the IR phase (“contact lens”, “can order”, “without 
having”), but the two queries still do not match. In this case, bigram matching is not 
sufficient to establish the proper meaning of the sentence. Also, note the word “like” in 
the input question and the repeated “one 1” – many questions, like this one, are more 
similar to casual spoken English than proper written English, and are more difficult to 
process. 
 
Input: what are some cures 4 the flu or if i have gastondridous? 
Result: What are some good home remedies for the flu? 
 
Here is another successful example, where Wordnet rewrote “cures” as “home remedies”, 
and 4 as “for”. As a result, there are a lot of bigrams in common between the two 
questions. 
 
Input: is weed bad for asthma? 
Result: marijuana for asthma? 
 
Here, “weed” was rewritten as “marijuana”. Wordnet was useful for this question, but 
unigram IR would probably perform just as well as bigram IR because “marijuana” and 
“asthma” capture the meaning of the question well. 
 
In addition, a significant subset of our reference questions are virtually impossible to 
answer. For example, questions like “i would like advice on what i should do” do not 
contain any useful information in the question itself, and one would need to look at the 
full text of the message body or in the answers to properly process these questions. 
 
Discussion/Analysis 
 
There are several linguistic assumptions inherent to our models. One is that bigrams 
represent the context of each question much better than unigrams. This is true, but 
bigrams are clearly not sufficient to capture all information in the question, and deeper 
semantic structures are important to fully understand questions. As a step in this direction, 
we used Wordnet (guided by the language model) to capture semantic information. This 
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was partially successful, but Wordnet has its limitations, and deeper semantic structures 
would be useful. 
 
The most obvious feature and limitation of our system was that we only looked at 
question text in the repository. Obviously, using the answer as well would provide more 
information, but our goal was to focus on NLP techniques and do a more thorough job of 
exploiting the structure of the question. One could certainly run IR techniques on the 
answers, and use the result as another feature for determining the best question/answer 
pairs to return. 
 
The most interesting feature of our system was the language model, and it (along with 
Wordnet) is the foundation on which the rest of our system is based. One interesting 
decision to note is that we train the language model on the same corpus that we use for 
evaluation. Normally, it is considered “cheating” to train and test on the same corpus. 
However, we are not testing the accuracy of the language model, but rather the results of 
the entire process, and the language model is merely a tool used in the middle of the 
process to rewrite questions. Language models are typically used for predicting the future. 
In our case, the language model is used to guide query rewriting towards the language of 
the question corpus. It also serves roughly as a word sense disambiguator, and tends to 
emphasize sentences with bigrams that are relevant to both the input question and the 
question corpus. Wordnet generates new sentences, and the language model keeps those 
similar to questions in the corpus. 
 
Much other work on question answering systems used FAQs or other resources for their 
question repositories. We chose to use Yahoo answers because it seemed more interesting 
than FAQs as it contains more realistic, casual questions asked by typical users as 
opposed to very specific questions chosen by site administrators. The downside of using 
this data source is that a large number of users are lazy or careless, and many questions 
contain improper English. For example, “y” is used instead of “why”, capitalization is 
often lacking, and punctuation is often used incorrectly. The primary result of this is that 
the Part-of-Speech Tagger, which was trained on Wall Street Journal text, misclassifies 
many words that are improper English (e.g. “i" is a foreign word, but is intended to be 
used as “I”, which is a pronoun). As we only expand certain parts of speech, many of 
these misclassifications are irrelevant, but some do adversely affect our results. We 
expect that we would obtain better results if we used questions that correspond more 
closely to proper English, or if we could train the POS tagger on a more appropriate, 
labeled corpus. 
 
We noticed that Yahoo question search contained highly stratified results, and was 
overall not particularly impressive. Yahoo was very successful with some questions, and 
their first returned result was highly relevant. In this case, the next several results were 
typically good as well. On many other questions, Yahoo was very unsuccessful, and no 
results were even close to the input question. There were very few input questions for 
which the first result was irrelevant but any other highly ranked results were relevant. 
Our interpretation of this is that Yahoo’s information retrieval algorithm works well on 
certain easy questions, but not a lot of effort has gone into searching harder questions, 
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and commercial interests tempt the user to click on sponsored links for these failed 
questions. In addition, this is a hard problem. Many users are asking questions because 
they can’t find the answers elsewhere on the web. Often, this is because the answer 
doesn’t already exist in the Yahoo database, or because the user is inexperienced with 
web search and is using ambiguous terms. 
 
Another difficulty we faced was the sparse coverage of Wordnet. Wordnet does not 
contain many drug names, it lacks common proper nouns (like “Honda”), and often has a 
limited set of synonyms for words that it does contain. We attempted to improve the 
performance of Wordnet by including hypernym/hyponym relationships in addition to 
direct synonyms. Another difficulty we had was dealing with verb tenses. Wordnet could 
find synonyms for a past tense verb, but the synonyms were generated as present tense, 
and this adversely affected our language model and IR bigram scores. 
 
Initially, we used only the Yahoo health section for both the language model and IR. 
Based on the number of unknown bigrams generated by Wordnet rewriting, we decided 
to add more questions from similar domains of Yahoo questions to training of the 
language model. In general, increasing the corpus size of a language model is always a 
good thing (if the new data is relevant to the original corpus). In particular, we hoped to 
store more rare words in the model, and recognize that those words are less likely than 
unknown words. 
 
Also, our first attempt did not contain POS tagging, and it was so computationally 
intensive that we didn’t even attempt a costly full evaluation on 50 sentences. The 
problem is that there are a huge number of words in English that can be either nouns or 
verbs. Because we didn’t know the part of speech of a particular instance of such words, 
we had to expand all noun and verb senses of these words, and this was simply too noisy. 
Adding the POS tagger was a necessary step to allow the more interesting portions of our 
system to work properly. 
 
Related work 
 
The TREC Question Answering competition has been going for about 10 years, and 
much research has been conducted into question answering systems. The majority of 
these systems attempt to find an answer directly, rather than finding a similar question. 
One fairly typical example of this is AskMSR, which categorized questions into types, 
performed some syntactic rewrites of input questions, searched a large repository of 
documents for the transformed text, and combined the most frequent search results into 
an answer. 
 
More successful QA systems have also been developed using deeper semantic 
understanding of questions such as (Harabagiu, 2001). Most of these systems involve 
reformulating an input question and expanding words, and many also involve question 
type recognition, semantic processing, and applying world knowledge. 
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Early question answering systems based on question to question mapping were attempted 
by Ask Jeeves. Their system was based on question paraphrasing, and used a set of 
manual rules to find similar questions based on predefined sentence patterns. When 
successful, it returned the answers to those questions. As the rules needed to be created 
manually, the system was very inflexible, and many answerable questions did not fall 
into the preset patterns. Their backup system was pure information retrieval. 
 
(Lytinen, 2002) use several features to match input questions to FAQ questions. They use 
a sophisticated approach to question types involving 12 categories, machine learning on 
about 90 content-independent prepositions, and similarity metrics between question types. 
Their other features include cosine similarity between the input question and repository 
questions, coverage (percent of input question words in repository questions), and 
semantic similarity based on Wordnet distances between pairs of input and repository 
words. 
 
Future Work 
 
There are many additional features we’d like to include in our system. The most 
important of these is question type similarity. A simple possibility is to categorize 
questions by their first words (e.g. who, what, why, how, etc.) but this has been shown to 
perform somewhat poorly. (Lytinen, 2002) demonstrate a much more successful 
approach to question types, as discussed in the previous section. 
 
Also, we’d like to add a simple IR feature that runs basic tf-idf scoring on the unigrams 
of the input question against repository questions. This would help out with cases where 
our question rephrasing technique transforms the sentences too much from their actual 
meaning towards irrelevant questions in the repository. 
 
Another obvious feature is the content of answer documents. By only looking at the 
repository question, we can better analyze its meaning. But the document contains much 
useful information, and running IR on the answer document is another rich source of data. 
 
Given these additional features (and potentially others as well), we could combine these 
features with our rephrased question bigram similarity metric, and learn weight for each 
feature via some machine learning technique. This could be something simple like 
maximum likelihood estimation, or more complex like a maximum entropy model. 
 
Another possibility would be to replace or augment Wordnet with a more complete data 
source. Wordnet is useful, but is missing many words, particularly proper nouns like 
“Honda” or drug names. If we limited the domain of the questions, then we could use a 
richer data source like a semantic web or knowledge base containing domain-specific 
word associations. 
 
In addition, word sense disambiguation techniques could be applied to limit the 
expansion of words such that only words related to the correct sense are generated. This 
would improve precision, and speed up computation. 
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Collaboration 
 
We spent the majority of our project time working together and discussing ideas and 
approaches, so it is difficult to specify an exact breakdown of responsibilities. That said, 
the division of labor was roughly as follows. The overall design was entirely 
collaborative. Tait and Johnson were primarily responsible for the coding, and Josh was 
primarily responsible for the writeup. 
 
Tait wrote the crawler for retrieving Yahoo questions. Josh wrote the initial Wordnet 
code, and Johnson and Tait both enhanced it. Johnson and Tait were both partially 
responsible for the query rephrasing search process. Tait was primarily responsible for 
implementing the language model and the POS tagger, and Johnson was primarily 
responsible for the IR component. Results were processed and analyzed by all group 
members. 
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Appendix A: Reference questions for testing 
 
do bush's baked beans give you gas? 
How can I get rid of my pimples by tomorrow without products? 
Where can I purchase alpha hydroxy acid for mild acne? is there a specific brand that works good? 
What tests might the doctor order for a man with low sex drive? 
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How does someone get eggsma? 
Does anyone know what these may be symptoms of ?: Extreme rapid weight loss and trembling hands? 
Thank you!? 
What are the best things to put in a home gym? 
A sharp pain in the center of the chest (breastbone area)? 
How can I pass a saliva drug screening? 
Have any men had problems with laser hair removal in the face/neck? Also, what is a reasonable cost for it? 
Help with infected and swollen acne cyst please!? 
What is the best way to get rid anxiousness? 
What's a good way to do a stomach crunch without tearing up your back? 
Yeah I'm a teenager who needs help on weight? 
Question about depression and anxiety.? 
Lexapro and weight gain?  
What can happen to someone who abuses laxitives and is it ever safe to take everyday? 
When I bend my big toe upwards, the bottom of my foot hurts? 
what type of schooling do you need for tattoo removal? 
what causes heart palpitations.? 
What are the symptoms of low sodium blood levels? 
How can someone help stabilize their cholesterol? What foods can someone eat to lower the levels? 
I would like advice on what i should do? 
Where can I find or how can I get in touch with a specialized sex counselor or specialist? 
health hazards of the mineral lime? 
Teeth filing...? 
Why does my resting heart rate of 60-65 speed up at night to 70-76 and I hear swishing noise in both ears? 
My contact lens ripped, is there any way that I can buy like ONE(1) lens without having to buy a sixpack.? 
I think I have a small medial cartilage tear- Some pain, full ROM, no swelling. How long before it heals? 
Can Prozac make you extremely tired? 
Chemical burns in mouth? 
What should I do if I'm eating right and exercising but still fell sleepy during the day? 
what are some cures 4 the flu,or if i have gastondridous.???.......? 
Why I sweat? and How can I stop this problem? 
I have acid in my back how can get ready of as soon as possible. my birthday party is soon and I need my 
back? 
How can I stop my hives from itching? 
Hello, just wondering If anyone can help with sleep suggestions. Ive tried ambien, to expensive. Cant sleep.? 
I have a pain on the left side of my waist, anyone know what that may be? 
why is Provigil 200mg so expensive? mine cost $448.00 30 day supply for sleep disorder.? 
hello....ive being diagnosed with hypothyroidism since i was 16...and now am 21...iam usually into 
depression? 
how do i cure my paranoia or however u spell it? 
Can swimming after a mantoux test cause a false positive? 
ECG Abnormal? 
Where can I get Nitrofuradantoin 100 mg tablets? 
what to take to pass a drug test for crystal meth? 
My wife was diagnosed with kidneystones, what are good/bad food/drinks for her? 
Is it true that postmenopausal women under 50 should take birth control for two years after their last period? 
i got a spider bite and its now big and its purple in the middle should i worry? 
is weed bad for asthma? 
is there any natural way of getting rid of hayfever? 


