Supervised Learning Classifiers for the Task of Information Extraction

Jorge Ortiz

Symbolic Systems Department

Stanford University

jorge.ortiz@gmail.com

Leighton Wallace

Symbolic Systems Department

Stanford University

l8on@stanford.edu

Ellis Lau

Symbolic Systems Department

Stanford University

ellislau@gmail.com

Abstract

We apply a variety of supervised learning classifying algorithms to extract data from online classified advertisements. By comparing each one’s performance on our dataset, we hope to gain an understanding of each’s strengths and weaknesses.

1. Introduction

With the intent of exploring the potential of online data, we considered the variety of possible websites that not only hold a large database of data, but are also an accurate depiction of natural language. The obvious choice that came to mind were websites where the data is posted by the users themselves. Eventually, we arrived at the decision to use online classified advertisements. We chose to use craigslist and restricted our dataset to advertisements for apartment rentals.

In their similar exploration of information extraction in online classifieds, Grenager et al. and Rubens et al. both use Hidden Markov Models for the task of selecting potentially relevant fields. Using our same dataset, Grenager et al. achieves a supervised model accuracy of 74.4% (though their primary purpose is training unsupervised classifiers). Using a slightly different dataset, Rubens et al. concludes there is little syntactic structure in automotive classifieds and suggests that a word-based language model that leverages an n-gram model would perform better. This motivated us to explore the possibility of classifying individual work tokens in classifieds, using supervised learning classifiers. We wished to understand how these models would perform when substituted for HMMs.

2. Classifiers

These are the classifiers that we ran on the data, along with a short description for each.

· ZeroR: Our baseline, ZeroR classifies every token as the most commonly occurring class.
· HyperPipes: Each class is defined by a set of boundaries determined by known instances of the class, and tokens are classified based on how well they fit within those boundaries.
· Id3: Classifies using a decision tree, where nodes are built from the features with minimal entropy.
· Naïve Bayes: Naïve Bayes classifies each token by assuming the role of each feature in the determination of a class is independent, and choosing the class that maximizes the likelihood of the feature assignments for that token.
· RBFNetwork: Classifies using a neural network, where input is mapped onto a radial basis function, usually a Gaussian, and output is a mean of the RBF values.
· Support Vector Machine (SVM): SVM uses kernels as inner products in a feature space to apply linear classification
· Voting Feature Interval (VFI): Features are represented as intervals and distribute real value votes among classes, with the highest voted class being the predicted class.
· Maximum Entropy: Classifies tokens based on a probability distribution that maximizes information entropy.

3. Dataset

Our dataset consists of a set of online classified advertisements for apartment rentals in the San Francisco Bay Area, gathered by Grenager et al. in their research, distributed at http://www.stanford.edu/ ~grenager. These advertisements were downloaded from Craigslist, http://www.craigslist.org, in June 2004, and are annotated with 12 different fields, including size, features, availability, contact information, etc. The annotated data consists of 102 ads in the training set, 100 ads in the development set, and 100 ads in the training set.

All development and feature tuning were performed only on the development set, and the test set was used for our final results.

	Feature
	Description

	SELF
	The actual word to be classified

	SELFSIZE
	The length of the word

	PREVSIZE
	The length of the previous word in the ad

	NEXTSIZE
	The length of the next word in the ad

	BLOCKSIZE-LARGE
	Indicates that the word appears in a block of 8 or more actual words.

	NUMBERIN

SENTENCE
	Indicates that there is a number in the “sentence”

	ROOMMATEIN

SENTENCE
	Indicates that a word starting with “roommate” is in the sentence

	DISTANCE-#
	How far the word is from the beginning of the ad.

	CAPS-1
	Indicates that the word is in all capital letters.

	CONSECCAP
	Indicated that there are both the current word, and either the word before or after is capitalized

	MIXEDCAP
	Indicated if the word has mixed capitalizations

	PREVWORD-[word]
	The word x+1 steps back. Is x = 0, it would be the word immediately before

	NEXTWORD-[word]
	The word that is x+1 steps forward.

	AFTERPUNCT
	Indicates that the word is after a punctuation symbol

	BEFOREPUNCT
	Indicates that the word is before a punctuation symbol

	LINECONTEXT-[word]
	Words that are in the sentence, where is sentence is between periods newlines or exclamation points

	CONTEXT-6-6-[word]
	Contains the words that are within 6 words in either direction

	NEARDOLLAR
	Indicates if a dollar sign is within the context window.

	NEARNUMBER
	Indicates the presence of a number in the context window

	NEARNEW
	Indicates the presence o the word new in the context window

Table 1. Description of features used for classification
4. Features

We decided on the following set of features for our classifiers to train on, shown in Table 1.

We measured the overall information gain and it appears that the LINECONTEXT, NEARNUMBER, and CONTEXT-6-6 are the most informative features. The following table shows the top ten features and their information gain. As you can see from the table, the word call in the context is very informative. Also, the appearance of a number in either the sentence or context is useful. The DISTANCE feature makes an appearance in the top ten, which reflects upon the fact that more important information will appear at the beginning of an ad. The redundancy of finding information in the window context and line context could be mitigated by much more sophisticated sentence parsing. However, without such parsing, we need both the word’s context window and line context to capture context information, and the information that could be gained from well structured ads.
	Feature
	Information Gain

	NEARNUMBER
	0.166702

	LINECONTEXT-call
	0.152968

	LINECONTEXT-and
	0.131157

	NUMBERINSENTENCE
	0.126601

	LINECONTEXT-with
	0.12244

	CONTEXT-6-6-call
	0.118469

	LINECONTEXT-kitchen
	0.10765

	LINECONTEXT-please
	0.106084

	LINECONTEXT-deposit
	0.104564

	DISTANCE-14.0
	0.071831

Table 2. Features with the greatest information gain

5. Results

5.1. Classifier Output

	Classifer
	Training Set Accuracy
	Test Set Accuracy

	HyperPipes
	95.45%
	68.67%

	Id3
	99.97%
	61.21%

	NaiveBayes
	80.81%
	69.01%

	RBFNetworks
	77.49%
	64.64%

	SVM
	99.97%
	78.65%

	VFI
	96.80%
	66.33%

	Maximum Entropy
	N/A
	79.46%

Table 3. Classifer Output on training and test data

5.2. Details

	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	

	92
	121
	96
	20
	56
	38
	2
	0
	1
	2
	3
	0
	a

	38
	3485
	22
	94
	164
	27
	7
	9
	16
	15
	0
	0
	b

	4
	39
	1061
	1
	5
	8
	3
	0
	2
	6
	7
	0
	c

	8
	226
	13
	459
	44
	12
	7
	1
	0
	0
	0
	0
	d

	9
	218
	9
	13
	1049
	1
	1
	3
	1
	3
	0
	0
	e

	11
	36
	21
	3
	5
	368
	0
	0
	0
	1
	0
	0
	f

	2
	19
	8
	4
	0
	0
	101
	0
	0
	0
	0
	0
	g

	0
	54
	7
	0
	1
	16
	0
	181
	0
	0
	0
	0
	h

	1
	14
	0
	0
	1
	9
	0
	0
	117
	0
	0
	0
	i

	3
	33
	27
	18
	13
	3
	0
	0
	0
	105
	0
	0
	j

	11
	9
	44
	0
	0
	0
	0
	0
	0
	0
	50
	0
	k

	1
	147
	4
	13
	5
	0
	0
	0
	0
	0
	0
	0
	l

a = unlabeled, b = features, c = contact, d = size, e = neighborhood,

f = rent, g = available, h = restrictions, i = utilities, j = address,

k = photos, l = roomates

Table 4. Test data confusion matrix on SVM classifier (columns are classifier label, rows are true labels)

	TP
	FP
	Precision
	Recall
	F-Meas
	Class

	0.213
	0.01
	0.511
	0.213
	0.301
	A

	0.899
	0.179
	0.792
	0.899
	0.842
	B

	0.934
	0.032
	0.809
	0.934
	0.867
	C

	0.596
	0.02
	0.734
	0.596
	0.658
	D

	0.803
	0.038
	0.781
	0.803
	0.792
	E

	0.827
	0.013
	0.763
	0.827
	0.794
	F

	0.754
	0.002
	0.835
	0.754
	0.792
	G

	0.699
	0.001
	0.933
	0.699
	0.799
	H

	0.824
	0.002
	0.854
	0.824
	0.839
	I

	0.52
	0.003
	0.795
	0.52
	0.629
	J

	0.439
	0.001
	0.833
	0.439
	0.575
	K

	0
	0
	0
	0
	0
	L

a = unlabeled, b = features, c = contact, d = size, e = neighborhood,

f = rent, g = available, h = restrictions, i = utilities, j = address,

k = photos, l = roomates
Table 5. Detailed test data accuracy by class, SVM classifier
5.3. Notes on methodology

In our preliminary tests, we noticed that we were consistently misclassifying most punctuation symbols. Our data set includes punctuation symbols as parts of its labeled “fields”. For the purposes of feature extraction, we were allowing punctuation marks to be separate tokens. Because of the independence assumptions of our classifiers (namely, the classification of each token is independent of the classification of any other token, given both of their features) and our very primitive attempts at syntactic parsing (discussed below), we could not exploit the fact that punctuation symbols are usually assigned the same classification as the words in the same syntactic context. Considering punctuation symbols to be mostly semantically vacuous (for our purpose of information extraction), we made the methodological decision to omit these symbols when calculating our accuracies.

6. Discussion

6.1. Features analysis

We tried many other features that did not increase the accuracy of the classifier at all and, in some cases, decreased the accuracy dramatically. We tried features that would indicate the presence of various words that we thought were indicative of their associated labels, including roommate, image, picture, photo, location, close, near, away, from, has, have, with, and in. These features were too specific and our sentence parsing was not good enough to get good use out of them. We also tried other ways to indicate how far the word is into the ad, including counting the number of preceding periods, or counting the number of preceding line breaks. However, there are a lot of spurious periods in the ads, and a lot of ads don’t use line breaks. Another feature that didn’t turn out to be useful would indicate if the word was capitalized and followed a number, or if the word is a number preceding a capitalized word to capture the common address format. This was probably due to the fact that other features existed that gave similar information, because, independently, the format of a number followed by a capitalized word is useful for picking out addresses.
6.2. Syntactic context

The context in which particular tokens appeared turned out to be very important for determining its relevancy towards classifying nearby tokens. In contrast to Rubens et al., who looked at auto classifieds, our housing classifieds contain a significant amount of syntactic structure. Certain tokens were only relevant if they occurred within the syntactic context of the token being classified. We exploited this fact by trying to capture nearby tokens and tokens on the same line as features, however these were insufficient efforts. We would have benefited greatly from an effort to parse the data into “sentences” or some form of syntactic structure, and taking these contexts into consideration when extracting features.

6.3. Unsuitable tokenization

When parsing our data, we tokenized ads on the basis of whitespace and non-alphanumeric symbols like punctuation and certain special symbols (“$”, “#”, “@”, etc). This turned out to be an unsuitable tokenization, as we could not explicitly take advantages of certain commonly occurring expressions in our domain, like phone numbers, e-mail addresses, web addresses, and prices. A more suitable tokenization would parse these expressions as single tokens (for example, as “name@domain.com”, tagged as an [E-MAIL] token, rather than the separate, untagged tokens “name”, “@”, “domain”, “.”, and “com”), since, for the purposes of classification, we are usually only concerned with the fact that an expression of a particular type occurred, rather than with the specific instantiation of that type of expression. This, however, would require a different specialized parser for each kind of domain-specific expression encountered.

7. Conclusions

In contrast to Rubens et al., who used automotive classifieds, our domain exhibited a significant amount of syntactic structure. We attempted to exploit this by using proximity measures, punctuation, and line breaks as indicators of syntactic context. Unfortunately, proximity can be a misleading indicator of syntactic context, punctuation symbols can be spurious, and not all ads used line breaks to indicate a change in syntactic context. Without the benefits of a sophisticated syntactic parser, we can see the appeal in using Hidden Markov Models for information extraction. The classification of a token is generally not independent of the classification of nearby tokens given all their features, as our classifiers assume. On the contrary, the classification of a token will highly correlate with the classification of nearby tokens, regardless of each token’s features (unless the features of nearby tokens are identical, something which can only be accomplished with a sophisticated syntactic parser), a fact that HMMs exploit. Thus, for our domain, HMMs are probably more suitable.

Our approach to classification used only classifiers that would assign each token to one of twelve classes. One of these classes, however, was the ‘unlabeled’ class. By its very nature, there are few distinctive things about tokens in the ‘unlabeled’ class that would allow us to label them as such. As a result, our performance on the ‘unlabeled’ class was worse than on any other class except ‘roommates’ (which had too few training instances from which to build a proper model). A more careful approach would have built separate classifiers for each class (excluding ‘unlabeled’), each of which would output a confidence rating that a given token was in that class. Then some metric would look at the confidence ratings of all classes for a given token and assign a label to that token (i.e., the label of the most confident classifier), or decide that no classifier was confident enough and so leave the token ‘unlabeled’.

It is encouraging that our results were slightly better than those achieved by supervised HMM models on the same dataset (Grenager et al.), yet at the same time tweaking our features produced increasingly diminished marginal returns on performance. As the main focus of Grenager et al. was on unsupervised learning, it is doubtful that their baseline supervised HMM model was as good as it could have been. Indeed, McCallum et al. report much higher accuracies using supervised HMMs on bibliographic citation data. It is clear that much work remains to be done in this exciting area.

8. Acknowledgements

We would like to thank Grenager et al. for annotating and distributing the advertisements they collected from craigslist. Also, we gratefully acknowledge Weka for their amazing work and their service to machine learning.

9. References

[1] Grenager, T., Klein, D., and Manning, C. 2005. “Unsupervised Learning of Field Segmentation Models for Information Extraction.”

[2] Rubens, M. and Agarwal, 2004. “Information Extraction from Online Automotive Classifieds.”
[3] Whitten, I.H., Frank, E. 2000. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations.
[4] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. 1999. “A machine learning approach to building domain-specific search engines.” In IJCAI-1999.

1

