CS224N / Ling 237

Programming Assignment 3: PCFG Parsing
18 May 2006
Thad Hughes, Marius Meissner

thad@alumni.virginia.edu, meissnem@stanford.edu
1. PCFG Parsing
We created a probabilistic generalized CKY parser that used both vertical and horizontal markovization during grammar training. We did this by using approximately 40,000 human-annotated parses from the Penn Treebank’s Wall Street Journal sections 2 through 21 as supervised training data. Starting with the hand-generated parse trees, we experimented with creating grammars by applying binarization and various orders of vertical and horizontal markovization to the trees and counting the frequency of each of the grammar productions suggested by the modified parse trees.
1.1 Vertical markovization

Because the hand-generated parse trees have a fairly limited number of non-terminal symbols, they do little to differentiate between different contexts and usages of the non-terminal symbols. For example, a VP produced by expanding a sentence may have a different probabilistic distribution for its expansion than a VP produced beneath another VP. Vertical markovization annotates the non-terminals in the parse-trees with some of their context, which is given by the ancestor nodes. Adding this context allows for the modeling of context-dependent effects on the productions, but it also increases the number of non-terminals in the generated grammar, and can potentially remove sentences from the language of the grammar. We experimented with 1st, 2nd, and 3rd order vertical markovization.
1.2 Horizontal markovization
The baseline of infinite horizontal markovization remembers the entire left-context of a production when binarizing the trees. We also experimented with forgetful horizontal binarization, in which some of the details of the history are omitted from the binarized trees. We experimented with infinite, 2nd order, and 1st order horizontal markovization.
1.3 Binarization

Our CKY parsing algorithm requires that the grammar contain only binary and unary productions, so we used the supplied code to binarize the trees before using them to create and count the productions. The reason for this requirement is so that the parser can use a dynamic-programming model in which each constituent of the parsed tree is constructed from either one single or two neighboring constituents. This way, the parser can try all possible parses in polynomial time.
2. Code and optimizations

We implemented a generalized CKY algorithm to parse sentences according to our PCFG. The algorithm works by constructing a parse table of all possible successively longer constituent pieces of the sentence. It begins by computing the probability of constituents of length one, which is simply the smooth probability of each POS tag for each single word, as well as the unary rules that could produce those POS tags. It then examines all possible constituents of length two, which can be formed by joining two of the constituents of length one. The next step explores constituents of three words, which can be formed by joining neighboring constituents of one and two words each, with the split being in two possible places. This proceeds until the parse table has found the most likely constituent of the span of words covering the entire sentence. From there, back-pointers through the table are read to create the actual parse tree.
2.1 Unary closure queue
One optimization we implemented over the CKY algorithm presented in class was to maintain a set of non-terminals which have been added to each cell in the CKY parse table. When computing the unary closure of a cell in the parse table, we simply pull non-terminals off the queue, and for each unary rule that produces them, we apply the rule to that cell and put the unary rule’s parent non-terminal in the queue. This is much more efficient that checking all the unary rules each time we add a new non-terminal to the cell.
2.2 Fast hashing with the Identity<String> wrapper

To avoid the penalty of constantly computing hash codes and testing equality of Strings, we wrapped each String in a canonical Identity<String> object, for which there is only one instance per distinct String. Once each String used has been embedded in a canonical Identity object, the very fast default .equals() and .hashCode() methods can be used because there will only be one instance per real String. This is similar to interning the Strings and using the IdentityHashMap, but instead allows the wrappers to be stored in standard Java Collections that obey the Map and Set contracts. Further, we were not certain whether interned Strings that were serialized and then deserialized would still be represented with their canonical, interned representation. We solved this deserialization canonicality problem by implementing a readResolve() method for the Identity class.
2.3 Re-use of trained parsers through serialization

Reading 40,000 training sentences and training a parser on them takes time and memory. In order to avoid these costs, we implemented a method to serialize the trained parsers into files, and to read the files during later runs to re-create the parser instead of re-training a new parser. The saved the training time, and also allowed us to run the parser on machines with too little memory to actually train the parser, since the serialized parser took significantly less memory than the data required to train it. The serialized parsers were approximately 5 to 8 MB in size.
2.4 Computing constituent probabilities

At the eleventh hour, we added another optimization that greatly improved our parsing speed. However, none of our timing results reflect this optimization, since it was too late to re-run the tests and include the new results in the report. The insight for this optimization was gained by talking to Konstantin V. Davydov (another student in the class).

The optimization works by pruning the size of the cells as the parse table is constructed. During the construction of the CKY parse table, we simply avoid computing probabilities for cell entries (non-terminals) whose probabilities we know to be zero. It turns out that since the lexicon occasionally says some POS tag has zero probability for a given word, and because some productions are only possible higher up in the parse tree, many of the non-terminals in the cells have probability zero, especially at the beginning of the parse. We simply avoid the computation of those cells completely, which saves greatly on time and memory usage. We experienced an approximately 3-fold speedup with this optimization.

3. Performance

As expected, the vertical markovization improved parsing performance, but it increased the size of the grammar which in turn slowed down the parses. Unfortunately, we were not able to run the 3rd order vertical markovization with infinite horizontal markovization because of the slowdown.
When using forgetful horizontal markovization, the accuracy of our parser decreased. With 1st order forgetful horizontal markovization and 1st order vertical markovization, the accuracy of the parser is greatly reduced down to 77.72% because the size of the grammar is reduced. However, the parser runs much more quickly due to the reduced size of the grammar. Adding another symbol of left-side context during the horizontal markovization greatly increases the accuracy to 80.24%, without greatly increasing the size of the grammar and the time required to parse. This seems to be a good speed/accuracy tradeoff.
The graphs below show our parser’s accuracy for various combinations of horizontal and vertical markovization, broken down by sentence length. As the sentence length increases, the accuracy of the parses decreases slightly. For example, V1H1 shows the accuracy of the parser with 1st order vertical and 1st order vertical markovization.
[image: image1.emf]Scores of Runs with Different Horizontal Markovization Orders

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

Sentence Length

F1 Score (%)

V1H1

V1HN

V1H2

[image: image2.emf]Scores of Runs with Different Vertical Markovization Orders

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

Sentence Length

F1 Score (%)

V1H1

V2H1

V3H1

	F1 Averages (Max Sentence Length = 20)

	Vertical
	1
	2
	3

	Horizontal
	
	
	

	1
	77.72
	82.40
	84.79

	2
	80.24
	82.22
	

	N
	81.61
	84.28
	-

The table below shows our parser’s average speed for various combinations of horizontal and vertical markovization on all sentences of twenty or fewer words. With higher-order vertical markovization, the grammar has more non-terminals so the parses take longer. With more forgetful horizontal markovization, the grammar has fewer non-terminals and parses are thus faster.
	Time Averages (sec) (Max Sentence Length = 20)

	Vertical
	1
	2
	3

	Horizontal
	
	
	

	1
	0.76
	3.42
	9.09

	2
	3.81
	10.06
	

	N
	11.82
	37.91
	-

4. Error Analysis
Without knowing the details of the Treebank grammar labeling conventions, it is difficult to categorically judge the kinds of errors our parser is making. However, we did examine the improvements that were made by adding vertical context using the vertical markovization.
4.1 Example 1

In the example below, it appears that our un-markovized parser thinks that the numbers are both adjectives, while the more context-aware 2nd order markovized parser knows that ADVPs are more likely within VPs and is able to choose a perfect parse.

Gold:

(ROOT

 (S

 (NP (DT The) (NN index))

 (VP (VBD closed)

 (PP (IN at)

 (NP (CD 1385.72)))

 (, ,)

 (ADVP (RB down)

 (NP (CD 203.56) (NNS points))))

 (. .)))

Level 1 Guess:

(ROOT

 (S

 (NP (DT The) (NN index))

 (VP (VBD closed)

 (PP (IN at)

 (NP (JJ 1385.72) (, ,) (RB down) (JJ 203.56) (NNS points))))

 (. .)))

Time: 9.224455343 Length: 10 [Current] P: 60.00 R: 42.86 F1: 50.00 EX: 0.00

Level 2 Guess:
(ROOT
 (S
 (NP (DT The) (NN index))
 (VP (VBD closed)
 (PP (IN at)
 (NP (NNP 1385.72)))
 (, ,)
 (ADVP (RB down)
 (NP (CD 203.56) (NNS points))))
 (. .)))
Time: 15.843608615 Length: 10 [Current] P: 100.00 R: 100.00 F1: 100.00 EX: 100.00
4.2 Example 2

In the second example, the 2nd order vertically markovized parser knows that an NP is more likely than an S as the second constituent of a VP.
Gold:

(ROOT

 (S

 (NP (PRP They))

 (VP (VBD saw)

 (NP

 (NP (DT an) (NN opportunity))

 (VP (VBN created)

 (NP (-NONE- *))

 (PP (IN by)

 (NP (DT the) (NN sell-off))))))

 (. .)))

Level 1 Guess:

(ROOT

 (S

 (NP (PRP They))

 (VP (VBD saw)

 (S

 (NP (DT an) (NN opportunity))

 (VP (VBN created)

 (NP (-NONE- *))

 (PP (IN by)

 (NP (DT the) (NN sell-off))))))

 (. .)))

Time: 8.313282833 Length: 10 [Current] P: 88.89 R: 88.89 F1: 88.89 EX: 0.00

Level 2 Guess:
(ROOT
 (S
 (NP (PRP They))
 (VP (VBD saw)
 (NP
 (NP (DT an) (NN opportunity))
 (VP (VBN created)
 (NP (-NONE- *))
 (PP (IN by)
 (NP (DT the) (NN sell-off))))))
 (. .)))
Time: 16.477195565 Length: 10 [Current] P: 100.00 R: 100.00 F1: 100.00 EX: 100.00
Appendix A: Contributions of Individual Collaborators

Thad and Marius did most of the programming side-by-side. Thad focused on the initial implementation of the CKY parsing algorithm and various optimizations suggested by using the YourKit profiler. We did the vertical Markovization and report together. Marius worked on the horizontal Markovization.

