CS224N – Final Project –Entity Resolution of Person Names in Web Documents

Naren Chittar

nchittar@stanford.edu

Introduction

Today web-search has become a very important technical area with the huge amount of information available online and also the penetration of Internet usage. There is active research going on both in academia and industry in trying to improve web-search. Some of these efforts are towards improving search as a whole, whereas other efforts are to improve specific applications of search – known as verticals. People-search on the web is a very important vertical since about 30% of all web queries are people names (1). One of the important challenges that exists here, and which falls well in the domain of NLP, is the problem of entity resolution in documents. Named Entity Resolution in this context is to resolve the actual person a document is referring as different persons can have the same name. For example when humans read a document which talks about Michael Jackson, they know from the context whether the document is referring to Michael Jackson, the pop singer or Michael Jackson, the football player(or probably someone else).

A company called Spock, which makes a People-search product, has hosted an open public contest for Entity Resolution of Person names in Web documents. The task is to take a large set of HTML documents and cluster them into groups, by the persons that are referred to.

Problem Description

In this Entity Resolution problem, we are provided with a set of HTML documents- D. Our task is to cluster them into groups by the person the documents refer to. We are also provided with a list of target names - N . This is the list of names of people that the documents in D can refer to. Note that this list contains only unique names. For e.g there will be only one entry for Michael Jackson even though D contains documents for many different Michael Jacksons. So our algorithm has to automatically resolve which person the document is talking about.

[image: image1.png]N

Michael Jackson

Aamir Khan

Mark Smith

Fig 1. Data set provided: document set D and person name list N.

Approach

This is essentially an unsupervised clustering problem. Since we are given a list of target names, break the solution into two steps. In step 1, we use the list of target names and perform text search over D to get the first level of clusters. So now we have clusters for each name, which we will refer to as per-name-clusters. In step 2, we run an unsupervised clustering algorithm on each of the per-name-cluster to generate per-person-clusters. So having a list of target names N, spares us from running the unsupervised clustering algorithm on the entire set D all at once. This reduces the runtime drastically. Another use of knowing the name n associated with a document at the step2 is that it helps us to extract better features as we shall see later.

[image: image2.png]\L unsupervised
clustering

g

&9

Fig 2. Overview of algorithm.

Details of Clustering Algorithm

Step1: In this step we take the list of names in N and for each name n we extracted the set of documents that matches the name n.

For name in N
 PerNameSubset(name) = {d : match(d, name) }

End

Note that our algorithm does not produce mutually exclusive subsets since a document may match more than one name so it is not a strict partition. The matching function we use is a simple function that checks for the presence of both words in the documents. To limit the complexity, we do not try to do matches like matching the name “Michael Jackson” to documents containing “M. Jackson”. We also do not try to match slight spelling variation in names or misspellings. We implemented this text search, using Linux utilities like grep and shell scripts. A much more efficient approach might be to build an inverted index on over the document set D and then do the text search.

Step 2: In this step, we use unsupervised clustering to partition each of the per-person-subset created above into smaller subsets, each matching one person. The most popular unsupervised clustering algorithm is K-Means or EM algorithm, but in this case we do not know the number of clusters needed since we don’t know the number of persons who have the same name. It is possible to try different values K=1,…. and choose that value of K when the clustering error drops drastically, indicating that the natural number of clusters has been reached. But this approach is time consuming.

We implement an algorithm described in the SWOOSH framework (2) by the Stanford Entity Resolution Framework team (2). This algorithm does not need the number of clusters to be specified a-priori, so it suits our need. It starts by considering two sets: R, which initially contains all the documents and R’ which maintains the clusters created so far . At each step a document in R is taken and a determination is made whether it belongs to an existing cluster contained in R’ (we will explain what belonging to a cluster means later). If it does, then the document is added to that cluster, or else a new cluster is created to which this document is added. The distance between a document d and a cluster C is defined as the minimum distance of d from the documents in C.

 dist(d, C) = min dist(d, d’)

 d’ in C

Based on this definition, we calculate the distance to the closest cluster.

μ= min dist(d, C)

 C

If μ < θ , some predetermined distance threshold, we add the document d to the closest cluster C . If not, then we create a new cluster and add d to it. This clustering algorithm has O(n^2)

Feature Extraction

For the unsupervised clustering task, we used the words in the documents as features. But we can avoid using all the words in the documents since we know the name associated with a document at this stage. We used a window of L words around the position of name n in the document. This filters out a lot of non-relevant text like ads, menu items etc that commonly occur in HTML documents. We then use the vector space model to represent the document with tf-idf weights. We use the cosine similarity as the document similarity metric. Here is an example of the text window:

American star Michael Jackson is an entertainer and artist …

(Thanks to Nathan Sakunkoo for providing the code for the vector space model.)

Results and Error Analysis

We obtain an Fscore of 0.32 on the data set. This translates into a precision (or accuracy) of 32 % and also a recall of 32%, since I useα=0.5 to combine them. The size of the corpus used was 25,000 documents.

The unsupervised clustering algorithm described above requires a cosine similarity threshold for deciding whether two documents refer to the same person or not. We vary this threshold in small steps from 0 to 1 and determine the θ that gave the best result for the corpus.

[image: image3.png]Fscore

FScore vs Document Cos

03s

03

025

02

015

01

005

Doct

ine Similarity Threshold

02 04 08 08 1
ment Cosime Similarity Threshold

12

 Fig 3. Determining the best document similarity threshold to use.

Error Analysis: The heart of the unsupervised clustering task is calculate the similarity (or distance) between two documents. Here are examples where the algorithm worked correctly and other cases where it did not.

Examples of True-Positives (correct matches):

….

Aaron (5 albums)

Aaron Algara (2 albums)

Aaron Kuck (1 albums)

Aaron Arzumanian (1 albums)

Aaron Duran (2 albums)

….
and

…

Alea Jacta Est - Full Albums Review

Alejandra Avalos - Full Albums Review

Aaron Kuck - Full Albums Review

Aleksey - Full Albums Review

Alemu Aga - Full Albums Review

…

These two documents were grouped correctly because a word like “album” which has significantly high tf-idf was common in both document vectors.

Examples of False Negatives (matches that should have been made, but were not).

This document was not placed in the group with the documents listed above.

Browse by Artist/Band Name:

Aaron Kuck

C.I.L.F: "Cartoons I'd Like To F..."

3 min 21 sec

Funny Videos | Music Videos

AARON KUCK LYRICS
The reason that this document was not grouped with the one above is that they did not have common words, even though the words are so strongly related (like Artist/Band and Album) with the ones listed above, but were related.

Here is another example where the first two documents were correctly grouped together, but the third was not.

Dot net Users Group meeting which is going down in South Jordan at the Neumont University campus. It looks like Aaron Sheaffer …

Tonight was the Salt Lake Dot Net users group. The talk was on Design Patterns and was given by Aaron Sheaffer
Nullable Types and the Null Coalescing Operator Some of the things I read in R. Aaron Sheaffer's blog post New Operator in C# 2.0: ?? caught me off guard. I swear I'd read through several articles listing changes and additions in .NET
We realize that for documents to match with the cosine similarity metric, the actual words need to be common. This is quite a strong condition. Such a strong matching criterion gives a heavy weight on precision and that’s why in our errors we do not see many false negatives.

Challenges

The document corpus was in HTML format so a parser had to built . PERL has a rich library set for parsing and so PERL was used to create the parser. Another challenge that was faced was that the documents were not clean. These documents were actual HTML pages from the Internet and contained a lot of text ads, menus and other non-relevant text.

Another challenge that was faced was that the hand labeling in the ground truth document did not seem correct for many cases. Even after reading a pair of documents closely, it was hard to tell why they were put in the same group. For example there was a document about “Aaron Kuck Marathon List for 2006”

that was grouped together with Aaron Kuck the artist.

Conclusions and Future Work

Our error analysis shows that using some semantic similarity measure should improve our results. In addition augmenting the feature vector with an entry like document category as a feature – like sports, business, software etc might improve results too.

The current clustering scheme used is O(n2) because we compare a new document to all documents in the cluster. If we compute something like a mean for each cluster and use that as the representative, then we might be able to compare the new document only to the mean of the cluster. This should drastically improve the average run time of the clustering algorithm.

References

(1) Article by journalist Michael Arrington http://www.techcrunch.com/2007/04/11/exclusive-screenshots-spocks-new-people-engine/
(2) Swoosh: A Generic Approach to Entity Resolution Omar Benjelloun, Hector Garcia-Molina, Jeff Jonas, David Menestrina, Qi Su, Steven Euijong Whang, Jennifer Widom. Stanford University Technical Report, 2006

