
Inclusion of large input corpora in
Statistical Machine Translation

Bipin Suresh
Stanford University

bipins@stanford.edu

ABSTRACT
In recent years, the availability of large, parallel, bilingual corpora
has gone untapped by the statistical machine learning community.
The crux of the problem lies in the inherent linearity of the
traditional machine-translation algorithms, which impedes easy
inclusion of new, large input corpora. However, it has been
speculated [1] that there exists a log-linear relationship between
the training corpora size and performance in machine-translation
tasks. In this paper, we cast the IBM Model-1 algorithm into three
formats that allow it to use large input corpora, and then verify the
performance-gain claims. The models we introduce provide a
scalable architecture for incorporating further corpora easily and
cheaply, which we then show to translate into higher performance
in machine-translation tasks.

Keywords
Natural language processing, Statistical machine translation, IBM
Model-1

1. INTRODUCTION
IBM's Model-1[2] is a word-alignment machine-translation model
that makes use of parallel bilingual corpora. It assumes that a
source sentence S of length l is translated into a target sentence T
of size m by choosing, for every position in the target sentence j
(1≤j≤m), a word in the source sentence eaj (which includes a
special NULL word), according to some alignment a, and then
translating the word eaj to a word fj with the help of a translation
model t(f, e).

Model-1 makes a few simplifying assumptions: first, it assumes
that every possible length of the target sentence (less than some
arbitrary upper-bound) has uniform probability ε; next, that all
possible choices of source sentence generating words are equally
likely; and finally, that the translation probability t(f, e) depends
only on the source language word:

The above equation by Brown et al[2] provides an estimate of the
probability of a source sentence S translating into a target
sentence T. Since Model-1 makes a further simplification
assumption that each target word can be generated by a single
source word (including the NULL word) only, we can work out
the best alignment vector a as follows:

The parameters of Model-1 are typically estimated using an
Estimation Maximization (EM) algorithm[3].

A straightforward implementation of the algorithm has a serious
problem though: since the algorithm has to iterate over every
alignment of every singe sentence pair, it quickly becomes
computationally infeasible. A common method to overcome this
shortcoming is explained in detail in [3]. Figure 1 summarizes the
algorithm currently in common usage.

Model-1 has many shortcomings: (1) each target sentence word
can be generated by only one source word; (2) the position of any
word in the target sentence is independent of the corresponding
word in the source sentence and; (3) the translation of one target
word does not take into account how many other words the
corresponding source word has already been translated to. Several
improvements have been proposed [4] to counter these issues. In
their original paper[2], Brown et al also propose higher order
models – IBM Model-2, Model-3, Model-4 and Model-5 – which
attempt to attack these problems systematically.

However, there is also a practical consideration that goes
unnoticed: Model-1 is essentially a linear algorithm, looping over
every document sentence pair; and for each sentence pair, looping
over every source-target word pair. This makes incorporating new
large corpora extremely expensive, both in terms of memory as
well as the time taken for execution. In this paper we attempt to
remodel Model-1 to make it more parallelizable.

Our contributions are as follows: We first cast the model into a
matrix form, which enables us to compute scores in parallel by
using fast, parallelized matrix operations. We then model the
matrix as sparse matrices to reduce the memory foot-print while
maintaining the gains in speed. Finally, we cast the model into the
Map-Reduce framework to explore parallelization across a
distributed architecture of machines. The paper is organized
roughly along these contributions.

Figure 1: IBM Model-1pseudo-code

2. MATRIX MODEL
2.1 Full matrices on GPUs
Recent developments in graphics processing units (GPU) have
enabled large-scale matrix manipulation operations to be
computed efficiently in parallel. Multiple parallel computing
architectures have been built to support application programmers.
Two prominent approaches are Nvidia's CUDA, and OpenCL.

To harness these powers of the GPU, we cast the IBM Model-1
algorithm into a series of matrix manipulation operations. First,
we composed the entire corpora as a 3-dimensional matrix, with
the first dimension being the source-words f, the second
dimension being the target-words e, and the last dimension being
the documents. A cell docs(f, e, d) is the count of the number of
times word f was translated to word e in document d. Our
algorithm to compute the translation probabilities between word f
and word e is as follows:

Figure-2: A matrix-operations only model of IBM's Model-1

In the first two steps, we initialize the translation table between all
words f and e with a uniform probability. Then, until convergence,
we perform the following matrix operations: in step 4, we make a
n-dimensional copy of our translation table, so that in step 5, we
can do a element wise matrix multiplication with the docs matrix.
Note that the element-wise matrix multiplication is inherently
parallelizable, which makes step 5 very fast to compute. Next, in
steps 6-8, we normalize the counts for every f. The function
bsxfun is a special MATLAB® command which manipulates each
element in a matrix with its corresponding element in a vector.
Again, since each of the operations can be done in parallel, very
little time is spent on the actual execution of these commands.
Finally, in steps 9-11, we sum across all documents, and then re-
normalize the translation probability table.

The effects of using a parallel GPU-based architecture is
immediately evident in our results. In Figure 4(a), we compare the
performance in time required to complete execution of 5 iterations
of the algorithm for different corpora sizes. In Figure 4(b), we plot
the growth of the execution times. The GPU based version is not
only is faster, but also grows more slowly than the non-GPU
version. For the non-GPU version, a 10-fold increase in data-size
increases execution-speed by 10 times, while for the GPU version,
the increase is at 4.96 times.

2.2 Sparse matrices on multicoreprocessors
The algorithm presented in Figure-2, though speedy, has some
serious shortcomings. It constructs two large matrices – docs, and
t, each of which has a size of max(f) * max(e) * nDocs. As the size
of the corpora increases, this poses a serious memory
consumption problem.

Our insight into this problem was to notice that the docs matrix
was usually very sparse – each sentence-pair used very few words
from the either vocabulary. We transformed our entire algorithm
to work off sparse matrices. There is a caveat to the process – the
sparse matrix support on the GPUs, at the time of the writing of
this paper, is tenuous at best, and the version of MATLAB®'s
GPU toolkit – Jacket® – we had installed on our machines did
not support sparse matrices.

Figure 3: Parallel sparse matrix version of IBM Model-1

However, to make our point, we parallelized our code so that it
could be run across multiple cores on the same machine. We
present our algorithm in Figure 3, and our results in Figure 5.

In Figure 5 we measure the scaling properties across multiple
cores. The lines represent performance for 1, 2, and 4 multicores
respectively. Each data-point corresponds to the amount of time
taken for execution relative to the amount of time taken to train a
model of corpus size 100. As can be seen from the graph, using a
4 processing cores, an 100 fold increase of training size only
increases training time by 41%.

It is also reassuring to know that the scaling properties increase
with the increase of processing cores. So it is not only that the
absolute processing time decreases with the number of cores, but
also that the rate at which the execution time grows with increases
in corpus size, decreases with the number of cores. This leads us

Figure 4: (a) is the absolute execution times for two models – the
GPU and the non-GPU full matrix models. (b) is the same graph
but on a relative scale to highlight scaling properties with respect

to increases in corpus-size .

to believe that with a substantial number of cores, we should be
able to achieve a better and better scaling factors.

Finally, we also note that, since we store only the pairs that appear
in documents, the memory foot-print of the sparse-matrix
implementation is much lower than that of the full matrix
implementation. This is evidenced in the corpus sizes we were
able to perform experiments on – moving from 100 to 10000.

Figure 5: Relative execution times across multiple processor
cores. Each data point is the time taken relative to time for the

smallest corpus size(100)

3. MAP-REDUCE MODEL
Recently, the Hadoop infrastructure, based on the Map-Reduce
framework defined by Dean and Ghemawat[5], has appeared as an
alternative for parallelizing tasks. The framework is especially
useful since it shields the application programmer from the
intricacies of fault-tolerance, data transfer and synchronization.
The Hadoop framework allows for writing applications that
process vasts amounts of data in parallel across a large cluster of
nodes.

The Map-reduce framework is built on the insight that a large
number of tasks have the same basic two-phase structure: a map-
stage, in which a large number of records are processed to
produce some local results; and a reduce stage, in which these
intermediate results are aggregated to produce the final output.

Specifically, the application programmer provides two functions:

map: <k1, v1> → [<k2, v2>]

reduce: <k2, [v2]> → [<k3, v3>]

The Map-reduce infrastructure has previously been
investigated[6] for the purposes of statistical machine translation.
Our contributions include rewriting the entire pipe-line, including
the normalization-step of IBM's Model-1 as Map-reduce tasks,
instead of computing only the maximum likelihood estimates, and
then computing the normalizations as a separate non-map-reduce
step.

Specifically, we built two map-reduce modules, with the second
one chained to the first. The first module corresponded to the
counting section of the EM, while the second module corresponds
to the normalization section:

Figure 6: Relative execution times across various corpus sizes for
the Hadoop Map-reduce infrastructure. A 10,000 fold increase in

corpus-size increases execution time by 2.4 times only.

Module-1: Count

map: <f, e> → [<fj, pair{ei, count(fj, ei)*t(fj, ei)}>];

reduce: <fj, [pair{ei, p}]> → [<fj+ei, sum(p_ei)>]

Module 2: Normalize

map: <f+e, p> → <e, pair{f, p}>;

reduce: <e, [pair{f, p}]> → [<fj+e, p / sum(p_fj)>]

An additional advantage is that, using this method, one can use a
combiner module (which can be viewed as a local reduce module,
working on the output of the local reducer), to speed things up a
lot. Because of Zipf's law, this reduction is found to be
significant[6].

Having constructed the model, we tested it on two different
dimensions: (1) the effects of increased corpora size and; (2) the
effects of increasing the number of machines on the execution
times for a fixed size corpora.

Figure 6 presents the relative performance of Hadoop based on an
initial corpus size of 10. The Map-reduce framework scales very
well – a 10,000 fold increase in corpus size increases execution
time by 2.4 times only.

Figure 7 presents a study of how Hadoop scales with number of
machines available. For this experiment, we held the size of the
corpus constant (100,000 documents), and measured the
execution times as we added nodes. Our experiments were limited
to a maximum of 15 nodes only since we were working within a
school environment.

Moving from a single node system to a 15 node system decreases
execution time by 44%. Gains however, seem to be already
beginning to saturate.

Figure 7: Scaling properties of Hadoop's Map-reduce with
increased number of nodes.

4. EVALUATION
In [7] and [8], Koehn et al speculate a log-linear relationship
between training corpus size and statistical machine translation
quality. In [9], Brants et al. demonstrated that increasing the
quantity of training data for language modeling significantly
improved translation quality for Arabic-English translation
systems. Armed with our infrastructure, our contribution consists
of evaluating whether an increase in corpus size has an positive
effect machine translation.

Our system was built on top of the Moses toolkit[10]. We used
the Europarl corpus[11], extracted from the proceedings of the
European parliament. For the purposes of our tests, we used the
French to English bilingual corpus.

We calculate and report BLEU scores[12] as measures of
translation quality. BLEU has frequently been reported as
correlating well with human judgment, and remains a benchmark
in the statistical machine translation community.

Figure 8 shows the effects of corpus size on BLEU scores for
IBM's Model-1 algorithm. Figure 9 then overlays the scaling
properties of the Hadoop architecture on the relative gains in
translation quality.

The figures make it evident that an increased corpus size does
indeed increase statistical machine translation quality. It is also
gratifying to note that the slope of the second line (training time)
in figure 9 is lesser than the slope of the first line (translation
quality). This seems to suggest that the trade off of using more
training data for better performance is worthwhile one.

Figure 8: Effects of corpus size on translation quality.

Figure 9: Relative scaling of translation quality and training time
(relative to model trained on 100 documents)

4.1 Technical notes
For the purposes of evaluation, our experiments were conducted
on the following machine architectures:

GPU: GeForce GTX 285, 1441 MHz, 1023 MB VRAM

Multicore processor: 8-core Opteron 2384 (SB X6240); 31.49
GB RAM, 10.00 GB swap

Hadoop infrastructure: 15 x Intel Core2 Duo CPU E6600 @ 2.40
GHz, 2 GB RAM, CentOS 5 x86_64. 1 Master. 15 slaves.

5. DISCUSSION AND FUTURE WORK
This paper was written on a hunch that, like in many other natural
language processing tasks, the size of the training corpus played a
dominant role in statistical machine translation. We built three
models on state-of-the-art parallel infrastructure, and provided
evidence that they scale reasonably well. We then used this
infrastructure to confirm the hypothesis by training a machine
translation system on a large corpus size, and determining its
performance on a standard translation task.

As immediate follow-ups to this work, we see two avenues: (1)
scaling the architectures by adding more hardware, and
determining if the trend of increasing translation quality still
holds; and (2) applying the parallelization approaches to more
complex translation models

6. REFERENCES
[1] Advances in Statistical Machine Translation: Phrases, Noun

Phrases and Beyond, Philipp Koehn
[2] The mathematics of statistical machine translation:

parameter estimation. Computational Linguistics,
19(2):263–311. Peter F. Brown, Stephen A. Della Pietra,
Vincent J. Della Pietra, and Robert L. Mercer. 1993a

[3] A Statistical MT Tutorial Workbook., Kevin Knight
[4] Improving IBM Word-Alignment Model 1. Robert C Moore.
[5] MapReduce: Simplified data processing on large clusters.

In Proceedings of the 6th Symposium on Operating System

Design and Implementation (OSDI 2004), pages 137–150,
SanFrancisco, California. Jeffrey Dean and Sanjay
Ghemawat. 2004.

[6] Fast, Easy, and Cheap: Construction of Statistical Machine
Translation Models with MapReduce. Christopher Dyer,
Aaron Cordova, Alex Mont, Jimmy Lin

[7] Statistical Phrase-Based Translation, Philipp Koehn, Franz
Josef Och, and Daniel Marc

[8] Advances in Statistical Machine Translation: Phrases, Noun
Phrases and Beyond, Philipp Koehn

[9] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 858–867, Prague, Czech Republic.

[10] http://www.statmt.org/moses/
[11] Europarl: A Parallel Corpus for Statistical Machine

Translation, Philipp Koehn, MT Summit 2005
[12] BLEU: a method for automatic evaluation of machine

translation, Papineni, K., Roukos, S., Ward, T., and Zhu, W.
J. (2002).

http://www.statmt.org/moses/

	1. INTRODUCTION
	2. MATRIX MODEL
	2.1 Full matrices on GPUs
	2.2 Sparse matrices on multicoreprocessors

	3. MAP-REDUCE MODEL
	4. EVALUATION
	4.1 Technical notes

	5. DISCUSSION AND FUTURE WORK
	6. REFERENCES

