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ABSTRACT
In recent years, the availability of large, parallel, bilingual corpora 
has gone untapped by the statistical machine learning community. 
The  crux  of  the  problem  lies  in  the  inherent  linearity  of  the 
traditional  machine-translation  algorithms,  which  impedes  easy 
inclusion  of  new,  large  input  corpora.  However,  it  has  been 
speculated [1] that there exists a log-linear relationship between 
the training corpora size and performance in machine-translation 
tasks. In this paper, we cast the IBM Model-1 algorithm into three 
formats that allow it to use large input corpora, and then verify the 
performance-gain  claims.  The  models  we  introduce  provide  a 
scalable architecture for incorporating further corpora easily and 
cheaply, which we then show to translate into higher performance 
in machine-translation tasks.
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1. INTRODUCTION
IBM's Model-1[2] is a word-alignment machine-translation model 
that  makes use  of parallel  bilingual  corpora.  It  assumes that  a 
source sentence S of length l is translated into a target sentence T 
of size m by choosing, for every position in the target sentence j  
(1≤j≤m),  a  word  in  the  source  sentence  eaj  (which  includes  a 
special  NULL word),  according to  some alignment  a,  and then 
translating the word eaj to a word fj with the help of a translation 
model t(f, e).

Model-1 makes a few simplifying assumptions:  first,  it  assumes 
that every possible length of the target sentence (less than some 
arbitrary upper-bound)  has  uniform probability ε;  next,  that  all 
possible choices of source sentence generating words are equally 
likely; and finally, that the translation probability  t(f, e) depends 
only on the source language word:

The above equation by Brown et al[2] provides an estimate of the 
probability  of  a  source  sentence  S translating  into  a  target 
sentence  T.  Since  Model-1  makes  a  further  simplification 
assumption  that  each target  word  can be generated by a single 
source word (including the NULL word) only, we can work out 
the best alignment vector a as follows:

The  parameters  of  Model-1  are  typically  estimated  using  an 
Estimation Maximization (EM) algorithm[3]. 

A straightforward implementation of the algorithm has a serious 
problem though:  since  the  algorithm has  to  iterate  over  every 
alignment  of  every  singe  sentence  pair,  it  quickly  becomes 
computationally  infeasible. A common method to overcome this 
shortcoming is explained in detail in [3]. Figure 1 summarizes the 
algorithm currently in common usage.

Model-1 has many shortcomings:  (1) each target sentence word 
can be generated by only one source word; (2) the position of any 
word in the target sentence is independent of the corresponding 
word in the source sentence and; (3) the translation of one target 
word  does  not  take  into  account  how  many  other  words  the 
corresponding source word has already been translated to. Several 
improvements have been proposed [4] to counter these issues. In 
their  original  paper[2],  Brown  et  al  also  propose  higher  order 
models – IBM Model-2, Model-3, Model-4 and Model-5 – which 
attempt to attack these problems systematically. 

However,  there  is  also  a  practical  consideration  that  goes 
unnoticed: Model-1 is essentially a linear algorithm, looping over 
every document sentence pair; and for each sentence pair, looping 
over every source-target word pair. This makes incorporating new 
large corpora extremely expensive, both in terms of memory as 
well as the time taken for execution. In this paper we attempt to 
remodel Model-1 to make it more parallelizable. 

Our contributions are as follows: We first cast the model into a 
matrix form, which enables us to compute scores in parallel by 
using  fast,  parallelized  matrix  operations.  We  then  model  the 
matrix as sparse matrices to reduce the memory foot-print while 
maintaining the gains in speed. Finally, we cast the model into the 
Map-Reduce  framework  to  explore  parallelization  across  a 
distributed  architecture  of  machines.  The  paper  is  organized 
roughly along these contributions.



Figure 1: IBM Model-1pseudo-code

2. MATRIX MODEL
2.1 Full matrices on GPUs
Recent  developments  in  graphics  processing  units  (GPU)  have 
enabled  large-scale  matrix  manipulation  operations  to  be 
computed  efficiently  in  parallel.  Multiple  parallel  computing 
architectures  have been built to support application programmers. 
Two prominent approaches are Nvidia's CUDA, and OpenCL.

To harness these powers of the GPU, we cast the IBM Model-1 
algorithm into a series of matrix manipulation operations.  First, 
we composed the entire corpora as a 3-dimensional matrix, with 
the  first  dimension  being  the  source-words  f,  the  second 
dimension being the target-words e, and the last dimension being 
the documents. A cell  docs(f, e, d) is the count of the number of 
times  word  f was  translated  to  word  e in  document  d.  Our 
algorithm to compute the translation probabilities between word f 
and word e is as follows:

Figure-2: A matrix-operations only model of IBM's Model-1

In the first two steps, we initialize the translation table between all 
words f and e with a uniform probability. Then, until convergence, 
we perform the following matrix operations: in step 4, we make a 
n-dimensional copy of our translation table, so that in step 5, we 
can do a element wise matrix multiplication with the docs matrix. 
Note  that  the  element-wise  matrix  multiplication  is  inherently 
parallelizable, which makes step 5 very fast to compute. Next, in 
steps  6-8,  we  normalize  the  counts  for  every  f.  The  function 
bsxfun is a special MATLAB® command which manipulates each 
element in a matrix with its corresponding element in a vector. 
Again, since each of the operations can be done in parallel, very 
little time is spent  on the actual  execution  of these commands. 
Finally, in steps 9-11, we sum across all documents, and then re-
normalize the translation probability table.

The  effects  of  using  a  parallel  GPU-based  architecture  is 
immediately evident in our results. In Figure 4(a), we compare the 
performance in time required to complete execution of 5 iterations 
of the algorithm for different corpora sizes. In Figure 4(b), we plot 
the growth of the execution times. The GPU based version is not 
only  is  faster,  but  also  grows  more  slowly  than  the  non-GPU 
version. For the non-GPU version, a 10-fold increase in data-size 
increases execution-speed by 10 times, while for the GPU version, 
the increase is at 4.96 times.

2.2 Sparse matrices on multicoreprocessors
The algorithm presented  in  Figure-2,  though  speedy,  has  some 
serious shortcomings. It constructs two large matrices – docs, and 
t, each of which has a size of max(f) * max(e) * nDocs. As the size 
of  the  corpora  increases,  this  poses  a  serious  memory 
consumption problem.

Our insight into this problem was to notice that the  docs  matrix 
was usually very sparse – each sentence-pair used very few words 
from the either vocabulary. We transformed our entire algorithm 
to work off sparse matrices. There is a caveat to the process – the 
sparse matrix support on the GPUs, at the time of the writing of 
this  paper,  is  tenuous  at  best,  and  the version  of MATLAB®'s 
GPU toolkit – Jacket® –  we had installed on our machines did 
not support sparse matrices. 



Figure 3: Parallel sparse matrix version of IBM Model-1

However, to make our point, we parallelized our code so that it 
could  be  run  across  multiple  cores  on  the  same machine.  We 
present our algorithm in Figure 3, and our results in Figure 5.

In Figure 5 we measure the scaling properties across multiple 
cores. The lines represent performance for 1, 2, and 4 multicores 
respectively. Each data-point corresponds to the amount of time 
taken for execution relative to the amount of time taken to train a 
model of corpus size 100. As can be seen from the graph, using a 
4 processing cores, an 100 fold increase of  training size only 
increases training time by 41%. 

It is also reassuring to know that the scaling properties increase 
with the increase of processing cores. So it is not only that the 
absolute processing time decreases with the number of cores, but 
also that the rate at which the execution time grows with increases 
in corpus size, decreases with the number of cores. This leads us 

Figure 4: (a) is the absolute execution times for two models – the 
GPU and the non-GPU full matrix models. (b) is the same graph 
but on a relative scale to highlight scaling properties with respect  

to increases in corpus-size .

to believe that with a substantial number of cores, we should be 
able to achieve a better and better scaling factors. 

Finally, we also note that, since we store only the pairs that appear 
in  documents,  the  memory  foot-print  of  the  sparse-matrix 
implementation  is  much lower  than  that  of  the  full  matrix 
implementation.  This is  evidenced in  the  corpus  sizes we were 
able to perform experiments on – moving from 100 to 10000.



Figure 5: Relative execution times across multiple processor 
cores. Each data point is the time taken relative to time for the 

smallest corpus size(100)

3. MAP-REDUCE MODEL
Recently,  the  Hadoop infrastructure,  based on the Map-Reduce 
framework defined by Dean and Ghemawat[5], has appeared as an 
alternative  for  parallelizing  tasks.  The  framework  is  especially 
useful  since  it  shields  the  application  programmer  from  the 
intricacies  of  fault-tolerance,  data  transfer  and  synchronization. 
The  Hadoop  framework  allows  for  writing  applications  that 
process vasts amounts of data in parallel across a large cluster of 
nodes.

The Map-reduce  framework  is  built  on  the insight  that  a  large 
number of tasks have the same basic two-phase structure: a map-
stage,  in  which  a  large  number  of  records  are  processed  to 
produce some local results;  and a reduce stage,  in  which  these 
intermediate results are aggregated to produce the final output. 

Specifically, the application programmer provides two functions:

map: <k1, v1> → [ <k2, v2> ]

reduce: <k2, [v2 ]> → [ <k3, v3> ]

The  Map-reduce  infrastructure  has  previously  been 
investigated[6] for the purposes of statistical machine translation. 
Our contributions include rewriting the entire pipe-line, including 
the  normalization-step  of  IBM's  Model-1  as  Map-reduce  tasks, 
instead of computing only the maximum likelihood estimates, and 
then computing the normalizations as a separate non-map-reduce 
step.

Specifically, we built two map-reduce modules, with the second 
one  chained  to  the  first.  The  first  module  corresponded  to  the 
counting section of the EM, while the second module corresponds 
to the normalization section:

Figure 6: Relative execution times across various corpus sizes for  
the Hadoop Map-reduce infrastructure. A 10,000 fold increase in  

corpus-size increases execution time by 2.4 times only.

Module-1: Count

map: <f, e> → [ <fj, pair{ei, count(fj, ei)*t(fj, ei)}> ];

reduce: <fj, [ pair{ei, p} ]> → [ <fj+ei, sum(p_ei)> ]

Module 2: Normalize

map: <f+e, p> → <e, pair{f, p}>;

reduce: <e, [ pair{f, p} ]> → [ <fj+e, p / sum(p_fj)> ]

An additional advantage is that, using this method, one can use a 
combiner module (which can be viewed as a local reduce module, 
working on the output of the local reducer), to speed things up a 
lot.  Because  of  Zipf's  law,  this  reduction  is  found  to  be 
significant[6].

Having  constructed  the  model,  we  tested  it  on  two  different 
dimensions: (1) the effects of increased corpora size and; (2) the 
effects  of  increasing the number  of machines  on  the execution 
times for a fixed size corpora.

Figure 6 presents the relative performance of Hadoop based on an 
initial corpus size of 10. The Map-reduce framework scales very 
well – a 10,000 fold increase in corpus size increases execution 
time by 2.4 times only.

Figure 7 presents a study of how Hadoop scales with number of 
machines available. For this experiment, we held the size of the 
corpus  constant  (100,000  documents),  and  measured  the 
execution times as we added nodes. Our experiments were limited 
to a maximum of 15 nodes only since we were working within a 
school environment. 

Moving from a single node system to a 15 node system decreases 
execution  time  by  44%.  Gains  however,  seem  to  be  already 
beginning to saturate. 



Figure 7: Scaling properties of Hadoop's Map-reduce with 
increased number of nodes.

4. EVALUATION
In  [7]  and  [8],  Koehn  et  al  speculate  a  log-linear  relationship 
between  training  corpus  size  and  statistical  machine  translation 
quality.  In  [9],  Brants  et  al.  demonstrated  that  increasing  the 
quantity  of  training  data  for  language  modeling  significantly 
improved  translation  quality  for  Arabic-English  translation 
systems. Armed with our infrastructure, our contribution consists 
of evaluating whether an increase in corpus size has an positive 
effect machine translation.

Our system was built on top of the Moses toolkit[10].  We used 
the Europarl  corpus[11],  extracted from the proceedings  of the 
European parliament. For the purposes of our tests, we used the 
French to English bilingual corpus.

We  calculate  and  report  BLEU  scores[12]  as  measures  of 
translation  quality.  BLEU  has  frequently  been  reported  as 
correlating well with human judgment, and remains a benchmark 
in the statistical machine translation community.

Figure  8 shows the effects  of corpus  size on  BLEU scores for 
IBM's  Model-1  algorithm.  Figure  9  then  overlays  the  scaling 
properties  of  the  Hadoop  architecture  on  the  relative  gains  in 
translation quality.

The figures  make it  evident  that  an increased corpus  size  does 
indeed increase statistical  machine translation quality.  It  is also 
gratifying to note that the slope of the second line (training time) 
in  figure  9 is lesser than the slope of the first  line (translation 
quality).  This seems to suggest that the trade off of using more 
training data for better performance is worthwhile one.

Figure 8: Effects of corpus size on translation quality.

Figure 9: Relative scaling of translation quality and training time 
(relative to model trained on 100 documents)

4.1 Technical notes
For the purposes of evaluation, our experiments were conducted 
on the following machine architectures:

GPU: GeForce GTX 285, 1441 MHz, 1023 MB VRAM

Multicore  processor:  8-core  Opteron  2384  (SB  X6240);  31.49  
GB RAM, 10.00 GB swap

Hadoop infrastructure: 15 x Intel Core2 Duo CPU E6600 @ 2.40  
GHz, 2 GB RAM, CentOS 5 x86_64. 1 Master. 15 slaves.



5. DISCUSSION AND FUTURE WORK
This paper was written on a hunch that, like in many other natural 
language processing tasks, the size of the training corpus played a 
dominant  role  in  statistical  machine  translation.  We built  three 
models  on  state-of-the-art  parallel  infrastructure,  and  provided 
evidence  that  they  scale  reasonably  well.  We  then  used  this 
infrastructure  to  confirm the  hypothesis  by training  a  machine 
translation  system on  a  large  corpus  size,  and  determining  its 
performance on a standard translation task.

As immediate follow-ups to this work, we see two avenues: (1) 
scaling  the  architectures  by  adding  more  hardware,  and 
determining  if  the  trend  of  increasing  translation  quality  still 
holds;  and  (2)  applying  the  parallelization  approaches  to  more 
complex translation models
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