Automated Product Profiling through NLP

Jiho Han, Dowon (Ronny) Ko

Abstract—We design and experiment with an innovative way to automatically generate product profiles from Amazon reviews. Using NLP, we extract opinions from each review, clusters them by their orientation through an unsupervised learning (k-means). From these clustered opinions, we estimate the product profiling kernel θ and the pricing kernel λ. Finally, we optimize/update the word polarity by minimizing the prediction error (supervised learning). While the trained model performs only slightly better than random guessing, the interim outputs and the estimated parameters seem to provide useful information while showing a possibility for improvement.

I. INTRODUCTION

In this paper, we propose an unconventional approach to summarize Amazon online product reviews. In contrast to previous research which attempts to simply predict the overall product rating, our model aims to: (1) extract and evaluate the sentence-level opinions, (2) aggregate them into the relevant clusters (i.e., evaluation criteria), and finally, (3) predict the product rating by averaging the scores from the evaluation criteria.

Undoubtedly, this approach has much complicated internal structures, which make parameter estimation process highly difficult. Nonetheless, there are two immediate benefits that can be gained from this approach. First, this model generates a product profile, or a scorecard for each evaluation criteria. Second, we can estimate the degree of an average consumer’s consideration on each evaluation criteria for each market product.

This approach, as far as we know, has not been suggested in the literature. Therefore, our effort lacks theoretical support and the fruitfulness of the research is never warranted. Even then, we believe this approach suggests a novel framework for unsupervised – or minimally-supervised – information extraction and is worth the effort to explore.

The rest of the paper is organized as follows. Section 2 goes over the previous literature and provides the formal model specification. Section 3 describes the data which we work with. In Section 4 we discuss the estimation procedures in detail and point out developmental issues. Section 5 shows the model’s outcome and the performance result. Lastly, Section 6 concludes and suggests the directions for future research.

II. LITERATURE AND MODEL OVERVIEW

A. Literature Review

There are several researches conducted on the topic of document-level classification and review-level rating prediction. Simply because documents have a lot more words than sentences, most of document-level classification models can utilize an N-gram model combined with NER to extract keywords while being agnostic about the syntax structure of each sentence. [1], [3] On the other hand, when evaluating sentences, we do not have such luxury of using a large number of words, and thus do not have to deal with semantic-level of natural language processing!

This is where our model can contribute to the literature. Given a minimal piece of information (i.e., product ratings), we devise an algorithm where sentence-level information extraction is dependent on semantic relations as little as possible. In other words, by jointly estimating the polarity and the orientation of opinions (these terms will be defined soon in the next section) and assuming a certain market structure (what we call the pricing kernel and the orientation kernel, also explained below), we can hopefully bypass semantic issues to some degree.

In our analysis, the previous work that is most closely related to ours is that of Popescu and Etzioni. [2] In fact, their objective and subtask procedures are almost identical to our model. However, the main difference lies in the use of product ratings and, in general, the assumption of market structures. For example, Popescu and Etzioni extensively use NLP techniques – e.g.,
defining 10 rules to represent semantic relations — to
effectively extract relevant product features and the corresponding
sentiments while discarding the information from the
product ratings.

In the next section, we present our model specification
and show how we can leverage the market structure
assumption.

B. Model Overview
The fundamental building block for our model is
the opinions we extract from each sentence. We define
opinion as a tuple consisting of orientation and polarity,
i.e.,

$$opinion = (orientation, polarity)$$

While orientation is an abstract entity, we represent
it by a m-dimensional vector x_i for the ith-opinion. On
the other hand, polarity of an opinion is simply a scalar.

Given a set of opinions, we model the predicted rating
\hat{r} as follows:

$$\hat{r} = \sum_{i} (\lambda^T \theta x_i) p_i \quad (II.1)$$

where $\lambda \in \mathbb{R}^k$ (pricing kernel)
$\theta \in \mathbb{R}^{k \times m}$ (profiling kernel)
$p_i = \text{polarity of opinion } i$

Profiling kernel θ maps each opinion x_i into k-
dimensional space where each dimension represents
a criterion with which consumers use to evaluate the
product (e.g., price or design). Pricing kernel λ is then
the weights - or the importance - that each evaluation
criterion has on determining the overall product rating.
(e.g., How important is the battery life when evaluating
a cell phone?)

The overall procedures for training the model are
summarized in Algorithm 1. Note that the key insight
of our model is that we update the polarity and the
underlying market structure so that the prediction error
is minimized.

Of course, the question is: How exactly can we
estimate each entity mentioned above? In Section IV,
we will answer that question in detail.

Algorithm 1 Overall training process
Given the orientation extraction rule R_O and
the polarity extraction rule R_P,
$O \leftarrow \text{extractOpinions}(R)$
$P_0 \leftarrow \text{extractPolarityWord}(R'; R_P)$
$O \leftarrow \text{extractOrientations}(R, P_0; R_O)$
Until converge {
$CO \leftarrow \text{clusterOpinions}(O)$
$K_i \leftarrow \text{extractMarketStructure}(CO, P_i)$
$P_{i+1} \leftarrow \text{optimizePolarity}(CO, K_0; R_P, R_O)$
$K_{i+1} \leftarrow \text{updateMarketStructure}(CO, P_i)$
}
Return $\{K = (\lambda, \theta), P; R_O, R_P\}$

III. Data
We used the product reviews from Amazon, which is
stored in XML format and is available to public on the
web.\footnote{http://www.cs.jhu.edu/~mdredze/datasets/sentiment/}

Our Amazon dataset includes 8 product categories
from which we choose the reviews of electronic devices
for training. The reason is that compared to other
product categories, electronic devices have reasonably
clean dimensions for evaluation – such as processing
speed, price, battery life, etc. The key information we
extract from each review is the review text and the
rating, which ranges from 1 to 5.

The training set consists of 100 reviews comprising
of 643 sentences in total. We test our trained model on
three different testing sets: (1) 50 reviews from the same
electronics domain, (2) 50 reviews from books, and (3)
50 reviews from kitchen and hardwares.

IV. Model Parameter Estimation
The very first step in our model is to read in the
XML review files, parse each sentence within the review
into a syntax tree structure, and store it in a
Vector<Opinion>. (So, each sentence now transforms into an opinion whose orientation and polarity
are not yet initialized.) Fortunately, Stanford NLP group provides a Java syntax parser, which utilizes Viterbi algorithm internally to extract the most likely syntax structure of the input sentence. We now proceed to the problem of extracting orientation and polarity.

A. Extracting Orientation

4.1.1 Choice of Orientation Dimension

In order to build the set of orientation words (i.e., the words to represent the orientation of an opinion), we first collect all unigram and bigram tokens from all review texts, treating each unigram, bigram token to be one orientation dimension. The words with no or very little information about the orientation of an opinion (e.g. "a" or "the") are eliminated from these N-gram sets. The next step is to transform words as an original form, if necessary. For example, "cars" will be transformed as "car", and "brought" or "bringing" will be transformed as "bring". Also, when a token comprising purely of numbers appears, it will be stored as <NUM>. Then, we merge filtered N-grams applying various rules using wordnet library: For example, we merge all synonyms into one "bucket" of orientation – "price" and "cost" can be recognized as representing an identical orientation dimension. Another rule is to merge all antonyms – treating any opinion containing "fragility" or "robustness" as expressing the same orientation (but with opposite polarity) dimension. Other examples include merging all hypernyms/hyponyms, which defines the hierarchy of words - "chair" is a type of "furniture." It is also possible to treat the pair of the current word and the following word's part of speech as a type of orientation dimension. Finally, the extracted orientations is stored as a binary vector of dimension \(m \).

Given the parsed sentence structure, we can extract all candidate phrases that can be an opinion. Any of noun phrase (NP), verb phrase (VP) and propositional phrase (PP) can express an opinion, and any of adjective, verb or noun can be an orientation (evaluation criteria) word. For example, consider that the verb “last,” the noun “longevity,” and the adjective “long” can all refer to the life span of a product. The question is how to represent them.

We consider all these possibilities and experiment with the various combinations of phrase types and compared their performance. For example, in one experiment we choose to represent an opinion only with noun phases (NP) and, in another experiment, with a combination of NP and VP, and so on. At the same time, we can apply the same combination technique among nouns, adjectives and verbs to pick the orientation words.

\[4.1.2 \text{ Customized Features} \]

B. Extracting Polarity

We describe polarity extraction in two steps. The first section present the model for opinion-level polarity. The second part deals with the word-level polarity.

1) Extracting Opinion Polarity: Following the approach of Zagibalov and Carroll [4], the polarity \(p_i \) of an \(i \)-th opinion \(o_i \) is modeled as follows:

\[
p_i = \mathcal{R}_P(o_i) = \sum_{\forall w \in o_i} (-1)^{\mathcal{N}(w)} P(w) \quad (IV.1)
\]

where \(\mathcal{N} = \sum \{w = \text{negationWord}\} \)

where \(P(\cdot) \) is a dictionary of word polarity. We explain more about \(P \) in the next section. Roughly speaking, the polarity of an opinion is the sum of individual words polarity whose value flips whenever negation words (such as "not" or "never") appears. Since we will optimize/update the values of \(P \) later in the process, there are two key requirements for \(\mathcal{R}_P \): (1) it has to be differentiable with respect to \(P \) and (2) the word polarity returned from \(P \) has be bounded by some value. The reason for these requirements will be clear in Section IV-E.

2) Extracting Word Polarity: We now describe the steps for extracting polarity at word-level. There are three major obstacles when constructing the word polarity dictionary \(P \). The first is to decide which words to include. (Certainly, we cannot include the words we have not seen.) Second, in relation to the previous point, how to deal with unobserved words during the testing stage need to be addressed. Lastly, specifically to our model, the values of word polarity has to be bounded above and below by some value while preserving the differentiability of Eq. IV.1.

For the first problem, we use boost decision tree algorithm to extract the best polarity words. In our implementation, each intermediate node in a decision tree represents a polarity word, and input for the tree
is one whole review text. Each input chooses the child node to traverse down based on whether a particular polarity word is contained within its text. While building the trees, polarity words are chosen such that it maximizes the entropy, which sorts the review texts by their rating scores as evenly and ideally as possible. The number of total trees to be built while the boosting procedure to be 100.

We gave higher frequency weights to those words that take place closer to the root node in the tree, because the earlier that polarity word is chosen in the tree, the more efficiently the algorithm classify the ratings (and the polarity of the subnodes).

As the final step of building the tree, we set the initial polarity value of each word ranging between -1.0 and 1.0. The sign for this quantity is decided by comparing the average rating score of the entire training set and the average rating score of the review texts that contains the target word – if the latter is higher the sign is positive, otherwise negative. Likewise, the magnitude of the polarity is computed as the frequency of the target word divided by the cumulative frequency of all the other words.

Now, for the second problem, the solution is easy. For any unseen words, we simply examine the wordnet searching for synonyms. If a synonyms that also exists in our polarity dictionary, then we use that value. If no such word is found, then we simply return zero as polarity.

Lastly, the subtle point. We represent polarity as a value from $arctan(\cdot)$ function internally in our code. In other words, if the polarity of a certain word is set to be 1, we internally store that value as $\tan(1)$. The reason is to preserve the eligibility for optimizing P. Note that $arctan$ is bounded by $(-\pi/2, \pi/2)$ and its derivative $arctan'(x) = 1/(1 + x^2)$. Imposing this internal structure, Eq. IV.1 continues to satisfy the two requirements for optimization.

C. Clustering of the Opinions

Now the orientation and the polarity of all the opinions are initialized, we can cluster them into k-groups. The purpose of this clustering is two folds: (1) to reduce the orientation dimension m into a smaller k-dimensional profile space, and (2) to find the “centroids” of different opinions so we can estimate the pricing kernel λ in the next step.

Intuitively, k represents the number of product evaluation criteria. For example, if consumers only cares about two factors (e.g., price and design) when reviewing the electronics, we expect our model to classify the opinions into two groups. Unfortunately, this hypothesis cannot be tested as our input data does not specify the number of evaluation criteria (i.e., k is not known).

In our implementation, the optimal k is searched from the range from 2 to 8 so that the sum of the within-cluster distances are minimized. For each iteration, we initialize the centroids by averaging the input orientation vectors. In practice, if a prior expectation for the value of k is available, that number may be used as a initial value for clustering.

The resulting centroids of k-means clustering has a great implication for our model. First, these centroids represent the average sentiment over all the reviews in the training data. Second, they act as a set of “standard” evaluation-axis where opinions can be projected onto. Shrewd readers may notice that these centroids are essentially the mapping, or the profiling kernel θ, from the orientation vector to the product profile space. If we project the average opinions of one reviewer onto θ, we get the scorecard from that reviewer. In other words, letting x_i and p_i denote the orientation and the polarity of opinion i, the product profile f from the review R is:

$$f_R = \sum_{\forall o_i \in R} (\theta x_i)p_i \text{ where } \theta = \text{centroids}$$

Note that the success of this step is critically dependent on the quality of the orientation vectors. The more the orientation vector contains relevant informations, the better the performance of the clustering step. We believe that the orientation extraction based on decision tree has contributed significantly in this regard. (More discussion will follow in the result analysis section.)

Finally, we want to point out that, by no means, k-means clustering is the only algorithm that can be applied for this step. Any techniques for reducing the
dimensionality – e.g., PCA or ICA – can be applied here as long as the two objectives mentioned earlier are satisfied.

D. Estimating Pricing Kernel

At this moment, let us step back and take a look at the overall picture. In the end, our objective is to make a meaningful prediction for product rating. Revisiting Eq. II.1, we now have all the ingredients for make a prediction \(\hat{r} \) – except \(\lambda \). Looking closely, estimating \(\lambda \) turns out to be just a simple OLS regression problem. Therefore, the SSE-minimizing \(\hat{\lambda} \) is:

\[
\hat{\lambda} = (F^T F)^{-1} F^T \bar{r}
\]

where \(F = \sum \theta x_i \) is a matrix of profiles (averaged over each review) and \(\bar{r} \) is the re-centered actual rating (meaning 3.0 is subtracted from the actual rating).

There is nothing theoretically complicated in this step, but there are a few practical issues we want to point out. (1) If there is a review with zero polarity, \(F^T F \) becomes singular and thus the inverse cannot be found. We resolve this problem by assign a small polarity (0.1) on that training review. If the training size is large, this is not normally a problem. (2) Since the orientation vector is unscaled, the raw values of \(\lambda \) might seem out of the resonable ranges as a weighting vector at first. In this paper, we report a normalized \(\lambda \) unless specified otherwise.

E. Optimizing Polarity

The final step of our training is to optimize the word polarity \(P \) to minimize the prediction error. Since the extraction of a opinion polarity is performed by a differentiable (w.r.t. \(P \)) Eq. IV.1 and thanks to the internal structure of \(P \), we can simply pass the arguments to any standard optimizer (such as LBFG optimizer included in the Stanford NLP packages) to find the optimal values for \(P \) in the sense that it minimize the RMSE of the rating predictions.

We iterate through the entire steps in this section until the in-sample RMSE value converges. Between each iteration, all the parameters except the orientation and polarity extraction rules (Eq. IV.1, respectively) are being updated. This completes the training or our model.

V. RESULT ANALYSIS

While the previous section focuses on explaining the underlying theories behind the model, we present the concrete examples/results from each step and discuss the findings.

A. Outputs from Initialization

1) Initial Polarity Word Extraction: Figure V.1 shows one of the decision trees generated by our orientation extraction algorithm (Max-Entrophy). As mentioned earlier, we use the 100 review articles, which is comprised of 699 opinion phrases/sentences. Each intermediate node in the tree represents a polarity word, and the traversing-down direction is chosen by whether the word exists in the particular opinion. In this training data, the total number of polarity word candidates (all NP and VP words) are 1500; after running the 10 iterations of building the decision tree, the number
Table I

<table>
<thead>
<tr>
<th>Positive Word</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>great</td>
<td>100.0</td>
</tr>
<tr>
<td>easy</td>
<td>90.0</td>
</tr>
<tr>
<td>many</td>
<td>67.0</td>
</tr>
<tr>
<td>trick</td>
<td>53.0</td>
</tr>
<tr>
<td>fit</td>
<td>64.0</td>
</tr>
<tr>
<td>fast</td>
<td>48.0</td>
</tr>
<tr>
<td>outrageous</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Negative Word</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>disappointed</td>
<td>-99.0</td>
</tr>
<tr>
<td>hard</td>
<td>-76.0</td>
</tr>
<tr>
<td>end</td>
<td>-71.0</td>
</tr>
<tr>
<td>careful</td>
<td>-52.0</td>
</tr>
<tr>
<td>cover</td>
<td>-51.0</td>
</tr>
<tr>
<td>poor</td>
<td>-30.0</td>
</tr>
<tr>
<td>refund</td>
<td>-29.0</td>
</tr>
</tbody>
</table>

The weight of each intermediate node is directly used as a polarity magnitude of that word, and the sign is decided by analyzing its children: if the average rating of child reviews containing the word is lower than that of all reviews that reached the node, the sign of the polarity is positive; otherwise, it’s negative. To put it loosely, the polarity is positive only if the existence of the word in reviews increases the average rating score.

We iteratively build the trees until we get more than a certain number of polarity words. This is necessary for later procedure because the less the number of extracted polarity words is, the fewer tools we have to analyze and predict the rating score of a new article. When only 1 tree was used, processing 50 reviews gave only 23 polarity words. On the other hand, as we increased the number of trees being built up to 10 we could collect as many as 56 polarity words.

Table I and II show the top 7 positive and negative initial polarity words generated by decision trees. The most positive words are ‘great’, ‘easy’, ‘many’ trick’, ‘fit’, ‘fast’ and ‘outrageous’, whereas the most negative words are ‘disappointed’, ‘hard’, ‘end’, ‘careful’, ‘cover’, ‘poor’ and ‘refund’. As expected, any articles containing ‘disappointed’ or ‘poor’ give a review rating score lower than 3 while the most articles containing a word like ‘great’ or ‘easy’ is given a almost full rating score. The words that do not seem to have an ideal polarity value are re-calibrated in the later training process.

2) Deciding Appropriate Orientation Dimension: We use the polarity words extracted in the previous section to represent orientation. But, here is a dilemma. If we loosen our bar and includes lots of words, the quality of each orientation deteriorates and the estimation of pricing kernel \(\lambda \) will be very noisy. On the other hand, if we decide to choose only the highly-informative words, we then lose the dimensions for meaningfully characterizing a product evaluation dimension.

Figure V.3 shows our effort to balance out the performance by testing on varying choices of part of speech (POS) for orientation words. In general, we get a better performance when adjectives are included as a possible dimension for orientation vector. The best score of 1.673 is achieved when adjective and noun type are considered as an orientation word. In our training dataset, some of adjective and noun combination tokens

![Figure V.3](orientation_word_speech_range_vs_root_mean_square_error.png)

![Figure V.4](orientation_word_speech_range_vs_dimension_size.png)
recognized by our orientation extractor include “long duration,” “fancy features,” “fixed price,” etc. None of these paired words are recognized in the orientation extractors when using a single part of speech.

Obviously, the number of dimension for orientation is proportional to the size of orientation word candidates. The size of adjective and verb candidates are relatively small compared to nouns in the training texts. This is indeed true in English language because many adjectives and verbs share the same/correlated meaning than nouns do. Consequently, our implementation includes the method of merging word groups that have any overlap in its meaning. All synonyms shares the same orientation bucket. We present several examples produced by our implementation as in Table III.

Table III

<table>
<thead>
<tr>
<th>Bucket Index</th>
<th>Orientation Bucket Words</th>
</tr>
</thead>
</table>
| [1] | blessed damned goddam darned
blessed goddamned damn infernal
blamed deuced goddamn blame
need requisite requirement
esential indigence motive
motivation necessity pauperism
penury prerequisite pauperization
necessary want demand |
| [2] | adaptor adapter transcriber
arraigner |
| [3] | tuner wireless radio
radiocommunication |

Figure V.5. Choice of various set of opinion composition among verb, noun and preposition, and its performance

Figure V.5. Choice of various set of opinion composition among verb, noun and preposition, and its performance.

Using the 100 electronics review as a training data, the resulting model parameters are summarized in Table IV. However, note that the estimated figures are not exactly replicable as our decision tree algorithm randomly selects polarity word candidates and use them as initial seed words.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation dimension m</td>
<td>8092</td>
</tr>
<tr>
<td>Optimal k</td>
<td>2</td>
</tr>
<tr>
<td>Size of word polarity P</td>
<td>137</td>
</tr>
</tbody>
</table>

Although we cannot transform the profiling kernel θ back to natural language spaces, we instead look for the orientation vectors closest to each centroid. Since we have $k^* = 2$, there are two centroids, which means there are two evaluation criteria that consumers think are important. We print the closest orientation vector here.

centroid[0]: another, one, looking, brand, equal
Unfortunately, it is difficult for us to infer what each evaluation dimension represents from the above. (Perhaps the second one may be related to the ease of use?) The changing value of word polarity is also interesting to watch. A few samples of the word polarity are shown in Table V. Note that the polarity of each word converges as optimization iteration goes on. The sign of the polarity has no significance at this moment. Only when it is multiplied by λ, the value of polarity word has its conventional meaning.

Lastly, the value of λ is shown below:

$$\lambda^T = (-0.2726, 0.9621)$$

C. Rating Predicting

All of the extracted information from the previous sections, we aggregate them here to one cohesive number: a product rating. We report the result of predicting the ratings from our model in Table VI. As before, RMSE is used as a measure of performance.

Two benchmark values are to be compared. The first benchmark is obtained from the 10,000-rep simulations where the distribution of the actual ratings are used to make random guesses. The average RMSE is 2.131. Compared to this number, our model seems to have certain predictive ability. In fact, the percentage of picking the right direction is certainly above 50%, which is encouraging.

However, as for our second benchmark, one may argue that, from a blind reviewer’s point of view, her optimal RMSE-minimizing guess for rating is 3. Indeed this statement is true and when 3 is used as the predicted rating consistently, the simulated RMSE turns out to be much lower at around 1.6 – even better than our in-domain model performance.

At first, this result seems to completely invalidate our work. However, be reminded that the real value of our approach is its insight to extract the market structure out of the review texts that is written in natural languages. As evidenced clearly in Section IV, we put a great amount of effort to derive such mechanism and the real output of our model are the estimated parameters λ, θ, and P. Although the RMSE of rating prediction is reported several times in the paper (mostly because it is the only measure we can compute), we believe that it is a distance measure for evaluating the value of our research.

VI. Conclusion and Future Improvements

In this paper, we devise an architecture where NLP can be used on the Amazon review data to discover useful market structures. The process is complex and involves the assumptions for the underlying structure for the rating mechanism. Although each step in our model involves a substantial amount of work, the resulting parameters have its own significance and interpretation. While the prediction performance does not meet our expectation yet, there are a few promising signs – such as sensible clustering of the orientation vectors – for the pursuit of research in this direction.

While we put our best effort to make our model as complete as possible, there is a plenty of rooms for improvement and future research. A few examples are (in the order that we think will improve the overall model performance/robustness):

- Resolve the meaning of the pronouns such as “it” or “that” using syntactic tree structure.
- Simplify or relax the underlying model specification
- A better way of extracting orientation/polarity (instead of a linear model currently being employed)
The biggest contribution of our research is not the prediction performance of our model. The idea of using NLP techniques to extract the hidden market structure/dynamics is, in our opinion, a less-studied area of research and seems to suggest a new type of (indirect) information extraction.

REFERENCES

