
Chinese Radicals in NLP Tasks
Alex Fandrianto

afandria@stanford.edu
Anand Natarajan

anandn@stanford.edu
Hanzhi Zhu

hanzhiz@stanford.edu

December 7, 2012

1 Introduction
The Chinese writing system uses a set of tens of thousands of characters, each of which represents

a syllable, and usually a morpheme, in the Chinese language. (In Chinese, almost all morphemes are
monosyllabic). Although the number of distinct characters is very large, they have internal structure, and
all of them are made out of a few hundred common graphic components called radicals. Moreover, the
vast majority of Chinese characters are so-called phonosemantic compounds: they consist of two parts, a
semantic part which is a single radical that indicates something about the meaning of the character, and a
phonetic part which gives a hint as to its pronunciation. For example, the character “妈 (mā),” meaning
“mother” is composed of a semantic component “女,” meaning “woman,” and phonetic component “马,”
pronounced “mǎ.” C hinese lexicographers have developed standardized sets of radicals, which are used to
organize characters in dictionaries, as well as in the Unihan database which is a part of Unicode.

Normally when processing Chinese, this internal structure is ignored. However, we believe that radicals
carry useful information for many NLP tasks. In this project, we investigated how using radicals affected
performance on three tasks: language modeling, part-of-speech tagging, and word segmentation.

2 Language Modeling
2.1 Theory

Most modern language models are n-gram models, i.e. they assume that the probability of a word is
dependent only on the previous (n-1) words. These probabilities are estimated by counting the occurrences
of all n-grams in a corpus, and then smoothing the counts to handle unobserved n-grams. Usually, smoothing
involves backing off to probabilities from k-gram models for all k < n; we back off by dropping words from
our conditioning context starting from the least recent word. In Chinese, since text is usually not word
segmented, it is reasonable to treat each character as a separate word for the purposes of language modeling,
which is what we did in our experiments.

One can generalize n-gram models to include other features of the previous words in the following manner:
if fi is a feature of the i-th word wi, then we replace the probability p(w0 | w−1w−2 . . . w−n+1) with

p(w0 | w−1f−1 . . . w−n+1f−n+1)p(f−1 . . . f−n+1 | w−1 . . . w−n+1).

If the feature is a deterministic function of the word, e.g. the semantic radical, then the last term in the in
the probability can be ignored. The remaining term is a conditional probability that can be estimated by
counting and smoothing, as with an n-gram model.

Since the feature we added is deterministic, the model as defined above should give identical results to
an n-gram model. However, the features can make a difference when performing interpolation or backoff,
when a word wi has not been previously observed but the feature value fi has been. Thus, having a good
backoff model is expected to be important for getting good performance from the added features. Moreover,

1

unlike the case of n-grams, it is no longer obvious in what order to drop conditioning factors when backing
off. In general one could have a backoff graph, where each node is a probability model that backs off to some
function (e.g. max, min, mean) of the node below it. The space of possible backoff graphs grows with the
factorial of the number of conditioning variables, so it can be very large even for a trigram model with one
additional feature. Searching this space effectively was a major challenge in this study.

2.2 Experiments
In our particular case, we used the SRILM factored language model package [1], which supports a

generalization of n-gram language models that includes models of the type described above. We used simple
word-based bigram and trigram models as baselines. To these, we added as a feature the semantic radical,
as determined from the Unihan database. For the sake of comparison, we tried models that used the
part-of-speech tag of the word containing the given character instead of the semantic radical. For bigram
models, we explored the backoff space by hand, but for trigram models, this proved infeasible so we used
a genetic algorithm-based tool provided with the package. We experimented with both Kneser-Ney and
Witten-Bell smoothing for backoff graph nodes. The dataset used was taken from the Chinese Treebank,
with the training set consisting of around 18,000 sentences, and the dev and test sets consisting of around
350 sentences. Performance was measured by the perplexity of the language model.

2.3 Results and Discussion
We consistently observed a decrease in performance (i.e. increased for perplexity) with radicals as com-

pared to baseline, in contrast to a significant increase in performance with part-of-speech tags. This held
true for both the bigram and trigram models, and over many runs of the genetic algorithm with different
random seeds. For instance, for one configuration, a bigram model achieved a perplexity of 166.3 on the dev
set and bigrams with part-of-speech tags achieved a perplexity of 116.8, whereas bigrams with radicals had a
perplexity of 193. Differences of similar magnitude were obtained for many language model configurations.
Such a robust trend indicates that radicals are likely not actually very useful features in language modeling.
Another way of stating this is that the current character is not strongly correlated to the radicals of the
preceding characters. This conclusion is consistent with results from part-of-speech tagging experiments (see
section 3), where we found that radicals of previous word are not a helpful feature, although the radical of
the current word is. To further investigate this claim, we performed the following very simple experiment:
we created a language model to predict the radical of the current character given the radical of the previous
character, and compared the perplexity of this model to one with uniform probabilities. The uniform model
had a perplexity of 100.2, while the radical model had a perplexity of 80.84. This suggests that radicals of
successive characters are indeed not very strongly correlated, which implies that the previous radical is not
helpful in predicting the next character. We believe that the performance decreases when radicals are added
because during backoff, probability mass must be removed from the full model and given to the models
with dropped conditioning factors. This will decrease the probability the model assigns to sentences without
unknown words, and thus increase the perplexity on those sentences. Since the vast majority of “words” (i.e.
characters) in our dev set had appeared in our training set, this resulted in overall perplexities increasing.

3 Part-of-speech Tagging
As mentioned in the introduction, one of the radicals in the character usually carries semantic information

about the character. From examining a few examples, it becomes clear that certain semantic radicals occur
more often in words with a certain part of speech. For instance, the radical “扌” (a reduced form of
the character “手” meaning “hand”) has a connotation of applying force to something, and occurs almost
exclusively in verbs. We thus have strong reason to believe that radicals should be a good feature for
part-of-speech tagging tasks.

2

The Stanford POS-Tagger, a maxent classifier built on top of Stanford’s Core NLP library, was used
to investigate the addition of radical features to POS-tagging [5]. Features are specified in configuration
files for training. Chinese radicals were added as part of the specified FeatureExtractors through the Word-
ShapeClassifier and RadicalMap.

There were several ways of selecting the radical features; each Chinese word is composed of potentially
multiple characters. The main problem is that while there may be a variable number of characters, only
a fixed number of specified features per word can be extracted. radicalFirst takes the first character’s
radical and returns that as the feature. radicalConcatenated takes each radical from every character and
concatenates them. Upon obtaining preliminary results from these methods, radical3 and radicalLast were
implemented. The former computes 3 features, the first radical, second radical, and third radical, returning
the empty string if there is no corresponding character in the Chinese word. The latter returns the radical
of the last character in the word.

Once these specifications were complete, various combinations of features were used to train the POS-
Tagger. The baselines compared were‘unigram’,‘simple’, and‘normal’. The first feature set consists
of the current word being tagged. The second is a trigram model. The last was the default ‘nodistsim’
model, which consists of many features. In general, the addition of radicals improves tagging accuracy,
especially for unknown words. Improvements in performance are less visible when the feature set is more
complex. Table 1 shows the accuracy data for the various models when run on dev and test. Figures 1 and
2 illustrate model performance when applied to known words and unknown words.

dev test dev unknown test unknown
unigram 63.451107 62.35015 0 0

u+radicalFirst 74.094708 76.735764 21.338156 34.172662
u+radicals 79.313884 79.420579 11.392405 7.194245
u+radical3 83.638763 82.854645 56.238698 50.719424

u+radicalLast 72.819235 75.774226 25.135624 38.848921
simple 92.420466 94.218282 54.611212 71.582734

s+radicalFirst 93.329424 94.343157 60.940325 71.582734
s+radicals 93.2268 94.368132 59.674503 71.223022
s+radical3 94.69286 94.68032 75.406872 79.496403

normal 95.748424 95.37962 84.629295 85.971223
n+radicalFirst 95.865709 95.442058 85.714286 88.129496

n+radicals 95.689782 95.454545 84.448463 87.05036
n+radical3 95.89503 95.404595 85.714286 84.532374

radical3 83.638763 82.742258 56.962025 51.079137
radical3Bigram 86.761472 86.426074 57.685353 67.625899

3

Figure 1: POS-Tagging Accuracy on Known Words. The addition of radical information significantly im-
proves the tagging performance on known words. More mileage is gained when the original feature set is
small, like the unigram model, while improvements are less visible when the feature set is large, like in
the normal model. radical3 gives the biggest performance gain and taken alone, performs comparably to
unigram+radical3.

4

Figure 2: POS-Tagging Accuracy on Unknown Words. The addition of radical information greatly the
tagging performance on unknown words. Unlike the unknown word, its radicals have been seen during
training. The hefty gains in performance imply that these radicals do in fact correlate with POS.

The data demonstrates that radical3, taking the first 3 radicals as separate features, provides the biggest
improvement to the POS-tagging models. When broken down into radicalFirst and radicalLast, the perfor-
mance gains are not as large, implying that radicalLast and radicalFirst do not solely determine POS. It
seems that every radical in the Chinese word can potentially affect the final POS tag.

The feature radicals, the concatenation of the primary radicals in the Chinese word, does not generalize
to unknown words very well. On the plus side, an exact match of radical ordering does seem to add a strong
performance gain for known words.

While not fully explored, the use of radical3Bigrams did not add much beyond radical3. It is possible
that part of speech doesn’t depend much on previous words’ radicals.

Some limitations of the Stanford POS-Tagger were discovered during the course of training. It is not
possible to only train on a single feature. That is, the unigram model below was not fully optimized. Further,
it was not possible to use radical4 or radical5 as features because the Maxent Tagger would fail during the
optimization process. It is likely that not enough Chinese words are 4 or 5 characters long, but information
is still lost if these later character’s radicals are unused.

4 Word Segmentation
The processing of written Chinese presents an additional challenge compared to that of most other

languages due to the fact that separate Chinese words are not separated from each other by a word divider
(i.e. a whitespace). A Chinese word is composed of a positive number of characters, averaging around two.
Thus, the task of Chinese word segmentation becomes necessary to suitably model Chinese.

We view this as a label tagging problem which can be modeled by a maximum entropy or a conditional
random field (CRF) framework, the latter which seems to be more commonly adopted [2, 3]. Using CRF
for word segmentation, we have two possible tags. For each character we observe, we can either label it as
‘B’, if it begins new word, or ‘I’, if it is a continuation of a word (i.e. if it is part of the same word as the
previous character).

5

4.1 Features
We consider using radicals as features for our CRF system. Let us define Cx to be the character x

positions after the current one, and Rx to be the radical of Cx. Thus, R0 is the radical of the current
character, R−1 is that of the previous character, R1 that of the next one, and so forth. We implement three
features groups, which we will call RadicalUnigram, RadicalBigram, and RadicalTrigram. RadicalUnigram
uses R0, R−1, R1 as features, namely the unigram. RadicalBigram uses as features the bigram concatenations
of adjacent characters’ radicals: R−2R−1, R−1R0, and R0R1. Similarly, RadicalBigram uses the trigram
concatenations of three adjacent character’s radicals, beginning with the trigram starting at R−3 up until
the trigram starting at R0. Our intuition behind choosing which n-grams to use in relation to the current
character is as follows. The task of classifying C0 as B or I is equivalent to deciding whether there is a word
boundary between C−1 and C0. The features relevant to this decision should thus be n-grams which include
information about the character on either side of this boundary: the n-grams should contain R−1 and/or
R0. For example, given the sentence “布朗一行于今晚离沪赴广州”, a bigram containing the radicals of 今
晚 should intuitively have no relation with whether 行 begins a new word or not.

4.2 Experiments
For our experiment, we started with the most recent release of the Stanford NLP Group’s Word Segmenter

[4]. We used the same dev and test files as Language Modeling, but we start with a reduced train set that
contains around 1600 sentences. We run the CRF on test without adding the radical feature groups, and
then iteratively add each n-gram feature group. Without the radical features, the CRF achieved an F
score of 0.951. RadicalUnigram did not affect this score, RadicalBigram increased it by 0.1% to 0.952, and
RadicalTrigram reduced it to 0.950.

Given the slight increase in performance when using Radical Bigram, we train again our CRF using the
full train set as used by Language Modeling. However, without the radical features, we obtain an F measure
of 0.981 whereas with them, the F measure reduces slightly to 0.979.

Using the smaller train set, we notice that the out-of-vocabulary (OOV) recall rate has a slightly larger
improvement than the overall F-score from running without radical features to running with RadicalBigram,
shown below. This was coupled with the fact that using the smaller train set, the rate of unknown (OOV)
words occurring was relatively high (16.3%) compared to using the larger train set (3.5%). Intuitively, since
training over the radicals generalizes over the space of feature values, the CRF performs better when seeing
new character n-grams since the chance that it has seen the radicals of these characters is much higher.

It seems that RadicalBigram performs well with foreign proper names, which tend to get radicals which
are most common in such foreign transliterations. With the RadicalBigram feature group, we correctly
segmented 理查德 (Richard) and 吉尔吉斯 (Kyrgyz), both tokens of which do not appear in the smaller
train set. These two tokens are not correctly segmented without radical features turned on.

6

Figure 3: OOV Recall Rates. The rate of OOV recall trained over the smaller dataset for each radical n-gram
feature.

Thus, it seems that RadicalBigram only helps improve performance on OOV words, and even then only
slightly. When there are fewer OOV words such as when training over a large dataset, the radical features
are essentially effectless. It seems that in practice, the high performance of existing CRF word segmenters
for Chinese make it so that the additional features will not have a significant impact on their accuracy.

5 Conclusions and Future Work
For future work, we plan to study radicals beyond the main semantic radical, especially for POS tagging.

Also, we would like to explore the differences between Simplified and Traditional Chinese for these NLP
tasks, since character simplification can be modeled as dropping radicals from characters. We are especially
interested in seeing whether simplification dropped radicals in a information-theoretically “optimal” way.

6 Acknowledgements
We would like to thank Mengqiu Wang for his guidance with this project.

References
[1] K. Kirchhoff, J. Bilmes, and K. Duh, Factored Language Models Tutorial, (2008), http://ssli.ee.

washington.edu/people/duh/papers/flm-manual.pdf.

[2] http://nlp.stanford.edu/pubs/sighan2005.pdf.

[3] http://bcmi.sjtu.edu.cn/~zhaohai/pubs/CSB-SIGHAN5_20071015-rev.pdf.

[4] http://nlp.stanford.edu/software/segmenter.shtml.

[5] http://nlp.stanford.edu/software/tagger.shtml.

7

