
Authorship and date classification using syntactic tree features

Alex Cope

December 2013

Abstract

Authorship classification of documents using syntac-
tic features has shown high levels of success; however
the complexity in mining syntactic features has gen-
erally limited them to a basic feature set (POS tags,
rewrite rules). S. Kim et al. [1] have proposed a
novel algorithm to generated a set of syntactic fea-
tures based on frequent subtree patterns of a set of
syntactic trees. In this paper, I use a modified version
of their algorithm to predict authorship and date of
historical texts.

1 Introduction

Authorship classification and its variants (genre clas-
sification, topic classification) are nontrivial prob-
lems, even for human beings. The problem has a
wide range of applications in both technical and hu-
manities fields; authorship classification algorithms
have been used to resolve texts of disputed origin
such as Shakespeare’s plays and the anonymous Fed-
eralist Papers [6].

Less work has been done with classifiers which pre-
dict date of publication. This is perhaps date classi-
fication is a more difficult problem than authorship
publication, as it groups together documents with lit-
tle in common in terms of genre and content. Any
date classifier would have to take into account gen-
eral trends in the evolution of the English language
or fashionable topics.

Historically, the most effective approaches to au-
thorship classification have extracted syntactic fea-
tures of a document, including style markers such
as function words (which are words with little lex-

ical meaning but high structural meaning, such as
and and then) and grammatical markers like part-of-
speech tags and rewrite rules. Unfortunately, there
have been few classifiers which extract more complex
syntactic features, due to the computational com-
plexity of algorithms involving syntactic structure.

Recently, an algorithm has been developed [1]
which extracts from a set of syntactic trees a list of
frequently appearing subtrees. Note that here, sub-
tree refers to any tree fragment within a tree; the less
generalized definition of a subtree being any non-root
node of a tree does not apply. In this paper, I will
use this novel set of syntactic tree features to test au-
thorship and date classification on a set of historical
public-domain documents.

2 Prior Works

This work was inspired initially by a CS224N project
from two years ago by Andrew Tausz [5]. Tausz was
interested in the same problem of date classification
and used the same source (Project Gutenberg). How-
ever, he used a feature set consisting solely of lexical
features like n-grams and punctuation use. I was in-
spired to extend his work and test date classification
using more complex syntactic features.

The main source for this article is the document by
S. Kim et al., 2010 [1] which presents an algorithm for
mining frequent subtree patterns from a set of syn-
tactic trees, which I will delve into with more detail
in the next section. The algorithm they use is based
on the CMTreeMiner algorithm [3]. The algorithm I
ended up implementing was a modification of both,
more efficient at the cost of poorer performance.

S. Kim et. al use their feature set to classify a set

1

a news articles with four different authors and a set
of movie reviews with four different authors. To my
knowledge, the syntactic feature set has not yet been
tested on historical texts or with a date classifier.

3 Approach

3.1 Obtaining and Processing Data

All documents were retrieved from Project Guten-
berg, which is an online repository of documents in
the public domain. Project Gutenberg provides an
RDF catalog file with information about each docu-
ment. Title and author information (including, for
some authors, their date of birth and date of death)
for each downloaded document in the catalog file was
compiled into an index. Unfortunately, the catalog
file does not include the year of publication. The year
of publication for a given document was extracted as
follows:

• The author’s Wikipedia page was retrieved, and
scanned for occurrences of the document title.
The most common four-digit number that fol-
lowed the book title was marked as the year. (To
prevent gross misestimates, any numbers not be-
tween the author’s birth and death date (if those
were provided) were dropped.)

• If the first step failed (a legitimate date could
not be found), the book’s Wikipedia page (if it
existed) was retrieved, and a similar procedure
was followed to extract the date.

• If the second step failed and the author’s birth
date / death date was provided, a heuristic was
used where the date was assigned as 30 years
following the author’s year of birth or 30 years
before his death.

• If the author’s birth date / death date was not
available, the document was dropped from the
dataset.

To finish preprocessing, the Gutenberg-provided
headers and footers (which provide legal information

and use a consistent format) were cut from each doc-
ument. For the syntactic tree feature set, the Stan-
ford NLP library was used to parse the sentences of
each document. Because of time concerns, only the
first 1,000 sentences of each document was parsed. In
total, 1,000 documents were retrieved from Project
Gutenberg and 682 were used in the dataset after
removing duplicate files and files without retrievable
year of publication information, representing 360 MB
of data.

3.2 Baseline Features

For my baseline feature set I extracted unigram
(word) features from each document in the dataset.
To prevent unnecessarily large feature vectors, words
are only used as features if they appear at least times
in the training data set. The value of each feature
per document is the number of times that word ap-
pears in the document; this results in a sparse and
high-dimensional feature vector. Only the first 10,000
words were scanned for each document.

3.3 Mining Closed Subtree Patterns

The number of frequent subtrees in a syntactic tree
grow exponentially with the tree size. Thus, it would
be computationally inefficient to iterate through ev-
ery subtree in a syntactic tree set and test each indi-
vidually for frequency. The authors of CMTreeMiner
have proposed an algorithm which recursively mines
for frequent subtrees by extending previously found
frequent subtrees in a depth-first search manner.

To understand the steps of the algorithm it is nec-
essary to first present a few definitions. We say that
a tree t is a subtree of s if all the vertices and edges
of t are subsets of s. The occurrence of t in s is
the number of distinct subtrees t that are present
in s. s supports pattern t if the occurrence of t
in s is at least 1, and the support of a pattern t
is the number of trees in a dataset that support t,
i.e. supp(t) =

∑
s∈D(s supports t). A tree t is fre-

quent if its support is greater than a minimum sup-
port number minsup given by the user. When min-
ing subtrees, we seek to find all frequent subtrees in
a database. One helpful property of frequent trees is

2

that all supertrees of an infrequent tree are infrequent
and all subtrees of a frequent tree are frequent.

We define the blanket of t Bt as the set of all
supertrees of t with one more vertex than t. A fre-
quent tree t is closed iff for every t′ ∈ Bt, supp(t

′) <
supp(t). In other words, a closed frequent subtree
pattern is one in which none of its supertrees occur
in the same number of trees in the dataset. By min-
ing only closed patterns, we remove redundant pat-
terns from the generation process, speeding up the al-
gorithm exponentially and drastically decreasing the
feature space with zero loss of information. We say
that t′ ∈ Bt and t are occurrence-matched if for
each occurrence of t in a set of syntactic trees there
is a corresponding occurrence of t′, and t′ and t are
support-matched if each tree s in a set of syntactic
trees that supports t also supports t′.

Finally, we can divide the blanket of t into the
right-blanket Br

t , which consists of all t′ ∈ Bt where
the extra vertex is the rightmost vertex of t′, and the
left-blanket Bl

t = Bt −Br
t .

With all of these definitions in mind, the closed
pattern mining algorithm is given below. For further
discussion on the theorems behind the algorithm, re-
fer to Y. Chi et al. 2004 [3].

Algorithm 1 ClosedPatternMiner (D,minsup)

1: CL← 0
2: C ← frequent 1-trees ∈ D
3: CM-Grow(C,CL,minsup)
4: return CL

3.4 SVM Classifier

I trained both feature sets using support vector ma-
chine (SVM) classifier, using the popular free C-based
implementation SVMlight. Because both classifica-
tion problems are instances of multiclass classification
(distinguishing between m authors and n date peri-
ods), I used the one-vs-all approach, which has been
shown to be a computationally efficient and accurate
approach to SVM classification [4]. In this approach,
n different binary classifiers are trained on the same
train data set, each one trained to distinguish one
class from all other n − 1 classes. When classifying

Algorithm 2 CM-Grow (C,CL,minsup)

1: for i← 1, . . . , |C| do
2: E ← 0
3: if there exists c′ ∈ Bl

c that is occurrence-
matched with ci then

4: continue
5: end if
6: if there is no c′ ∈ Bc that is support-matched

with ci then
7: CL← CL ∪ ci
8: end if
9: for e ∈ Br

c do
10: if supp(e) > minsup then
11: E ← E ∪ e
12: end if
13: end for
14: end for
15: return

a new example, it is run on all n classifiers, and it is
assigned to the classifier which outputs the maximum
value. Each document in the dataset was randomly
placed into either the training set (with 70% prob-
ability) or the test set. After testing with multiple
kernels, I found that the radial basis function (Gaus-
sian) kernel (exp(−γ‖a−b‖2)) was by far the highest
performant.

4 Results

4.1 Performance of Feature Sets

In both the authorship classification test and the date
classification test, the unigram model performed bet-
ter than the syntactic tree pattern model. Tables
1 and 2 illustrate the results of a authorship classi-
fier trained on subtree features and unigram features,
respectively. The five authors with the most doc-
uments in the dataset (Robert Louis Stevenson, L.
Frank Baum, Henry James, Edgar Rice Burroughs,
and Charles Dickens) were compared for the test.
The number next to each author’s name in the table
represents the number of documents in the test set
positively labeled as that author. The subtree clas-

3

Author P R F1
Robert L. Stevenson (N = 4) 0.75 0.50 0.60
L. Frank Baum (N = 7) 1.00 1.00 1.00
Henry James (N = 4) 1.00 1.00 1.00
Edgar R. Burroughs (N = 8) 0.80 1.00 0.89
Charles Dickens (N = 4) 0.83 0.83 0.83
Average 0.88 0.87 0.86

Table 1: Authorship classifier trained on subtree pat-
terns.

Author P R F1
Robert L. Stevenson (N = 4) 0.15 1.00 0.27
L. Frank Baum (N = 7) 0.00 0.00 0.00
Henry James (N = 4) 0.00 0.00 0.00
Edgar R. Burroughs (N = 8) 1.00 0.12 0.22
Charles Dickens (N = 4) 0.00 0.00 0.00
Average 0.23 0.23 0.10

Table 2: Authorship classifier trained on unigram fea-
tures.

sifier drastically outperformed the unigram classifier,
with an F1 score of 0.86 vs. 0.10.

Tables 3 and 4 show the results of a date classi-
fier trained on subtree features and unigram features,
respectively. For this test, all 682 documents from
the dataset were used. Dates were separated into
four buckets, as indicated in the tables. Again, the
subtree classifier performed better than the unigram
classifier, with an F1 score of 0.36 vs. 0.17.

4.2 Discriminative Subpatterns

It is informative to see which subtree patterns are
most discriminative. The Fisher score of a pattern

Period P R F1
<= 18th century (N = 18) 0.80 0.14 0.24
Early 19th century (N = 29) 0.42 0.69 0.52
Late 19th century (N = 75) 0.54 0.46 0.49
20th century (N = 81) 0.50 0.11 0.18
Average 0.56 0.35 0.36

Table 3: Date classifier trained on subtree patterns.

Period P R F1
<= 18th century (N = 18) 1.00 0.04 0.07
Early 19th century (N = 29) 0.40 1.00 0.57
Late 19th century (N = 75) 1.00 0.01 0.02
20th century (N = 81) 0.00 0.00 0.00
Average 0.60 026 0.17

Table 4: Date classifier trained on unigram features.

Figure 1: An example subtree pattern with a high
Fisher score. (0.127)

is a good metric to evaluate its discriminative power.
It is defined as

Fr =

∑c
i=1 ni(µi − µ)2∑c

i=1 niσ
2

where ni is the number of documents in class i, µi

is the average frequency of a feature in class i, σi is
the standard deviation of a feature in class i, and µ is
the average frequency over all classes. A large Fisher
score indicates that a pattern has similar values to
documents in its own class and different values from
documents in other classes.

For example, the subtree pattern in Figure 1 has
a Fisher score of 0.127 (the 13th highest of all pat-
terns) and is present in 0.11% of the 18th century
documents, 0.10% of the early 19th century docu-
ments, 0.18% of the late 19th century documents,
and 0.21% of the 20th century documents. For com-
parison, the words with the highest Fisher scores in
the unigram model include function words like that
and which, and more obviously indicative words like
thou, God, and thy.

4

5 Discussion

In both cases the subtree feature set outperformed
the baseline unigram feature set. The experiment
thus confirms that syntactic structure is a strong in-
dicator of authorship. However, the date classifica-
tion average F1 score is still disappointingly low. In
the following sections I discuss some potential rea-
sons for the low score and discuss ways to potentially
mitigate these issues in future experiments.

5.1 Dimension Reduction

SVMs are subject to overfitting if the dimension size
of a vector space is too large. Although I calculated
the Fisher score of each pattern, this was primarily
for interest and manual examination of discrimina-
tive patterns. Using the Fisher score of patterns to
further cull the list of discriminative patterns would
reduce the dimensionality of the final feature vector
and result in a more efficient and potentially more ac-
curate feature set. Overfitting is a likely issue here,
as when I tested the dataset on the training set the
resultant F1 score was 0.86, which is much higher
than the F1 score of the test set (0.36).

Furthermore, a different classifier may have been
more appropriate for these classification problems.
With their independence assumptions, Naive Bayes
classifiers are less prone to overfitting than SVMs and
they have been shown in some cases to perform bet-
ter than SVM in authorship and other classification
tasks.

5.2 Minimal Data

For the date classification dataset, only the first 100
sentences of each document was parsed. This was
due to an memory overflow error in the Java code
when trying to import the full 1.16 GB file of parses
of the first 1,000 sentences that I could not resolve
in time. This may not be enough to get a good,
unbiased representation of a given class. Parsing the
full document or parsing more documents may help
improve SVM accuracy.

Furthermore, the closed patterns were generated
from a much smaller set of trees; only about ten per

document were used because of the enormous com-
putational complexity of generating subtree patterns.
My justification was that even with such a limited
data set, frequent sub patterns of support 3 could
still be found and generated; however, this may have
limited my subtree patterns to smaller, more gener-
ally common, less discriminative fragments.

5.3 Algorithmic Shortcuts

Due to time constraints, I implemented many short-
cuts in my feature extraction algorithm to help re-
duce computation time. For instance, after generat-
ing 500 closed patterns I stopped the pattern miner
early. Because of the exponential nature of the algo-
rithm, it is possible that thousands of closed patterns
could have been generated; furthermore, because the
algorithm iterates successively through each frequent
1-tree, the subset of closed patterns I generated was
not a good sample, as it only includes patterns with
roots from the first few members of the list of frequent
1-trees.

5.4 Feature Combination

The feature set of subtree patterns uses those pat-
terns exclusively. A feature set that combines subtree
features with other well-performing features (eg. un-
igrams, function words, sentence length) might per-
form better than any single feature set.

5.5 Fundamental Issues

One fundamental question remains: is sentence struc-
ture a good indicator of the date of publication of
an article? Has sentence structure evolved over the
course of the English language in a predictable and
classifiable way? Certainly, certain words were more
used in the past (eg. thou and thy) than they are
today; it is less obvious that certain subpatterns of
syntactic trees have fallen in or out of style over the
years. Further experiments that optimize the classi-
fier I’ve presented here should be conducted to deter-
mine the viability of sentence structure as a marker
for date of publication.

5

As a side note, it’s interesting that the precision of
the 18th century period bucket was so much relative
to the rest of the buckets. This seems to demonstrate
that there are at least some documents from that pe-
riod with significantly difference sentence structures
than all 19th century and beyond documents. Histor-
ically, this makes some sense; the English language,
in both spelling and grammar, was not properly stan-
dardized until the late 18th century, so it would follow
that sentence structure before that period would be
a stronger indicator of date.

References

[1] Sangkyun Kim, Hyungsul Kim, Tim Weninger,
and Jiawei Han, Authorship classification, a syn-
tactic tree mining approach Proceedings of the
ACM SIGKDD Workshop on Useful Patterns
(New York, NY, USA). UP’10, ACM, 2010, pp.
65-73.

[2] Joachim Dietrich, Jrg Kindermann, Edda
Leopold, and Gerhard Paass, Authorship Attri-
bution with Support Vector Machines Applied In-
telligence 19, pp. 109-123, 2003.

[3] Yun Chi, Yirong Yang, Yi Xia, and Richard R.
Muntz, CMTreeMiner: Mining Both Closed and
Maximal Frequent Subtrees, Advances in Knowl-
edge Discovery and Data Mining pp. 63-73, 2004.

[4] Ryan Rifkin and Aldebaro Klautau, In Defense
of One-vs-All Classification Journal of Machine
Learning Research 5, pp.101-141, 2014.

[5] Andrew Tausz, Predicting the Date of Authorship
of Historical Texts, CS224N project, 2011.

[6] D. I. Holmes and R. S. Forsyth, The Federalist
Revisited: New Directions in Authorship Attribu-
tion Lit Linguist Computing 2, pp. 111-127, 1995.

6

