
CS224N Final Project
Chord Prediction Using Lyric Sentiments

Submitted: Dec 8, 2013
Ashwin Apte (ashwina), Dimuth Kulasinghe (dimuthk)

1 Introduction

1.1 Chordal Sentiment

Chords are one of the fundamental building blocks in music. They give harmony and
character to the overlying melodies, and give an identity to a song. Chord progressions
can often express sentiment as well: the progression C-Am-Dm-G7-C-Fm-C played in No
Surprises by Radiohead is a sad sounding progression, and the melody and lyrics in the
song reflect this. The progression C-G-G7-C-F-C-G-C played in Obla Di Obla Da by The
Beatles sounds much happier by comparison.

1.2 Problem Statement

We attempted to build a classifier that, given lyrics for a song, outputs a chord progres-
sion for the song out of a set of N possible progressions. Given a dataset of songs with
their associated lyrics (data) and a defining chord progression (label), we run various
prediction algorithms and extract numerous features to see what level of accuracy we
can achieve.

1.3 Prior Work

There hasn’t been any previous work specifically regarding correspondence of chords to
lyrics. Significant work has been performed in the realm of lyrical sentiment analysis,
however, such as lyric-based song sentiment classification using vector space models [1]
and maximum entropy classification [2]. Both authors note a data sparsity issue, as well
as the relative shortness of lyrics making it difficult to accurately asses sentiment.

Tonal sentiment analysis has traditionally been performed through the transformation
of acoustic signals into primitive musical constructs such as melodic lines, chord pro-
gressions, tempo, etc. A paper by Katayose, H., extracts these primitives, and then
constructs sentiments for them based on a rule set developed by musical experts [3].

2 Data

There are complications in labelling a progression by a single progression; there is no
predefined length or definition of a characteristic progression for a given song. Hence,
we approached the problem by running queries into a website [4] that returns songs for

1



a given progression. The site holds the actual chords played for every song, and returns
those for whom the progression is contained within. We did this for about 6-7 pro-
gressions (in each key, ultimately transposed to Cmaj and Cmin), and selected songs for
which the progression was played at least 3 times in the song. Furthermore, we removed
songs which had more than one classification.

We had some trouble collecting large amounts of data using this approach. While com-
mon chord progressions, such as C-Am-F-G, returned thousands of results, most progres-
sions only returned a few hundred. Ultimately, we reduced the number of C-Am-F-G-
classified songs in our database so as to keep the proportionate distributions of the labels
more uniform.

The corresponding lyrics were then retrieved for each song by inputting the song and
artist name into a lyric query engine [5]. Over half the songs inputted didn’t return lyrics
due to either translation errors or not existing in the database; out of our original 2000
chord-labelled songs, we received lyric data for around 600. Finally, we also obtained
user-written tags for each song using the Last.fm API [6]; retrieval rates for this stage
were over 95%.

Finally, songs written in foreign languages were removed, giving a total of 574 usable
songs for our analysis.

Progression Usable Data

Cm-Ab-Eb-Bb 157
C-Am-F-G 129
G-F-C-G 102
C-Em-Am 62

C-Am-Dm-G 48
Cm-Fm-G 45
C-Bb-F-G 31

Table 1: Statistics on usable data for each chord progression.

3 Feature Selection

3.1 Sentiment-Based Features

We tried 3 approaches for sentiment analysis of lyrics:

• Word level sentiment using NLTK movie reviews dataset

• Sentiment parsing based on the Stanford Sentiment Treebank parser

• User generated tags crawled from Last.fm

2



3.1.1 Word Level Sentiment Analysis

The simplest approach used the NLTK movie reviews corpus to measure the individual
sentiment of each word in a set of lyrics. The movie reviews corpus consists of 2,000
movie reviews with manually labeled sentiment polarity for each review. For any word
appearing in this corpus, we can count the number of times it occurs in positive reviews
and negative reviews. The final polarity for each word is the greater of these two counts.
Using this word level sentiment polarity, we can classify songs into positive and negative
by counting the number of positive and negative words appearing in the lyrics. We use
this song polarity as a feature to train our classifier.

Progression Positive Sentiment Negative Sentiment

Cm-Ab-Eb-Bb 88 69
C-Am-F-G 84 45
G-F-C-G 63 39
C-Em-Am 42 20

C-Am-Dm-G 30 18
Cm-Fm-G 34 11
C-Bb-F-G 19 12

Total 360 214

Table 2: Positive and negative word level sentiment classifications for each chord pro-
gression.

3.1.2 Stanford Sentiment Treebank Parser

The word level approach detailed above has a number of shortcomings. It looks at
words in isolation, ignoring information about the intended meaning that exists in the
structure of the sentence. The order of words is not taken into consideration, neither is
colocation of specific words, like negators.

The Stanford Sentiment Treebank consists of fine grained sentiment labels for 215,154
phrases in the parse trees of 11,855 sentences. A Recursive Neural Tensor Network is
trained on this treebank. This model takes into account compositionality of a sentence,
and is thus a powerful tool for sentiment analysis at a sentence level. The trained model
is available for use from the Stanford NLP group’s website [7].

The trained model was used to predict sentiment for the song lyrics in our dataset.
The sentiment output of the model is on a 5 point scale: {Very negative, Negative,

Neutral, Positive, Very Positive}. The song lyrics are passed a sentence at a time
to the sentiment parser and the sentiment is recorded. Based on the number of positive
and negative sentences present in the song, the song’s sentiment polarity and strength
is determined.

3



Very Negative Negative Neutral Positive Very Positive

95 330 106 36 7

Table 3: Stanford sentiment treebank parser classifications.

This appears to be a very skewed distribution, with negative and very negative songs
making up the bulk of the dataset. On inspection, the sentiment of the songs do not
seem to represent such a skew. As discussed later, this is an artefact of the structure of
many songs.

Another intuitive factor is that the song chorus might be thought of as the lyrics’ equiv-
alent of a signature of the song. The chord progression would be the musical signature.
To predict one from the other, we could focus only on the chorus. Additionally, we would
expect the chorus to express the sentiment of the song much more accurately, than the
entire lyrics.

For each song in the dataset the chorus was was extracted from the lyrics. The chorus
was defined as the “most frequently repeating sequence of 4 or more sentences in the
lyrics”. This ensures that smaller sentence fragments that may repeat often through the
song aren’t mistakenly chosen as the chorus. (for example, sentences that end in the
same words to rhyme). Once the chorus was extracted, the sentiment parser was run as
above to extract sentiment for each song. The following distribution resulted:

Progression Very Negative Negative Neutral Positive Very Positive

Cm-Ab-Eb-Bb 7 81 46 18 5
C-Am-F-G 9 71 30 19 0
G-F-C-G 3 55 34 10 0
C-Em-Am 5 34 15 6 2

C-Am-Dm-G 1 27 14 6 0
Cm-Fm-G 5 27 12 1 0
C-Bb-F-G 2 15 10 4 0

Total 32 310 161 64 7

Table 4: Stanford sentiment treebank parser classifications for each chord progression
based on chorus lyrics.

This gives a slightly more balanced distribution, but it is still heavily biased towards
negative. The sentiment derived from the entire lyrics as well as from the chorus alone
were both used as features to train the classifier.

4



3.1.3 Sentiment Based on User Generated Tags

This method of extracting sentiment information is not derived from the lyrics of the
song, and is thus different from the other two methods described above. Also, this
method incorporates information about factors other than sentiment, such as genre, pe-
riod (90’s, 80’s) etc.

Last.fm is a music discovery service that allows users to interact with songs, and rec-
ommends songs that they may like. Amongst other things, users may annotate songs
with tags that they feel best describe the song. These tags thus are a potential source
of information about the sentiment of the song.

Last.fm has an API that allows developers to get information related to songs, artists,
albums etc. The API was used to get user annotated tags for the songs in our dataset.
The tags were stemmed to ensure uniformity. There were a total of 4,795 distinct tags
for the songs within our dataset. Some tags consist of multiple words. These were
broken down to single words to reduce sparsity of the data. For example, “alternative
rock”, “alt rock” and “rock” all contain “rock”. If we consider the entire tags, these are
three distinct tags. Breaking them down to word level results in 3 songs with “rock”
associated with it. This results in a total of 7,805 tags associated with the songs in our
dataset, but the sparsity of the top tags reduces significantly.

The tags were used as indicator features to train the classifier.

3.2 Bag of Words Feature

A bag of words feature was also extracted from the lyrics. The NLTK movie reviews
corpus was used as a master vocabulary. This contained 25,859 distinct words after
stemming. The song lyrics in our dataset had 4.769 distinct words after stemming. Of
these, 818 words were not present in the master vocabulary, and were thus ignored.
Though this results in loss of valuable data, it also guards against overfitting due to use
of words that appear only in the training set.

3.3 Other Features

Other features such as word counts and line counts for the entire lyrics and the chorus,
Part of Speech counts etc. were extracted and used to train the classifier. As discussed
below, these features did not result in any significant improvement and were thus dropped
from our final model.

5



4 Feature Selection

The machine learning model over our dataset was a multi-class classification problem
over 7 classes (chord progressions). We used the following machine learning classifiers
to train and test our model:

• Multinomial Naive Bayes (with Laplace smoothing): This model is traditionally
used in text classification problems with bag of words features, like spam classifi-
cation. Laplace smoothing was used to prevent overfitting.

• Logistic regression (max-ent): Logistic regression has been shown to have good
results in text classification, especially in natural language applications.

• SVM: Same as above. Can be used since number of categories is small (7).

• Decision trees: Since we had a small dataset with a large number of features,
decision trees might prove to be useful

• Random forest: This would eliminate tuning problems associated with decision
trees, giving more robust results

The sklearn library was used to implement all the classifiers above [8].

5 Results

Since we had a small dataset, 5-fold cross validation was used to ensure robustness of
results. The results of the classifiers were compared against a random baseline, that
is, what would be the accuracy of a predictor that chose chord progressions at random
from the set of 7 possible progressions. The metric of interest is accuracy (identical to
precision and recall in this context).

Classifier Accuracy

Random Baseline 14.44%
Multinomial Naive Bayes 22.12%

Logistic Regression 19.98%
Linear Support Vector Classifier 22.05%

Decision Tree Classifier 23.82%
Random Forest Classifier 20.67%

Table 5: Performance of each classifier. The random baseline accuracy is an average of
100 runs. The Random Forest classifier accuracy is based on an average over 10 runs
using 5-fold cross-validation in each run.

6



6 Discussion

First and foremost, it is clear that the classifier does not do a very good job of predict-
ing the chord progression. An accuracy of 22% is too low for the model to be of any
practical use.

On the other hand, we see that our model does give significant improvement over a
random baseline. This means that the model does have some predictive power. We
analyze here the reasons for this predictive power, and avenues to explore for further
improvement in the classifier’s performance.

Taking the Linear Support Vector Classifier as the model for illustrative purposes, we
analyze the feature importances. The accuracy scores for using individual feature types
are as below:

Classifier Accuracy

Bag of Words 22.39%
Lyrics Sentiment 6.63%
Chorus Sentiment 7.38%

Last.fm Tags 24.41%
Lyrics Line Count 14.32%
Lyrics Word Count 15.46%
Chorus Line Count 10.39%
Chorus Word Count 7.45%

Table 6: Performance of Linear Support Vector Classifier using various features.

It is clear from this that the sentiment parser by itself is a very poor predictor for chord
progressions. We discuss possible reasons for this below. Bag of words and Last.fm tags
are the only reasonable features. For both these features, the dataset we are working
with is extremely small. With only 574 songs, we face severe sparsity issues. We hy-
pothesize that a much larger dataset might be able to predict chord progressions much
more accurately.

The sentiment feature based on the Stanford Sentiment Treebank parser model fails
miserably to predict chord progression. On careful analysis of the predicted sentiment
for a song and the lyrics of the song, we find numerous examples where the lyrics of the
song taken even at the sentence level give misleading results in terms of sentiment.

An example is below: (entire lyrics are not given for brevity) The song Again by Bruno
Mars is classified as Negative based on entire lyrics as well as chorus alone. It has a
large number of negative sentences, such as Hands over my head thinking, What else
could go wrong, Would’ve stayed in bed, How could a day be so long?. All these, and

7



more, are classified Negative. There are only a few positive classified lines in the song,
like That for you I’d do it all over again. But on listening to the song, it is clearly a
positive song. Thus, songs may contain a large number of lines of one polarity, but a
few lines of the opposite polarity might be enough to decide the actual polarity of the
entire song.

This problem is apparent in a number of songs in the dataset. This is the same problem
that we encounter in word based sentiment analysis, but now at sentence level. Thus,
song sentiment analysis from lyrics fails at sentence level. We need to find a way to
analyze lyrics of the song as a whole, rather than sentences or words. Using the senti-
ment parser based on the Sentiment Treebank on the whole lyrics or chorus gives very
poor results, with most songs being classified as Negative or Very Negative. Thus, a
different approach might be needed.

The Last.fm tags can be used much more effectively if we could reduce sparsity by uni-
fying different tags that mean the same thing. For example, joyful, joyous, happy,

jovial, jolly... etc. might all indicate the same mood or sentiment. But these are
different tags. Unifying them would give a much better mood based tagging. Unfortu-
nately, much of this has to be done manually by looking at tags and identifying possible
synonymous candidates. Another factor is that the tags are user generated, so typos,
spelling variations, punctuation etc, complicate matters.

Also, chord progressions may have ambiguous sentiments when considered alone. The
progression C Am F G is extremely common in music and has been used in songs encom-
passing a large range of emotions; it is difficult to attribute a single sentiment to it. We
believe a more effective approach would be to consider other factors to accompany the
progression in labelling the music; for example, the tempo of the song, paired with the
associated progression, may be more indicative of the involved sentiment. It is difficult
to obtain this sort of data, however, and a more effective approach may be to extract
the progressions and tempos from the acoustic signals themselves, as performed in [3].

7 Conclusions and Further Work

To conclude, we see that our model though not practically usable in the current form,
points us in some interesting directions. Firstly, if a larger dataset with chord progres-
sions and lyrics could be crawled, even the existing model may give much better results,
as sparsity of the bag of words and Last.fm tags reduces. Secondly, unification of Last.fm
tags as discussed above might turn out to be an interesting approach. WordNet synsets
might be able to help reduce the manual labor involved in unifying tags.

Lastly, sentiment analysis of song lyrics requires further attention. It is a problem that
needs to be solved taking into account the entire body of a song’s lyrics’ as a whole.

8



References

[1] Xia, Yunqing, Linlin Wang, and Kam-Fai Wong. “Sentiment Vector Space Model for
Lyric-Based Song Sentiment Classification.” World Scientific 21.04 (2008): n. pag.
IEEE Explore. Web. 2 Dec. 2013.

[2] He, Hui, Jianming Jin, Yuhong Xiong, Bo Chen, Wu Sun, and Ling Zhao. “Lan-
guage Feature Mining for Music Emotion Classification via Supervised Learning from
Lyrics.” Lecture Notes in Computer Science 5370 (2008): 426-35. Springer. Web. 2
Dec. 2013.

[3] Katayose, H., M. Imai, and S. Inokuchi. “Sentiment Extraction in Music.” Pat-
tern Recognition, 1988., 9th International Conference on 2 (1988): 1083-087. IEEE
Xplore. Web. 2 Dec. 2013.

[4] Chord Hunter. N.p., n.d. Web. 2 Dec. 2013. <http://www.chordhunter.com>.

[5] Metro Lyrics. N.p., n.d. Web. 2 Dec. 2013. <http://www.metrolyrics.com>.

[6] “Last.fm Web Services.” Last FM. N.p., n.d. Web. 2 Dec. 2013.
<http://www.last.fm/api>.

[7] Socher, Richard, Alex Perelygin, Jean Y. Wu, Jason Chuang, Chirstopher D. Man-
ning, Andrew Y. Ng, and Christopher Potts. “Recursive Deep Models for Seman-
tic Compositionality Over a Sentiment Treebank.” (n.d.): n. pag. Nlp.stanford.edu.
Web. 2 Dec. 2013. <http://nlp.stanford.edu/ socherr/EMNLP2013 RNTN.pdf>.

[8] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830,
2011.

9


	Introduction
	Chordal Sentiment
	Problem Statement
	Prior Work

	Data
	Feature Selection
	Sentiment-Based Features
	Word Level Sentiment Analysis
	Stanford Sentiment Treebank Parser
	Sentiment Based on User Generated Tags

	Bag of Words Feature
	Other Features

	Feature Selection
	Results
	Discussion
	Conclusions and Further Work

