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ABSTRACT
This paper describes the results of running four unsuper-
vised generic text summarization algorithms on perhaps the
most widely known and timeless works in English Literature:
a collection of thirty-seven plays by William Shakespeare.
While text summarization has been applied to newswire and
other curated content, it is not known to the author whether
any such attempt has been made to create summaries of lit-
erature that is rich in semantic and idiomatic content.

As if the task wasn’t challenging enough to begin with, an
aggressive target of one hundred words was set for the size
of the summary extracts.

The four algorithms used in this investigation are tf-idf –
based relevance ranking, clustering of sentences using K-
Means, Singular Value Decomposition (SVD) of a term-
sentence matrix, and identification of salient sentences by
computing the PageRank of each sentence. A central idea is
to identify non-redundant sentences that capture the theme
of the document being summarized.

Categories and Subject Descriptors
Artificial Intelligence [Natural Language Processing]:
Text Summarization

General Terms
Computational Linguistics, Information Retrieval

Keywords
tf-idf, K-Means, Singular Value Decomposition, PageRank,
Sentence Extraction

1. INTRODUCTION
According to one estimate [1], we create 2.5 quintillion bytes
of data every day—so much that 90% of the data in the world
today has been created in the last two years alone. This
data comes from everywhere: sensors used to gather climate
information, posts to social media sites, digital pictures and
videos, purchase transaction records, and cell phone GPS
signals to name a few. It is no surprise that efficient and
accurate summarization of data is increasingly becoming an
important area of research.

Text summarization has seen a number of successes in the
last two decades [2], especially following the explosive growth

of the Internet and easy availability of raw data. Summaries
of news reports and facts-based articles can now be produced
with reasonably good quality.

However, processing text that is filled with nuances and rich
semantic content presents a different set of challenges, and
is still an active area of research. Nevertheless, it is worth
employing standard techniques from Linear Algebra and the
field of Information Retrieval to explore what is possible and
set a baseline for further work.

The author’s hypothesis is that Relevance Ranking based on
tf-idf weights and the PageRank-based random walk model
that are both used by many successful Web Search engines,
as well as Singular Value Decomposition, which has proved
successful in Latent Semantic Analysis of textual data, in
addition to the standard K-Means clustering algorithm, can
all be used effectively in the task at hand.

2. DATA
The complete text of thirty-seven plays by Shakespeare is
available at [3], annotated in XML. The longest of these is
Hamlet, comprising of 32,152 words, and the shortest is A
Comedy of Errors, at 16,185 words. The playwright has used
25,984 unique words across the entire set.

The text of each play was processed and transformed via a
pipeline of components described below.

Preprocessing: Credits for the XML markup and the li-
censing information were removed, and the raw text
was saved in UTF-8 format. One encoding error was
fixed by hand. Additionally, all-uppercase names of
actors preceding the lines they deliver in the play were
removed. This allows the algorithms to focus on the at-
tributes of the protagonists, without getting distracted
by their names.

Normalization: The text was converted to lowercase,
and all punctuation was removed. In order to pre-
vent longer sentences from dominating the output of
the sentence extraction process and expending the 100-
word budget, the semi-colon was also treated as a sen-
tence terminator in addition to conventional symbols
like the period and the exclamation mark. As a result,
summaries may contain fragments of (large) sentences
from the original text.
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Stop Words: A dictionary of 129 stop words in the En-
glish language was used, and all occurrences of these
words were removed.

Stemming: A standard, public-domain implementation of
the Porter stemmer was used on the lowercased, stop
words-free text.

With the above transformations complete, all four algorithms
were applied in turn to the complete text of each play and
the outputs were recorded.

3. EVALUATION
As in the case of other machine learning problem domains
like classification, it is not feasible to directly apply the pre-
cision/recall framework, or, for that matter, other similar
devices to text summarization without any reference sum-
maries to serve as labeled data. Human intervention is in-
evitably necessary in the evaluation of results related to re-
search in most Natural Language Processing tasks. It is es-
pecially true in the case of evaluation of summaries of classic
works that date back hundreds of years, and therefore reflect
the niceties of language use and social norms in that period
of human history. A good summary should distill the main
theme of the document while keeping redundancy to a min-
imum.

A number of useful measures for evaluation of text sum-
maries have been suggested in [5], but linguistic quality is
best judged by humans. Consequently, results of the project
were presented to a person who is intimately familiar with
the works of William Shakespeare, and therefore has the
right background1 to evaluate the extracts. In addition to
assigning grades to the outputs of the various algorithms,
precision/recall and F1 metrics were computed based on a
gold extract created by the evaluator for one of the plays.

4. RELEVANCE RANKING
There are several algorithms employed by Information Re-
trieval systems to rank the relevance of a document in the
context of a specific query [6]. A popular one, the bag of
words model, assigns a weight to every term that is pro-
portional to the number of occurrences of that term in the
document. This weighting scheme is referred to as term fre-
quency and is denoted tft,d, with the subscripts denoting
the term and the document in order. Although this model
has its shortcomings (e.g., word order is ignored), it is simple
and intuitive in that the content of the document is captured
by the frequently occurring material2 words.

At the same time, in order to attenuate the effect of words
that occur too often in the collection of documents, the
weight of a term is scaled by a factor proportional to the
inverse of its document frequency, denoted dft. The com-
posite weight of a term is thus defined as the product of its

1A graduate degree in English Literature.
2Stop words are excluded.

term frequency and inverse document frequency:

tf-idft,d = tft,d × idft

= tft,d × log
N

dft

where N is the total number of documents in the collection.

Relevance Ranking for summarization then proceeds as de-
scribed in algorithm 1.

Input : The text of a document, and a positive
integer l

Output: A subset of sentences from the document
with the highest tf-idf weights

1 Split the text of each play into sentences;
2 Compute the sentence score as the sum of the tf-idf

weights of the stemmed version of the sentence;
3 Sort the sentences by score in non-increasing order;
4 Select the top k sentences so that the total number

of words is l;

Algorithm 1: Sentence ranking using tf-idf weights.

5. SENTENCE CLUSTERING
The K-Means clustering algorithm can be used to partition
the set of sentences in a document into clusters so as to
minimize the in-cluster distance metric, typically the square
of the L2 norm, captured in the following expression:

argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2

The parameter K is determined using silhouette scoring ;
we also take into account the constraint imposed by the
desired summary size. A cluster count of 20 was found to
be reasonable.

K-Means for sentence clustering is outlined in algorithm
2. The aim is to identify distinct topics in the document
corresponding to the different clusters. A summary of the
document is subsequently created by selecting the sentences
closest to the centroids of the clusters.

6. SINGULAR VALUE DECOMPOSITION
We begin by stating the following theorem.

Theorem 1. Let r be the rank of an M × N matrix C.
Then, there is a Singular Value Decomposition (SVD) of C
of the form C = UΣVT where

1. The eigenvalues λ1, . . . , λr of CCT are the same as the
eigenvalues of CTC;

2. For 1 ≤ i ≤ r, let σi =
√
λi, with λi ≥ λi+1. Then the

M × N matrix Σ is composed by setting Σii = σi for
1 ≤ i ≤ r, and zero otherwise.

The values σi are called the singular values of C. SVD can
be used to compute a low-rank approximation to C.



Input : The text of a document, a positive integer
l, and a positive integer K

Output: A subset of sentences from the document
that represent the centroids of the
sentence clusters

1 Split the text of each play into sentences;
2 Compute the sentence score as the sum of the

normalized tf-idf weights of the stemmed version of
the sentence;

3 Pick K sentences f1, . . . , fk at random from the
document as the initial seeds for the clusters;

4 while stopping criterion is not true do
5 for all clusters do
6 assign sentences to closest cluster;
7 re-compute cluster centroids;

8 end

9 end
10 Select the K sentences closest to the centroids of the

clusters;
11 Select k ≤ K sentences so that the total number of

words is l;

Algorithm 2: Sentence clustering using K-Means.

This construct can be used to summarize a document as
outlined in algorithm 3 [4]:

Input : The text of a document, and a positive
integer l

Output: A subset of salient sentences from the
document

1 Split the text of each play into sentences;
2 Construct the (stemmed) terms-by-sentences matrix
A for the text of the document;

3 Perform SVD on A to obtain the singular value

matrix Σ, and the right singular vector matrix V T ;
4 Select the top k sentences in order of non-increasing

singular values so that the total number of words is
l;

Algorithm 3: Sentence extraction using SVD.

This procedure identifies the latent semantic structure of
the prose and captures it in the singular vectors. The algo-
rithm then selects the salient sentences that correspond to
underlying patterns of semantically related content.

7. RANDOM SURFER MODEL
The PageRank algorithm [11] is widely used in Web search
engines as a ranking criterion. PageRank importance is de-
termined by “votes” in the form of links from other pages on
the Web. The idea is that votes (links) from important sites
should carry more weight than votes (links) from less im-
portant sites, and the significance of a vote (link) from any
source should be tempered (or scaled) by the number of sites
the source is voting for (linking to). Computing PageRank
thus boils down to solving a recursive equation, which can

be expressed as the following eigenvector problem:

πTG = πT

Here, G is a stochastic matrix, also known as the adjusted
Google matrix. In general, the dominant eigenvalue for ev-
ery stochastic matrix is 1. Consequently, the PageRank iter-
ation converges to the normalized left-hand eigenvector πT

which is the stationary (or steady-state) distribution of the
Markov chain. A “teleportation” or damping factor of 0.85
was used in the implementation.

We adapt the PageRank algorithm for our purposes by cre-
ating a graph from the document we wish to summarize,
where the vertices correspond to the sentences, and an edge
between every pair of vertices having a weight that equals
the cosine similarity between the two sentences it connects.

cos(−→u1,
−→u2) =

−→u1 · −→u2

‖−→u1‖ ‖−→u2‖

Running the PageRank algorithm on this graph then iden-
tifies the sentences with the highest importance. This is
shown in algorithm 4.

Input : The text of a document, and a positive
integer l

Output: A subset of sentences from the document
with the highest importance scores

1 Split the text of each play into sentences;
2 Express each sentence as a (sparse) vector in the

multi-dimensional space of words;
3 Compute the cosine similarity between every pair of

sentences;
4 Construct a graph M = (V,E) from the document

where each sentence is a node u ∈ V and there is an
edge e = (u,w) ∈ E where u and w are sentences,
and the weight of the edge is the cosine similarity
between the sentences;

5 Compute the PageRank of each node;
6 Select sentences with the largest importance scores

so that the total number of words is l;

Algorithm 4: Sentence selection using PageRank.

8. IMPLEMENTATION NOTES
The majority of the code was written in Python 2.7 using
routines from NumPy [12] and NetworkX [13]. Some ad hoc
scripts were written in bash to preprocess the raw text and
apply the various algorithms to the normalized document
contents.

The complete code and data for the project is available at
the author’s Github repository [14].

9. RESULTS AND ANALYSIS
The results of the extraction algorithms for six plays are in-
cluded in this report. Table 1 shows the evaluation of the re-
sults from the different algorithms for the playJulius Caesar
using unigrams, and table 2 shows the same using trigrams.
These metrics are not unlike ROGUE, or Recall-Oriented
Understudy for Gisting Evaluation [9], that is traditionally



Table 1: Evaluation of the summary extracts against
the gold version for Julius Caesar using unigrams.

Algorithm Grade Precision Recall F1

tf-idf B 0.1555 0.3784 0.2205
SVD C+ 0.0984 0.1622 0.1224

K-Means B− 0.2549 0.3514 0.2954
PageRank B 0.0984 0.1622 0.1224

Table 2: Evaluation of the summary extracts against
the gold version for Julius Caesar using trigrams.

Algorithm Grade Precision Recall F1

tf-idf B 0.0344 0.2500 0.0606
SVD C+ 0.0000 0.0000 0.0000

K-Means B− 0.0667 0.2500 0.1053
PageRank B 0.1296 0.4375 0.2000

used in the research community to automatically evaluate
summarizer performance. The generated extracts are dis-
played in table 3. With an average length of almost 24,000
words per play, the 100-word summary extracts amount to
only 0.4% of the entire text. It is indeed a daunting task
to capture the essence of any creative work of literature in
a short span of one hundred words. There isn’t a single
compression algorithm in the world that offers the kind of
summarization targeted in this research.

Table 4 shows the gold summary created by the evaluator by
hand-picking sentences that were deemed salient in the play
Julius Caesar ; sentences that also appear in at least one
algorithmically-generated summary are underlined in color.
Precision, recall, and F1 metrics for each algorithm were sub-
sequently computed using counts of overlapping unigrams
and trigrams in the target summary and the gold version.
Trigrams were used in order to offset the lack of availabil-
ity of multiple evaluators, and any subjective bias that the
human judge may have introduced in generating the gold
summary.

In the traditional Vector Space Model from the field of IR
as employed in the tf-idf ranking algorithm, only similarities
between sentences or between a query and the sentences in a
document can be calculated within one space. If terms were
to be compared to each other another space would have to
be drawn. In a term space, where the terms represent the
dimensions, the terms are considered to be linearly inde-
pendent, which means their relations to each other are not
taken into account. Furthermore in VSM the similarity cal-
culation is based only on word matching. Each dimensions
of a vector corresponds to a term. Two documents with a
similar topic but different vocabulary will not be placed next
to each other. Only documents that overlap in vocabulary
will be considered similar.

The SVD algorithm preserves as much information as pos-
sible about the relative distances between the sentence vec-
tors, while collapsing them down into a much smaller set of

dimensions. In this collapse, information is lost, and con-
tent words are superimposed on one another. Information
loss sounds like a bad thing, but here it is a blessing. What
we are losing is noise from our original term-sentence ma-
trix, revealing similarities that were latent in the document.
Similar things become more similar, while dissimilar things
remain distinct. This reductive mapping is what gives SVD
its seemingly intelligent behavior of being able to correlate
semantically related terms. We are really exploiting a prop-
erty of natural language, namely that words with similar
meaning tend to occur together [8]. SVD thus re-expresses
a co-occurrence matrix in a new coordinate system. The
idea is to uncover the latent semantic structure of a col-
lection of sentences, i.e., to find hidden relations between
terms or other text units by using high-order co-occurrence.
Unlike VSM and its kin that rely on literal word overlap
for similarity calculation, SVD relies on a derived seman-
tic relatedness measure. This measure reflects the semantic
similarity between words that are used in similar context,
e.g., synonyms, antonyms, hyponyms or compounds.

Even though SVD didn’t do all that well in terms of the F1

measure, it did reasonably well in qualitative terms. I would
attribute SVD’s poor F1 score to lack of human-generated
gold extracts—ideally, not only should we have gold extracts
for all documents (plays), we should have multiple extracts
for each document to serve as reference summaries, along the
lines of how machine translation output is evaluated. Un-
fortunately, doing so requires a serious commitment of time
and effort on the part of qualified human evaluators, who
are unlikely to sign up for this task without compensation.

Clustering performed better than expected in picking out
the set of topics in each play. A straightforward application
of an implementation of Lloyd’s algorithm appears to have
produced reasonably good results.

PageRank did best among the unsupervised algorithms ex-
plored in this project. This is not entirely surprising; it is
already used as a measure of importance by all commercial
web search engines. What is intriguing is the fact that it
worked well on an undirected graph—recall that the World
Wide Web is a directed graph: millions of pages on the In-
ternet point to www.stanford.edu, but there are few links
originating from Stanford’s home page. In contrast, the
links between sentences in the document are symmetric: the
weight of the edge connecting a sentence to another is the
cosine similarity of the two. So, in effect, we are really look-
ing for sentences that are “highly connected” to others in the
document.

In general, we seem to have obtained good mileage from
unsupervised techniques without any aid of semantics. It
is indeed remarkable that we could achieve reasonably good
results without introducing linguistics, except in the prepro-
cessing stages.

10. CONCLUSIONS AND FURTHER WORK
Not surprisingly, summarizing Shakespeare in a hundred
words is an ambitious goal, and one that is hard to attain



Table 3: Summary extracts generated by the various algorithms for the play Julius Caesar.

Using tf-idf Relevance Ranking Using SVD

You all do know this mantle: remember The first

time ever Caesar put it on; ’Twas on a sum-

mer’s evening, in his tent, That day he overcame

the Nervii: Look, in this place ran Cassius’

dagger through: See what a rent the envious

Casca made: Through this the well-beloved Bru-

tus stabb’d; And as he pluck’d his cursed steel

away, Mark how the blood of Caesar follow’d it,

For Brutus, as you know, was Caesar’s angel:

Judge, you gods, how dearly Caesar loved him!

come not, friends, to steal away your hearts:

am no orator, as Brutus is; But, as you know me

all, a plain blunt man, That love my friend; For

have neither wit, nor words, nor worth, Action,

nor utterance, nor the power of speech, To stir

men’s blood: only speak right on; tell you that

which you yourselves do know; In every wound of

Caesar that should move The stones of Rome to

rise and mutiny.

Caesar doth bear me hard; but he loves Bru-

tus: If were Brutus now and he were Cassius, He

should not humour me. Fourth Citizen Caesar’s

better parts Shall be crown’d in Brutus. Third

Citizen Nay, that’s certain: We are blest that

Rome is rid of him. Fill, Lucius, till the wine

o’erswell the cup; cannot drink too much of Bru-

tus’ love. Messala, have here received letters,

That young Octavius and Mark Antony Come down

upon us with a mighty power, Bending their ex-

pedition toward Philippi. Exit Farewell, good

Messala: Good night, Titinius. By your leave,

gods:-this is a Roman’s part Come, Cassius’

sword, and find Titinius’ heart.

Using K-Means Clustering Random Surfer Model: PageRank

what! Our course will seem too bloody, Caius

Cassius, To cut the head off and then hack the

limbs, Like wrath in death and envy afterwards;

For Antony is but a limb of Caesar: Let us be

sacrificers, but not butchers, Caius. Enter

reading a paper ’Caesar, beware of Brutus; take

heed of Cassius; come not near Casca; have an

eye to Cinna, trust not Trebonius: mark well

Metellus Cimber: Decius Brutus loves thee not:

thou hast wronged Caius Ligarius. Fourth Cit-

izen Read the will; we’ll hear it, Antony; You

shall read us the will, Caesar’s will. Fourth

Citizen It is no matter, his name’s Cinna; pluck

but his name out of his heart, and turn him

going.

Brutus and Caesar: what should be in that ’Cae-

sar’? Enter reading a paper ’Caesar, beware

of Brutus; take heed of Cassius; come not near

Casca; have an eye to Cinna, trust not Trebo-

nius: mark well Metellus Cimber: Decius Brutus

loves thee not: thou hast wronged Caius Ligar-

ius. have done no more to Caesar than you shall

do to Brutus. Fourth Citizen Caesar’s better

parts Shall be crown’d in Brutus. Here, under

leave of Brutus and the rest- For Brutus is an

honourable man; So are they all, all honourable

men- Come to speak in Caesar’s funeral. Fourth

Citizen Read the will; we’ll hear it, Antony;

You shall read us the will, Caesar’s will.

Table 4: Gold extract for the play Julius Caesar.

Enter the conspirators, CASSIUS, CASCA, DECIUS BRUTUS, CINNA, METELLUS CIMBER, and TREBONIUS.

Caesar, beware of Brutus; take heed of Cassius; come not near Casca; have an eye to Cinna, trust

not Trebonius: mark well Metellus Cimber: Decius Brutus loves thee not. Et tu, Brutus? Not

that I loved Caesar less, but that I loved Rome more. Friends, Romans, countrymen, lend me your

ears. For Brutus is an honourable man. So are they all, all honourable men. In every wound of

Caesar that should move The stones of Rome to rise and mutiny. Revenge! About! Seek! Burn!

Fire! Kill! Slay! Let not a traitor live!



in practice even for a person with deep knowledge of the
classics.

But we are not done yet. There are plenty of interesting
avenues to explore. Most notably, we could perhaps use
part of the dataset (i.e., a subset of the thirty-seven plays) to
train a classifier that can subsequently be used to determine
whether a sentence in a document from the test set should
be included in its summary. In addition, there are other
graph-based algorithms including HITS [10] that attempt
to identify axial nodes in a graph using a different measure
of centrality.

Finally, instead of, or perhaps in addition to, sentence ex-
traction, research from the burgeoning field of text gener-
ation could be applied to produce abstractive summaries.
This is arguably a harder road, but potentially a promising
one that is well worth exploring.
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