
Is This A Joke?

Jim Cai∗1 and Nicolas Ehrhardt†1

1jimcai@stanford.edu
2ehrhardn@stanford.edu

Abstract

The deconstruction of humor in text is well studied in linguistics and literature; computationally,
techniques center around modeling text structure and hand crafting features surgically designed to
emulate linguistic tendences in specific types of jokes. We take a more hands-off approach, leveraging light
linguistic features in conjunction with learned semantic word vectors in a neural network to learn humor.
The system performs at a reasonable level and the extensions are promising.

I. Introduction

The role of humor in text is arguably dif-
ferent than in speech. What is lacking
in intonation and timing is made up for

with an emphasis in meaning. There are many
reasons why a certain sentence can be humor-
ous but rather than conduct a linguistic analy-
sis, perhaps we may be able to computationally
determine a humor metric.

I. Related Work

There has been interesting and quite succesful
in the work of computational humor. Taylor
and Mazlack [4] utilize Raskin’s Theory of
Humor in a computational setting, translating
overlap in common phrases into the functional
equivalent of overlap in n-grams in order to
produce humorous phrases. Kiddon and Brin
[3] craft elegant features in order to arrive at
the problem of double entendre classification,
specifically modeling the structure of erotic
text and synonyms for sexually suggestive
words and utilizing a SVM on those features.

Most closely related, Bengio et al. [9] uti-
lize a hidden neural network with 1 layer in
order to characterize word sequences; the per-
formance on a variety of NLP tasks is on par

with the benchmarks.

II. Features

I. Embeddings

Collobert et al. [1] trained a set of 50-
dimensional word embeddings using a neural
network with hidden layers. The scoring func-
tion compared pairs of phrases of a fixed size,
where the negative example was the same as
the positive example with the target word re-
placed with a random word. Before we utilized
this embedding for our task, we were investi-
gated the degree to which these embeddings
captured semantic meaning.

It is unintuitive to perform rudimentary cluster-
ing on all 50 dimensions, especially denoting
the curse of dimensionality. Therefore, we
applied PCA on the set of word embeddings.
Initially, we attempted to visualize the entire
dataset by plotting against the first two prin-
cipal components; this proved to be unhelpful
because the dataset of 100k words is too dense.
Nearest neighbors provided a more straight-
forward method to evaluate the clustering.
K-nn was run on the first d = 10 principal
components, with d chosen empirically. For

∗CS 224N, CS 229
†CS 229

1

comparison, the results for using the first 5,10
principal components are as follows:
d=5:

• ten: first, two, DGDG.DG, home, living

• husband:wife,friend,actress,wrestling

• virginia:washington, texas, chicago,· · ·

• cold: single,DG.DGDG,big, heavy, upper

d=10:

• ten: five, six, seven,· · ·

• husband:father,wife,mother, daughter,
lord

• virginia:boston,philadelphia, minnesota

• cold: natural, sea, big, earth, heart,
heavy

While still not entirely perfect upon inspection
it is conceivable that these words are related.
especially on the kinds of co-occurences with
other words that they share; this is what is en-
dowed by the neural net that they were derived
from. Turian et al. [5] also study these embed-
dings extensively and find that they perform
well in various word representation tasks.

II. Context

Inspired by Erk and Pado [6] we intend to
derive a sense of words into a sentence with
respect to the parts of speech of adjacent words.
To do so, we model a word’s contextual infor-
mation alongside its word embedding as:

(R−1
x , R+1

x , vx,) ∈ R150

Where vx ∈ V , our word embedding space
and R−1

x , R+1
x are applications of R → V (role

space→ vector space). The role space consists
of an n-dimensional vector that represents the
contribution of a particular tag before/after
a certain word. Depending on a particular
word’s neighbors, we extract the mean contri-
bution of occurences with such tags; this will
vary depending on the training corpus.

Mitchell and Lapata [7] discusses various trade-
offs in combining semantic word vectors; they
argue that composition by dot product is ef-
fective because it captures the commonality
between sentences and accentuates it. However
since we would like to keep different sources
of variability in the vector, we have chosen to
take the mean of the word vectors that have
a particular tag. For this work we utilize the
Brown corpus and POS tagger provided by
python’s nltk library.

For example, we have the sentence “Cats like
Hats” with the accompanying parts of speech,
((cats,’N’),(’like’,’P’),(’hats’,’N’)). We then store
the word vector for “cats” in R−1

like[N] and the
word vector for “hats” in R+1

like[N].

One issue with this framework is data sparsity–
more specifically for a word to have useful
values of this feature it would require having
been observed in its different contexts (if appli-
cable). Another issue is in the evaluation stage,
if the test sentence exhibits a new POS tag –in
this case we utilize a naive back-off model that
looks for the minimum euclidean distance to
the vector of any tag to use as the feature.

III. Model

I. Goal

In this section, we follow a similar problem
formulation in [8]. Given parameters θ for our
model, we arrive at an estimated probability of
a sentence being funny. We seek to maximize
the following probability:

l(θ) = log
m

∏
i

p(y(i)|x
(i);θ) (1)

which simplifies to

m

∑
i

y(i) log hθ(x(i))+ (1− y(i)) log (1− hθ(x(i)))

(2)
where hθ(x) is the output of our classifier.
Since we will utilize Stochastic Gradient De-
scent (SGD) to estimate our parameters, we

2

thus seek to minimize

J(θ) =
1
m

m

∑
i
−l(θ) + R (3)

where

R =
C

2m

nC

∑
j

H

∑
k

W2
k,j (4)

Adding R is equivalent to placing a Gaussian
prior on the parameters to help with overfit-
ting.

II. Hidden Neural Network

Taking the word-level features as raw input,
we utilize a 1 layer hidden neural network
to perform the classification. The topmost
neuron is a softmax layer, outputting a clas-
sification ∈ [0, 1). The middle layer is the
hidden layer, and we illustrate the paths of
the input layer with only the first two words.

As such, the parameters to our hidden neural
network model are as follows:
· U ∈ RHx1

· W ∈ RHxnd

· B1 ∈ RHx1

· B2 ∈ R1

H is the number of hidden layer neurons, n
is the number of input words that have d-
dimensional feature vectors. For a particular
neuron in the hidden layer, it receives informa-
tion from the input layer and outputs:

a1 = f (W1·X + B1) (5)

where f (x) is a nonlinear sigmoid-like function.
The softmax layer then takes each hidden neu-
ron as an input and produces a classification
according to

z = UTa + B2 (6)

where a is a vector of outputs from the hidden
layer. Finally, the topmost neuron returns

h(z) =
1

1 + exp−z
(7)

which has the same form as logistic regression
and a 2-class maximum entropy model. We
classify as positive if it passes the score thresh-
old of 0.5.

III. Update Equations

The SGD update equations follow.We include
the partial update to a positive example (the
negative example equations are analagous).
One particular design decision is to keep the
vocabulary matrix L fixed due to the contextual
awareness of each word feature. We define the
following equations:

hθ(x) =
1

1 + exp−j(x)
(8)

g(x) = −(1 + exp−j(x))2(exp j(x)) (9)

j(x) = UT f (x) + B2 (10)

f (x) = tanh(Wx + B1) (11)

f ′(x) = 1− tanh2(Wx + B1) (12)

Our update equations for a single data point
are as follows

∂J(θ)
∂U

= g(x) f (x) +
∂R(θ)

∂U
(13)

∂J(θ)
∂W

= g(x)UT f ′(x)× X +
∂R(θ)

∂W
(14)

∂J(θ)
∂B1

= diag((g(x)UT × f ′(x)) (15)

∂J(θ)
∂B2

= g(x) (16)

3

where in equations (14,) we use the cross prod-
uct operator. The regularization gradients are

∂J(θ)
∂U

= CU̇ (17)

∂J(θ)
∂W

= CẆ (18)

(19)

IV. Experiments

I. Data

Initially we set out to predict the punniness
of certain sentences. The original hypothesis
was that sentences are punny because specific
words in the sentence are used in more than
one context and as such, are jarring enough
to be funny to the reader. We began labeling
puns but it soon became too time intensive.
Our final dataset consists of 182 high quality
puns; negative examples are sentences taken
from the constitution by nature of it being a
serious document. This is our smaller evalua-
tion dataset–given the dimensionality of our
features, this amount of data is too prone to
overfitting especially considering that some of
it is omitted for a test set. In our initial testing,
we obtained results that were too good to be
true; nonetheless it is interesting to consider
training on another dataset and evaluating
solely on puns.

With the advent of twitter, it is relatively simple
to access curated feeds. Most notably for this
experiment, we leverage this aspect for training
examples. We obtain “funny” examples from
joke feeds (@TheComedyJokes, @FunnyJoke-
Book, @funnyoneliners) and “unfunny” exam-
ples from authoritative news feeds (@Break-
ingNews, @TheEconomist, @WSJ). Some ex-
amples of each type of sentence found in our
dataset are:

· Pun: i tried looking for gold, but it didn’t
pan out
· Constitution: To prove this, let Facts be sub-
mitted to a candid world
· Joke: Pizza is the only love triangle I want.

· News: Artwork purchased by city of Detroit
valued at up to $866 million.

Our balanced dataset contains 6700 exam-
ples of each with the words in the sentences
stemmed and retweets omitted. We then trun-
cate the sentence length to a maximum of 10
words, with the “blank” word appended if
there are fewer than 10 words in the sentence.

In SGD we essentially alter the parameters
by their respective gradient of the cost function
whenever we make an incorrect classification;
the importance of each example is controlled
by the parameter α, which downweights each
gradient. We also have the regularization pa-
rameter C from equations (17, 18)

II. Results

We include a plot detailing the accuracy of
the classifier with varying amounts of training
and evaluation data on the full word vectors
with contextual features. In these experiments
we have 10 hidden states. We observe that
additional data does not help the performance
after 40%, or around 2000 sentence pairs.

We also vary the number of hidden states.
If we include too many hidden states, it is
theoretically possible to predict the training
data exactly and thus overfit (since the size of
the weight matrix depends on the number of
neurons in the hidden layer). After an initial

4

dip that is probably due to the variance of
SGD, performance remains roughly constant.

We also vary the learning parameter α. We
observe that making α too small for this task
kills precision.

We vary the regularization parameter C and
for this particular problem it does not seem to
matter much. Intuitively, since we are dealing
with such high dimensional data it should be
rather sensitive to regularization; however if
the features are relatively evenly distributed
across the dimensions regularization will not
have that large a contribution.

We vary the number of iterations of SGD, K
and observe that there are but marginal perfor-
mance gains after K=3 iterations.

III. Analysis

We evaluate our derived parameters on our
dataset of puns and sentences from the con-
stitution. Using the same parameters above
when we varied the size of the hidden states,
we see that 100 hidden states produces the best
F1 score.

5

Upon inspection we do not see a distinguish-
able habitual error category that our neural
network is predicting incorrectly.

Precision Recall F1
.650 .822 .726

It is interesting that even though we trained
on jokes we are still able to generalize our pre-
dictions to the domain of puns. However it is
difficult to make incremental progress on this
model due to the nature of hidden neural net-
work; instead, one must start afresh in thinking
of the structure of the feature vector and the
scoring function and the data set upon which
to utilize for training and evaluation.

V. Future Work

In our initial literature review, we came across
Recursive Neural Networks [10] as a good way
of modeling sentence meaning because it al-
lows for arbitrarily long sequences of words
(rather than truncating sentence length or ap-
pending blanks). However we could not for-
mulate a strong scoring function and were
stranded in the swamps of implementation de-
tails.

References

[1] Collobert, Ronan. et al., (2009). Natu-
ral Language Processing (Almost) from
Scratch Journal of Machine Learning Re-
search

[2] Mihalcea, Rada and Carlo Strappavaral,
(2006). Learning to Laugh (Automatically):
Computational Model for Humor Recog-
nition Computational Intelligence, Vol-
ume 22, Number 2, 2006

[3] Kiddon, Chloe and Yuriy Brin, (2011).
That’s What She Said Double Entendre
Identification Proceedings of the 49th An-
nual Meeting of the Association for Com-
putational Linguistics:shortpapers, pages
89–94

[4] Taylor, Julia and Lawrence Mazlack,
(2004). Computationally Recognizing
Wordplay in Jokes

[5] Turian, Joseph et al. , (2010). Word repre-
sentations: A simple and general method
for semi-supervised learning

[6] Erk, Katrin and Sebastian Pado, (2008). A
Structured Vector Space Model for Word
Meaning in Context

[7] Mitchell, Jeff and Mirella Lapata, (2008) .
Vector-based models of semantic compo-
sition. In Proceedings of ACL, 236–244.

[8] Manning, Chris and Richard Socher
CS224n: PA4 assignment sheet.
http://nlp.stanford.edu/ socherr/pa4_ner.pdf

[9] Bengio, Yoshua et al., (2003). A Neural
Probabilistic Language Model Journal
of Machine Learning Research 3 (2003)
1137–1155

[10] Socher, Richard et al. , (2013). Recursive
Deep Models for Semantic Composition-
ality Over a Sentiment Treebank

6

	Introduction
	Related Work

	Features
	Embeddings
	Context

	Model
	Goal
	Hidden Neural Network
	Update Equations

	Experiments
	Data
	Results
	Analysis

	Future Work

