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Learning Structures of Biological Processes with
Joint Inference
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I. INTRODUCTION

Biological Processes involves a series of events
and entities that are related to one another. Current
state-of-the-art question answering systems can han-
dle bio questions about atomic facts (such as In the
fungi life cycle, what cells form a diploid zygote?),
but are unable to answer more complex ”how” and
”why” questions that involve deep understanding of
the process structure. This project seeks to address
this problem by having the computer read and
construct structures of biological processes from
text. Specifically, the structure includes event-event
relation and event-entity association, which can be
thought of as graph with edges. The edge between
two events describes temporal, causal or coreferent
relation. The edge between an event and an entity
exists if the entity is associated with (an argument
of) the event. Thus, the event-event relation predic-
tion is a multi-class classification while the event-
entity relation is binary.

In this project, we aim to predict the events,
entities associated with events, and event-event re-
lations at the same time through joint inference in
the hope of lowering cascading errors introduced
from the pipeline framework [5], i.e. predict entities
and inter-event relations based on the event pre-
diction. The joint inference problem is formulated
using integer linear programming (ILP) and solved
by Gurobi [1]. The insights from extensive error
analyses are incorporated to improve the system. In
the end, the joint inference system achieves better
performance (F1 score) than the pipeline system,
which suggests further exploration of join inference
in our future work.

II. PREVIOUS WORK

Our project is an extension of the paper Learning
Biological Processes with Global Constraints [5].
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The work in [5] focuses on event-event relation
prediction and has a strong assumption that gold
event triggers are already known. Thus, it learns
only from the gold triggers in the training set and
predicts only on the gold triggers in the test set. This
largely simplifies the original problem, i.e. predict
all the events, entities and event-event relations from
plain text. In this project, we address the original
problem and predict the whole structure using joint
inference.

One thing to note is that [5]. also uses joint infer-
ence and formulates global constraints (connectivity,
chain structure and relation triads) on event-event
relations with ILP. However, the joint inference in
this project is very different. We continue using
some global constraints (connectivity and part of
the relation triads, specifically SAME contradiction
and PREV contradiction) from [5] but add many
new constraints connecting the event prediction,
entity prediction and event-event relation prediction,
which make predicting the whole structure in one
shot possible. The details are provided in section
IV.A.

III. DATASET

We continue using the same dataset as [5] does. A
brief description is provided here for the complete-
ness of the report. For more details, please refer to
section II and section IV of [5].

148 process descriptions were extracted by going
through chapters from the textbook Biology by Neil
A. Campbell and Jane B. Reece. The definition of
a process is a contiguous sequence of sentences
that describes a process, i.e., a series of events
that lead towards some objective. Each process
description was then annotated by biologists after
presented with annotation guidelines. Process de-
scriptions were parsed with Stanford constituency
and dependency parsers (Klein and Manning, 2003
[4]; de Marneffe et al., 2006 [3]) and 35 process
descriptions were set aside as a test set (number of
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training set trigger pairs: 1932, number of test set
trigger pairs: 906). All the result numbers shown
in this project are averaged over 10-fold cross
validation on the training set.

There are 11 possible event-event relations,
R = {PREV, NEXT, SUPER, SUB, CAUSES,
CAUSED, ENABLES, ENABLED, COTEMP,
SAME, NONE} [5]. Among them, PREV-
NEXT, SUPER-SUB, CAUSES-CAUSED,
ENABLES-ENABIED are pairs of relations
with reverse directed relation of each other.
More specifically, the classifier is a function
that maps a pair of events to a relation,
ex.f(ti, tj) = PREV ⇐⇒ f(tj, ti) = NEXT ,
where ti is the i-th trigger in its description. Since
f(ti, tj) completely determines f(tj, ti), we only
consider pairs with i < j.

Entities were labeled with their semantic roles
with respect to the events, ex. AGENT, ORIGIN,
DESTINATION, etc. However, in this project, we
only consider if an entity is an argument of an event
and ignores the semantic role labeling (SRL) from
the annotation.

IV. EXPERIMENTS AND RESULTS

A. Joint Inference
In this section, we describe how we incorpo-

rate constrains into our model to generate coherent
global process structures. Let Ti,e be the score for
an event trigger i to be labeled as e ( e ∈ {T, F},
i.e. trigger i is an event or not) and ti,e be the
corresponding indicator variable. Let Ai,j,e be the
score for a relation e between an event trigger i
and an candidate argument j, where e ∈ {T, F}
(entity j is an argument of event i or not) and
ai,j,e be the corresponding indicator variable. Let
Yi,j,r be the score for a relation r (the possible
relations are described in section III) between the
trigger pair (ti, tj) and yi,.j,r be the corresponding
indicator variable. The scores Ti,e, Ai,j,e and Yi,j,r
are from MaxEnt based local classifiers trained on
the annotated samples using lexical, dependency
tree based and parse tree based features. Feature
details are discussed in section III of [5].

Our goal is to find an assignment for the indica-
tors.

t = {ti,e|1 ≤ i ≤ n, e ∈ E} (1)
a = {ai,j,e|1 ≤ i ≤ n, 1 ≤ j ≤ mi, e ∈ E} (2)

y = {yi,j,r|1 ≤ i ≤ j ≤ n, r ∈ R} (3)

where n is the number of possible event triggers,
mi is the number of possible arguments of trigger
i, E = {T, F} and R is defined in section III. With
no global constraints, this can be formulates as the
following ILP:

argmax
t,a,y

∑
i,e

Ti,eti,e +
∑
i,j,e

Ai,j,eai,j,e (4)

+
∑
i,j,r

Yi,j,ryi,j,r

s.t. ∀i
∑
e

ti,e = 1 (5)

∀i,j
∑
e

ai,j,e = 1 (6)

∀i,j
∑
r

yi,j,r = 1 (7)

The constraint here ensures that each candidate
event trigger is classified as either an event or not,
each candidate argument for an event trigger is
classified as either an argument or not, and there
is exactly one relation between each event pair. In
the rest of this section, we describe constraints that
result in a coherent global process structure.

1) Arguments for events only: If a candidate
event trigger is classified as non-event, then it
should not have any arguments. In our definition,
only events have associated arguments. Thus,

∀i,jti,F → ai,j,F ⇐⇒ ti,F ≤ ai,j,F (8)

2) Arguments for an event cannot overlap: Two
arguments related to the same event cannot overlap
a constraint that has been used in the past in SRL
(Toutanova et al., [6]). More specifically, the sub-
tree of a tree node already marked as an entity for
an event t should not be tagged as an entity for t as
well. Thus, for each parent entity node, we identify
its children (sub-trees). If the parent is classified as
an argument for an event t, then any of the children
should not be an argument.

∀i,jai,j,T → ai,children(j),F ⇐⇒ (9)
ai,j,T ≤ ai,children(j),F

3) Relations between two events only: An event-
event relation, by its name, should only exist be-
tween two candidate event triggers that are both
classified as events. Thus, if there is a not-NONE
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relation between ti and tj , i.e. f(ti, tj) = r R and r
is not NONE, then both ti and tj should be events.

∀i,j,r,r 6=NONE yi,j,r → ti,T ∧ tj,T ⇐⇒ (10)
yi,j,r ≤ ti,T and yi,j,r ≤ tj,T

TABLE I

P R F1

Event 0.708 0.608 0.651
Entity 0.728 0.132 0.223

E-E Realtion 0.602 0.031 0.08

10-fold cross validation results on the training set using
joint inference

The results of joint inference are shown in Table
I. We can see that except for the event trigger iden-
tification, the performance, especially for the event-
event relation, is very bad. We carefully examined
each prediction and found the event-event relation
local classifier predicted almost all the event pairs
to have a relation NONE. The reason is that we are
now considering all the possible event-event pairs so
the relation labels are hugely skewed, i.e. most of
them are NONE. The relation distribution in Table II
makes everything clear. Since the number of NONE
relations dominates, the local classifier learns to
predict NONE most of the time, which causes the
recall to be extremely low and hence a low F1.

TABLE II

Training Set Test Set
Relation Count Relation Count

Next 9 Next 2
Enabled 1 Enabled 1
Enables 15 Enables 0
Enabled 1 Enabled 1

Cotemporal 66 Cotemporal 11
Caused 18 Caused 0
Causes 117 Causes 26
Super 34 Super 2
Sub 9 Sub 0

Same 74 Same 5
Previous 187 Previous 21
NONE 114716 Super 23776

Event-event relation distribution in the training set and the
test set

Thus, for the joint inference to work, we have to
first make the data less skewed so that the local

classifier predicts better. Two approaches, down
sampling and event filtering, are discussed in the
following 2 sections, respectively.

B. Joint Inference and Down Sampling

TABLE III

P R F1

Event 0.384 0.832 0.522
Entity 0.726 0.135 0.227

E-E Realtion 0.050 0.311 0.085

10-fold cross validation results on the training set using
joint inference with down sampling on NONE event-event
relation

The prediction performance after down sampling
the NONE-relation pairs (specifically, we randomly
choose x NONE-relation pairs where x is the num-
ber of not-NONE relation pairs) during training
is shown in Table III. The F1 scores for entity
identification and event-event relation classification
only increase a bit, and the score for event iden-
tification is largely reduced from 0.651 to 0.522.
The possible reason for this bad performance is data
distribution mismatch. Specifically, down sampling
is only performed on the training data and we
predict on all possible candidates. Thus, the data
distribution is very different, resulting in high false
positives (lowering precision from 0.602 to 0.05) for
event-event relation prediction. We thus try another
approach to combat the skewed data in IV.C.

C. Joint Inference and Filtering

Instead of enumerating all possible event-event
and event-entity pairs, we set a threshold θ to filter
events. Specifically, for a possible event trigger t, if
f(t, T ) ≥ θ , i.e. the score of classifying t as an
event is bigger than θ, then we consider possible
entities and relations with other events for it. If
f(t, T ) < θ , we totally ignore t. Note that the
original joint inference in IV.A is equal to setting θ
as 0, i.e. considering all possibilities. The pipeline
framework equals to setting θ as 0.5, i.e. only if an
event trigger t is identified as an event by the local
classifier do we consider its entities and relations
with other identified events. Thus, the idea is to
explore θ between 0 and 0.5 in the hope of finding
a sweet spot where we do not filter out too many
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true events but are able to hugely reduce the NONE-
relation pairs and make the classifier works.

One main difference between section IV.B and
section IV.C is that in section IV.B, we only
down sample event-event pairs with NONE relation,
which does not help the entity prediction perfor-
mance at all. In this section, by filtering out events,
we remove less possible event-entity pairs and
event-event pairs at the same time. The other main
difference is that event filtering is performed both
during training and testing, so the data distribution
is similar, i.e. the training data that the classifier
learns from and the testing data that the classifier
predicts on have similar distribution.

TABLE IV

θ Structure P R F1

0.05 Event 0.707 0.614 0.654
Entity 0.704 0.159 0.258

E-E Realtion 0.567 0.062 0.109
0.10 Event 0.699 0.628 0.659

Entity 0.654 0.201 0.306
E-E Realtion 0.514 0.097 0.160

0.15 Event 0.678 0.659 0.666
Entity 0.631 0.233 0.339

E-E Realtion 0.455 0.137 0.206
0.20 Event 0.659 0.702 0.677

Entity 0.523 0.361 0.426
E-E Realtion 0.348 0.192 0.243

0.25 Event 0.650 0.722 0.681
Entity 0.500 0.406 0.446

E-E Realtion 0.335 0.232 0.271
0.30 Event 0.651 0.720 0.680

Entity 0.502 0.416 0.453
E-E Realtion 0.294 0.244 0.263

0.35 Event 0.661 0.691 0.673
Entity 0.504 0.401 0.445

E-E Realtion 0.300 0.242 0.266
0.40 Event 0.680 0.680 0.678

Entity 0.520 0.402 0.451
E-E Realtion 0.307 0.240 0.267

0.45 Event 0.690 0.646 0.665
Entity 0.521 0.394 0.448

E-E Realtion 0.315 0.231 0.265
0.50 Event 0.716 0.602 0.651

Entity 0.540 0.373 0.439
E-E Realtion 0.333 0.215 0.259

10-fold cross validation results on the training set using joint
inference with filtering controlled by θ

Fig. 1: Event Identification

Fig. 2: Entity Identification

Fig. 3: Relation Classification

The results with different values of θ are shown in
Table IV. From the table, we can see that θ = 0.25
yields the best F1 for event trigger and event-event
relation prediction, 0.681 and 0.271, respectively.
θ = 0.3 yields the best F1 for entity prediction,
0.453. In addition, as θ increases from 0.05 to
approximately 0.25, the precision of event, entity
and relation prediction all decreases, while the recall
increases. As θ further increases from 0.25 to 0.5,
both trends go the opposite directions, i.e. precision
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Fig. 4: Example1

Fig. 5: Example2

increases while recall decreases. The recall value
is generally smaller than the precision value and
dominates the F1 trend. The trends of precision,
recall and F1 vs θ. are depicted in Figure 1, Figure2
and Figure3.

V. ANALYSIS

A. Error Analysis
In addition to observing the resulting precision,

recall and F1, we look at the bio processes and
compare the annotation with our prediction in order
to gain insight on what mistakes we frequently make
and come up with ideas to fix them. We discuss
about two examples below.

1) Example 1: For this process, our system cor-
rectly predicts ’deform’ and ’aggregate’ as events.
However, it falsely predicts ’long rods that deform
the red cells into a sickle shape’, which overlaps
event ’deform’, as an entity for event ’aggregate’.

2) Example 2: For this process, our system ac-
curately predicts all the events. However, for event
’contract’ (which has an entity ’the ring’), no argu-
ment for it is predicted at all.

B. Improvement from Error Analysis Insights
From our observations, we collect a few ideas for

potential improvement. The examples shown in Er-

ror Analysis part lead to two additional constraints
implemented using ILP:

1) Argument and event cannot overlap: Al-
though not always true in any dataset, in this
specific dataset, none of the arguments and the
events overlaps with each other. Thus, we build a
map storing <key, value> pairs as <event trigger
t, all the candidate arguments overlapping t >. If
t is classified as an event, then all the candidate
arguments overlapping it should not be classified as
arguments for any event.

∀i,j,kti,T → ak,j,F ⇐⇒ ti,T ≤ ak,j,F (11)

where ak,j is a candidate argument overlapping ti
2) Event has at least one entity: In this dataset,

we notice almost all the events have at least one
entity. Thus, we make it a hard constraint.

∀i,jti,T →
∑
i,j

ai,j,T ≥ 1⇐⇒ (12)

−ti,T +
∑
i,j

ai,j,T ≥ 0

After incorporating the additional two constraints
into the joint inference, the overall result can be seen
in Table V. To maintain the brevity of the report,
we only show the results using the optimal θ (0.25)
from section IV.C. Comparing with the results using
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TABLE V

P R F1

Event 0.678 0.686 0.679
Entity 0.489 0.430 0.456

E-E Realtion 0.360 0.221 0.272

10-fold cross validation results on the training set using
joint inference with additional constraints learnt from error
analysis

θ = 0.25 in Table IV, the precision of event and
event-event relation goes up from 0.65 to 0.678 and
0.335 to 0.36, respectively, while the recall goes
down from 0.722 to 0.686 and 0.232 to 0.221. In
contrast, the precision of entity goes down from 0.5
to 0.489 while the recall goes up from 0.406 to
0.430. Comparing the overall F1 score, the event F1
decreases a bit from 0.681 to 0.679, while the entity
F1 increases from 0.446 to 0.456 and the relation
F1 from 0.271 to 0.272.

The score change validates learning from error,
but also shows the complexity of structure pre-
diction using joint inference. A small change can
increase the prediction performance in one place
(ex. entity) but harm the other (ex. event). Thus, it
requires much trial and error to improve the system.

VI. CONCLUSION

In this project, we perform trigger identifica-
tion, entity identification and event-event relation
extraction using joint inference. The best F1 scores
achieved for event, entity and event-event relation
on the training set (averaged over 10-fold cross
validation) are 0.681, 0.456 and 0.272, respectively.
The prediction performance for event-event relation
is lower than the others since it is a multi-class
classification problem, which is much harder than
the identification (binary) problem.

In order to compare with the pipeline framework,
we train on the whole training set using θ = 0.25
and predict on the test set. We limit our focus
on event-event relation prediction while comparing.
Using joint inference, we achieve (precision, recall,
F1) of (0.3497, 0.25, 0.2916), which is better than
the pipeline approach result: (P, R, F1) = (0.3514,
0.2281, 0.2766). However, the improvement is not
as much as expected. We will try to exploit the
power of joint inference better by examining deeper
into the structure of bio-processes and come up with

more constraints. Other possible future directions
are discussed in section VII.

VII. FUTURE WORK

Joint inference gives better performance than the
original pipeline approach. However, the improve-
ment is limited. Thus, we decide to incorporate joint
inference into the context of joint learning, which
is already half implemented. Instead of using joint
inference only on the test set with the weights learnt
from the training set, we use joint inference during
training as well and a structure perceptron to up-
date weights according to the prediction from joint
inference. Joint learning has been proved useful in
predicting structures [2], and we hope this approach
can improve the performance effectively.

The ultimate goal for this project is a question
answering (QA) system that can handle biological
questions. Given the annotated bio processes, we
still need questions with answers from these pro-
cesses in order to build the QA system. Currently,
two bio-major Stanford undergraduate students are
generating questions for us. Once our structure pre-
diction system achieves an acceptable performance,
we will start building the QA system.
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