
CS 224N Project
Building an Emotional Relation Extraction Tool

Desmond C. Ong (dco@stanford) & Wen Hao Lui (whlui@stanford)

Abstract

Unidimensional sentiment or opinion analysis cannot capture
the differences between similarly valenced (positive/negative)
emotions (such as angry and sad), and we argue the need for
more sophisticated emotion analysis tools that go beyond clas-
sification into valenced or basic emotion categories. In particu-
lar, we propose that building a relation extraction tool that can
extract the cause of a given emotion, will provide useful ways
of analyzing causal relationships within a text, or allow gener-
alization to abstract causal theories about emotion. Using free-
text data from the Experience Project, a social networking site,
we present a tool that extracts emotions and their causes from
natural language. Such a tool can be generalized beyond emo-
tion analysis to find uses in extracting abstract causal knowl-
edge from text.

Introduction
In state of the art sentiment analysis, text is analyzed for a
single unidimensional sentiment or opinion score. This uni-
dimensional sentiment, however, cannot capture the nuances
of emotions: for example, two texts that respectively convey
anger and sadness will both have a negative sentiment asso-
ciated with them, while carrying very different connotations.
Thus, we require a tool that allows more sophisticated anal-
ysis of emotional text. One possibility is via looking at the
relations of the emotion with other parts of the text to deter-
mine additional information such as the cause of the emotion,
the entity that is experiencing the emotion, the entity that the
emotion is directed towards (in applicable cases), potential
consequences of the emotion, just to name a few.

This need for more sophisticated relation extraction is
relevant outside of sentiment analysis as well. For exam-
ple, causal relation extraction has important applications for
building question and answer systems [1, 2, 3]. Relation ex-
traction remains an incredibly difficult problem to solve, but
offers many promises such as constructing abstract knowl-
edge representations (such as KM, or causal theories) from
natural language, such as constructing biological mechanism
pathways from introductory biology textbook chapters [4], or
constructing narrative sequences from newspapers [5].

In this work, we propose building a causal relation extrac-
tion tool specifically for extracting the cause of emotions, in
the hopes of adding to a future, more sophisticated “emo-
tion analysis” tool. Although we focus on causal extraction
of emotions, the tool is generalizable to causal extraction in
other domains, which greatly expands the range of applica-
tions of such a tool.

Prior research
In recent years, there has been an exponentially increasing
number of papers in sentiment analysis, most of which use
simple bag-of-words models (e.g. [6]) and a few that have

made extensions by using bigrams [7] and deep learning
over annotated sentiment of parse trees [8]. As mentioned
briefly, these unidimensional sentiment scores do not give in-
sight into the different nuances of similarly valenced emo-
tions (e.g. within negative emotions {anger, sadness, dis-
gust, disappointment, anxiety}, or within positive emotions
{happy, excited, content}).

A next class of research involving emotion analysis in text
has focused on identifying a set of basic emotions in text (for
example, {anger, disgust, fear, happiness, sadness, surprise},
a list populated by [9]). These have mainly focused on train-
ing a classifier (using text that has been annotated into one
of these six categories), and has been used to classify news-
papers [10], blogs [11], and even fairytales [12]. [13] used
the Linguistic Inquiry and Word Count (LIWC) software [14]
to annotate blog posts, and then classified them via semantic
similarity.

Several papers go a step further: [15] presented a genera-
tive model (Emotion to Text) that is used to make backward
inferences (Emotion from Text) – their model only has happy,
unhappy and neutral, though, much like a unidimensional
sentiment or valence score. [16] reported an emotion extrac-
tion system with a parser that accounts for auxiliary verbs,
referent, tense, conditionals, etc, while [17] proposed a fuzzy
semantic typing method to analyze affect, and the system gen-
erates an affect profile based on analyzed words.

Our goal in this paper is not to identify the emotion in text
(although that is a component of our model that can be im-
proved upon using previous research), but, given an already
identified emotion in the text, identify the potential cause of
the emotion. That aspect of our work is more similar to work
in causal relation extraction, such as using annotated causal-
pair examples to extract linguistic features (e.g. semantic fea-
tures, tense, etc) [1, 2, 3, 4].

Model
Statement of research objective
The goal is to build a system that, given a paragraph of text
(consisting of≥ 1 sentence) and an emotion word in the para-
graph, identify the cause of the emotion. Specifically, we built
a classifier that, given an emotion, a paragraph, and possible
candidate phrases from a dependency parse of the paragraph,
chooses the best candidate phrase as a guess of the cause, or
chooses none of the phrases, if none meet a certain threshold.

Corpus
The corpus we used is from the Experience Project (EP),
which is a social networking site where users join groups
based on shared experiences, e.g. “I am a military wife”, or



Figure 1: Example of a sample problem. Given the two parse
trees in this paragraph and the emotion “happy”, we want to
be able to identify the correct reason “published his paper”.

“I am a cancer survivor”, or even “I am lonely”. Users can,
among other things, post stories and comment on others. Ear-
lier work on sentiment analysis on this dataset has been done
by [18] and [19]. The portion of the corpus we used for this
work consists of short paragraphs of free-form text (“confes-
sions”, the website’s name for short posts that do not need
to cohere to a specific topic or experience), from Feb, 2008
through June, 2010, and consists of approximately 140,000
short paragraphs.

Generation of labelled dataset
From the 140k paragraphs, we selected a subset of 6k para-
graphs, and applied simple filters to discard the paragraphs
with no identified emotions and to weed out vulgarities, ob-
scenities, and other potentially offensive material to get a set
of 1,903 paragraphs. Of these, we had workers on Ama-
zon Mechanical Turk label 1,267 paragraphs, while we hand-
labeled the remaining 636 paragraphs.

For each paragraph, an emotion word was identified using a
simple word-matching lexicon, which took into account syn-
onymous words using synsets (or synonym sets1) constructed
using thesauri – e.g. “joyful” and “happy” would fall un-
der the same synset. The most frequently occurring emotion-
synset in the paragraph was chosen. Human labelers were
asked to ”identify the cause of the given emotion” by copying
the cause phrase into a text box, or by indicating if no cause
was found. If a rater decided that there was no cause phrase in
a paragraph, the label would be an empty string. Two raters
provided ratings for each paragraph. If there was disagree-
ment, we took the longest common substring between the two
labels. In addition, we hand-labeled 50% more paragraphs to
build intuition for the dataset, which helped us to create fea-
tures for the classifier.

Next, we used the Stanford Dependency Parser to parse
all the paragraphs. Using the dependency parse trees, we
identified candidate phrases as subtrees that contain more
than 1 word (to avoid terminal nodes/unigrams). The expla-
nations labeled by human raters were tagged to the small-

1We discovered, while making this, that while WordNet has ex-
cellent synsets, it consists mainly of nouns, and has distressingly
little adjectives, and in particular, emotion words.

est subtree that contains the explanation. This subtree was
then marked as a positive example for the explanation of the
emotion in the paragraph. All other subtrees were marked
as negative examples. In some paragraphs, there was no
cause found, and so all the subtrees were marked as nega-
tive. Thus, our final labeled dataset consisted of a set of para-
graphs (≥ 1 sentence, and thus ≥ 1 parse trees), a list of can-
didate phrases for each paragraph (all subtrees with≥ 1 word
within the paragraph), an emotion word within the paragraph.
The (phrase, paragraph,emotion) input tuple is labeled with
a simple 1/0 indicator to indicate if the candidate phrase is a
positive or negative example.

Linguistic Features
Bag of Words Given the dominant emotion in the para-
graph, each candidate phrase we are considering creates its
own feature vector comprised of (word,emotion) indicator
features for each word in the phrase.

Part of Speech Tags . We included indicator features that
coded for whether the candidate was a Noun Phrase (NP),
a Verb Phrase (VP), an Adjective phrase (ADJP), an Ad-
verb Phrase (ADVP), a Quantifier Phrase (QP), or a Prepo-
sitional Phrase (PP). In addition, we had a feature that coded
for whether the candidate started with “wh” (to capture who-
what-when-where-why).

Proximity features . We coded several features that ac-
counted for semantic cues in the proximity. For example, we
added features that indicated if the candidate contained causal
conjunctions like “because”, “so”, “that”,

• candidateLeftSiblingContainsBecause: returns 1 if the
candidate’s left sibling contains “because” at the end, e.g.,
if the candidate phrase is [I fell down], then this returns
true if the sentence contains “...because [I fell down]...”.

• candidateLeftSiblingContainsIAmEmotionThat: returns 1
if the candidate’s left sibling contains “I am (emotion)
that”, for example, “I am sad that [I fell down]”.

Distance features

• candidateIsInSameSentenceAsEmotion: returns 1 if the
candidate is in the same sentence as the emotion, 0 if it
is a different sentence in the same paragraph.

• candidateBeforeEmotion: 1 if the candidate appears before
the emotion in the paragraph, 0 otherwise.

• candidateAfterEmotion: 1 if the candidate appears after
the emotion in the paragraph, 0 otherwise. (The only case
where both candidateBeforeEmotion and candidateAfterE-
motion return 0 is when the emotion is within the candidate
phrase).

• distanceBetweenEmotionAndCandidate in characters,
words, and sentences: 3 distance metrics that code the
absolute distance between the emotion word and the



start/end (whichever is closer) of the candidate phrase, in
units of characters, words and sentences. We scale these
features by dividing by 500, 50 and 5 respectively to keep
the value of the features less than 1.

Learning
We break our learning problem into two steps. We first train a
linear SVM classifier (using LIBLINEAR [20]) using a sim-
ple bag of words model. Each input’s feature vector for this
step is purely based on the bag-of-word indicators described
earlier. The classifier then infers a score on the candidate
phrase and the score is fed as a single feature into the second
step. The sparsity and large cardinality of the (bag of words)
feature set makes a linear kernel well-suited for the learning
in this phase.

We formulate this as an SVM with `1 regularization for the
learned weights w:

min
w

1
2
||w||2 +C∑

i
ξi

s.t. yi(wT
φ(xi))≥ 1−ξi ∀i

ξi ≥ 0 ∀i

Where φ(xi) is the feature vector comprised of bag-of-word
indicators for xi, with a corresponding yi label where +1 is
a positive example and −1 is a negative example. C is an
adjustable hyper-parameter which encodes the trade-off be-
tween error margin and minimizing the weight. C is set to 1
in our experiments. The last factor ξi encodes the slack for
each misclassified example.

In the second step, we train a Radial Basis Function (RBF)
kernel on the linguistic features (including the bag-of-words
score) of the input (phrase, paragraph,emotion) tuple, de-
tailed in the earlier section. In this step, we have 20 linguis-
tic features, which is a much smaller and more manageable
set. This allows us to use the RBF kernel, which runs much
slower than a linear kernel but has an infinite dimensional ker-
nel feature space and is well-suited for exploiting non-linear
relationships between the various features.

This has a similar formulation as an SVM, except where
the inner product wT φ(xi) is replaced by support vectors in
the RBF kernel. We present it in the dual form:

K(x,z) = exp(−γ‖x− z‖2)

max
α

∑
i

αi−
1
2 ∑

i
∑

j
αiα jyiy jK(xi,x j)

s.t. 0≤ αi ≤C ∀i

∑
i

αiyi = 0 ∀i

Of the 1903 labeled examples, we set aside 203 for testing
and trained our model on the remaining 1700 examples. We
chose to include more paragraphs for our training because we
plan to scale up the training set using semi-supervised learn-
ing later, and wanted to reduce the amount of bias present in
the seed training set.

Scoring Metric
We initially used a simple accuracy metric to keep track of
the algorithm’s performance, but some preliminary analysis
revealed that the number of false negative cases was dispro-
portionately higher than false positives, primarily because the
number of positive examples is much less than the number
of negative examples (for each paragraph, there are many
subtrees, but there is only at most one correct cause). This
prompted us to use a BLEU score as a more useful metric
instead. We also included a confusion matrix in our analysis
to provide another perspective for understanding our model’s
performance.

BLEU We use a F1 unigram BLEU scoring mechanism to
take into account both precision and recall. Only unigrams
are considered because higher n-grams are typically used to
measure the fluency of the output, which will always be high
due to our inference method. We are only considering sub-
trees in the parse trees extracted from the paragraph as possi-
ble outputs, and since all subtrees can be converted back to a
original phrase or sentence in the input paragraph, we do not
anticipate problems with fluency. Using our metric, a guess
phrase that perfectly matches the correct label phrase will re-
ceive a BLEU score of 1.

As an example, take the guess phrase “the lottery winner”
against the correct phrase “he won the lottery”. The unigram
precision is p = 0.33 and the unigram recall is r = 0.5, lead-
ing to an F1 unigram BLEU score of 2pr/(p+ r) = 0.4.

Results
We experimented with different formulations of the SVM,
and found that the best-performing configuration was the
classification SVM using a radial basis function kernel. As
seen in Table 1, it significantly outperforms the other clas-
sifiers. The RBF kernel is superior to the linear kernel be-
cause it can map non-linear relations between features, which
is useful in our small feature space (excluding the bag-of-
words). The classification formulation (C-SVC) also per-
forms better than the regression formulation (ε-SVR), primar-
ily because of our formulation of the objective as a binary
classification problem. The data input thus lends itself well
to classification, while regression on it will require large slack
margins that can skew the result.

We tried a few different formulations of the SVM, and
found that the best-performing configuration was the classifi-
cation SVM using a radial basis function kernel. As seen in
Table 1, it significantly outperforms the other classifiers. The
RBF kernel is superior to the linear kernel because it can map
non-linear relations between features, which is useful in our
small feature space (excluding the bag-of-words). The clas-
sification formulation (C-SVC) also performs better than the
regression formulation (ε-SVR), primarily because of our for-
mulation of the objective as a binary classification problem.
The data input thus lends itself well to classification, while
regression on it will require large slack margins that can skew
the result.



Kernel Training Set BLEU Score
Linear S 0.118
Radial Basis Function
(ε-SVR)

S 0.165

Radial Basis Function
(C-SVC)

S 0.342

Radial Basis Function
(C-SVC)

S+U 0.427

Table 1: BLEU results for various training configurations.
“S” (Seed) = 1700 initially labeled training examples, “U”
= 3142 unlabeled training examples (relevant for the semi-
supervised approach)

Predicted Predicted
Positive Negative Total

Actual Positive 121 58 179
Actual Negative 1826 6779 8605

Total 1947 6837 8784

Table 2: Confusion matrix for the SVM model trained only
on the labeled set.

We next look at the confusion matrix in Table 2 and calcu-
late some basic statistics:

Precision = T P/(T P+FP)

= 6.2%
Recall = T P/(T P+FN)

= 67.6%
Speci f icity = T N/(T N +FP)

= 78.8%
Accuracy = (T P+T N)/(T P+T N +FP+FN)

= 78.6%

Where TP = True Positive, FP = False Positive, TN = True
Negative, FN = False Negative.

We see that although we have a reasonable performance in
classifying both true positive and true negative examples, the
precision statistic is remarkably low simply because there are
a lot fewer positive examples than negative examples. Recall
is significantly higher than precision, although they are both
measuring the number of correctly classified positive exam-
ples.

The accuracy statistic is also misleading for our case. If we
have a classifier that labels all of the test data as negative, the
accuracy will be 8605/(8605+179) = 98.0% even though it
is not making any useful predictions. This phenomenon is the
primary motivation for choosing the F1 unigram BLEU as our
metric for performance, since it is not affected by data where
one label greatly outnumbers another. We also compensated
for the relative low numbers of positive examples by making
their weights 50 times that of the negative examples in our

learning step.

Semi-supervised Learning
Besides the 1903 labeled examples, we also applied the
sentiment-present and offensive-content filter on the remain-
der of the 134k paragraphs, which yielded an unlabeled set
size of 46,763.

We performed training on an iteratively larger subset of the
corpus in order to make use of the large amount of unlabeled
data. Given that the initial labeled set of paragraphs is of size
m, we first train and obtain the weights on that labeled set.
We then perform labeling on another disjoint and unlabeled
set of size 0.5m and obtain the labels for them, keeping the
most confident 0.1m predictions based on the score separa-
tion of the correct pair from the second-best pair. We then
perform the optimization of weights again on the combined
1.1m examples, repeating this process until we have trained
on a sufficiently large set or reached convergence. In pseu-
docode:

labeled set← seed set

while unlabeled set is not empty {

– From unlabeled set, pick 0.5×(size of labeled set) exam-
ples and classify

– Pick top 20% with highest score margin, add to labeled
set.

– Return remainder to unlabeled set.

} end while

The main strength of this approach is that it allows us to
make use of the unlabeled set, which is about 100 times larger
than our labeled set. Although we are using our own inferred
labels for further training, which risks magnifying errors and
biases in our original training set, in practice this approach
has proven to work well as long as we can identify a useful
heuristic for the metric we are measuring against (in this case,
the score difference of the top phrase from the second-best
one). Figure 2 shows how adding more unlabeled examples
(paired with their inferred labels) can considerably help with
forming a better decision boundary

Semi-supervised results

Looking at the results in Figure 3, we see a clear upward trend
in both the accuracy and the BLEU score. The gains in accu-
racy are due to the reduction of false positives and false neg-
atives. The BLEU score hits an upper limit of around 0.42,
which is significantly higher than that of the original 0.342.
We believe that good directions for future work would be to
find more discriminative features and start with a larger and
more diverse seed set to help to raise the upper limit on the
semi-supervised approach.



Figure 2: Illustration of a semi-supervised learning approach.
The black and white circles indicate labeled examples, while
the gray circles are unlabeled. Using only labeled examples
for learning may result in a decision boundary that does not
fit the underlying structure of the data. By inferring labels
on unlabeled data to grow the training set, we can find a
better decision boundary. Image sourced from http://en.
wikipedia.org/wiki/Semi-supervised_learning

Predicted Predicted
Positive Negative Total

Actual Positive 103 76 179
Actual Negative 866 7739 8605

Total 969 7815 8784

Table 3: Confusion matrix for the SVM model trained on
1700 labeled and 2302 unlabeled training examples. The
number of false positives is greatly reduced compared to
training only on the labeled set.

Error Analysis
One common error that our tool makes is that the guesses it
makes often contains the emotion itself, e.g. “that your life
makes you happy” when the gold label is “your life”. More
often that not, the candidate phrase that contains the cause
usually does not contain the emotion, and although we have
features that account for that, perhaps there needs to be addi-
tional features that code for dependency structures more. In
this case, the correct answer is actually contained within the
guess, but one level down.

Limitations
Because the main goal of our project was relation extraction
and not emotion identification, we used a very naive sys-
tem to identify the emotions in text, namely, word-matching
against a dictionary of emotion terms. We considered only
unigram emotion words without context, and hence our tool
identified examples like “happy family” and “upset stomach”,
where the emotion word does not convey a state of feeling
a particular emotion, but just an adjective (“happy family”)
which sometimes has a semantically different meaning (“up-
set stomach”). It also identified examples where the emo-
tions were part of phrases or idiomatic expressions, such as
“happy birthday”, “sad to say”, “I’m afraid that”, and “just
as I feared”. This was only a small subset (estimated to be
10%), and they were labeled as “No Cause Found” by human
raters. We can probably greatly improve our system by im-

Figure 3: The learning curve for the semi-supervised ap-
proach we are taking. We see significant gains in both the
BLEU score and the accuracy as the size of the training set
increases with the number of iterations.

proving our emotion identification tool with more contextual
features.

A tricky case that we came up with is the case of condition-
als. For example, the sentence “I am afraid of X”, sometimes
means that “X caused (me to feel) fear” (e.g. “spiders”), but
might also means that the possibility of X happening causes
fear (e.g. “death”). This also made us rethink our definition
of causality and whether a conditional event “causes” an emo-
tion (for the purposes of this paper, we said yes); this should
be an important point to consider in future work on causal
relation extraction.

Conclusion
In conclusion, we have developed a tool that performs well
at identifying the causes of an identified emotion in a multi-
sentence paragraph. We have also shown that, given only la-
bels for a small fraction of the dataset, we are able to boot-
strap our way using a semi-supervised learning algorithm that
improves the prediction of the classifier tool. Future work
would be to include other types of relations, such as identify-
ing the agent who is experiencing the emotion, and in appli-
cable cases, identifying the target of the emotion.

As mentioned, this work has many applications to more
nuanced emotion analysis of text. In addition, the tools de-
veloped here can be generalized to other domains. For exam-
ple, the emotion identification step of our algorithm can be
generalized to event identification, and the causal relation ex-
traction part can be generalized to other relations. The frame-
work of this tool offers many promising applications for more
powerful natural language processing.
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