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Abstract

Until this day, automated speech recognition (ASR) still remains one of the most challenging tasks in
both machine learning and natural language processing. ASR research faces data with high variability,
which requires highly expressive models be built. Recently, deep neural networks (DNN) have been suc-
cessfully applied to various fields, including speech recognition. In this course project, We would like
to investigate what are some possible linguistic features that would contribute to speech recognizers, and
more importantly, how much they contribute to speech recognition, and how well these features generalize
across different data instances.

1 Introduction

Deep neural networks have witnessed a resurgence over the past few years, and speech recognition is
among the many fields where deep learning made great contribution to pushing one step further the state of
the art. Generally speaking, a speech recognizing system consists of two parts, namely the acoustic model
and the language model. The former converts acoustic input into a symbolic representation (syllabus),
while the latter combines these symbols to form words and sentences. Deep neural network have been
shown to work for both task, see, e.g. [2] and [4].
In this course project, I would like to focus on improving the acoustic model of speech recognizers. More
specifically, I would like to investigate how additional linguistic features such as conversation topic, speaker
gender, speaker education level, speaker age, speaker dialectic region, and speaker identity (which is re-
lated to personal habits in speech) would affect the performance of acoustic modeling, to what extent they
contribute, as well as explore other possible ways of improving acoustic modeling with deep learning mod-
els in general.

2 Literature Review

In 2010, GoldWater et al. [1] conducted a thorough research on how various acoustic and linguistic prop-
erties might affect the performance of speech recognizing systems. In that paper, the authors evaluated
the effect of a myriad of properties including speaker gender, position near disfluency, pitch, etc, covering
a large set of linguistic and acoustic features that may affect speech recognition. While in that paper the
authors benchmarked on a novel evaluation criterium called independent word error rate (IWER), in this
course project I would like to stress more on the quality of the senones of the acoustic model, with reasons
stated in Section 3.
While reviewing related literature, we also found that a specific type of neuron activation function, namely
linear rectifiers, are widely applied and achieved state-of-the-art performance in a number of recent publica-
tions. Hence in this project, we’ll adopt a variant of linear rectifiers for our deep neural networks proposed
in [3].
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3 Dataset

In this project, the Switchboard speech recognition corpus1 was chosen as our study dataset mainly because
of two reasons. First, with about 2,400 telephone conversations from 543 speakers, this dataset contains a
large amount of data that are highly diverse, which allows large deep neural networks trained supervisedly
without the concern of heavy overfitting and poor generalization. The size of the corpus also relieves
the burden to build a sophisticated language model. In fact, in this dataset, where the senones predicted
perfectly from acoustic inputs, the HMM and trigram word/language model can achieve an word error
rate (WER) of around 2%, significantly lower than the state-of-the-art performance of speech recognition
systems on this dataset, which is around 20%. This allows us to focus on the acoustic model, and hopefully
reducing the system WER by improving the senone2 (or frame) accuracy.
Another major reason for our choosing Switchboard (SWBD) over other datasets is that SWBD contains a
number of well-documented linguistic features that were collected alongside the speech data, which would
significantly help in verifying the idea of our project. Below we will briefly state the features used in
our project, the rationale behind using them, and some basic statistics across the dataset. Before listing the
linguistic features, it is worth noting that the input acoustic features should have been projected following a
standard procedure to a subspace where speaker-dependent information are removed. However, due to the
(conceptually) high nonlinearity of speech information with regard to its variability, we believe that some
speaker-dependent information still exists in the acoustic features, and by introducing the corresponding
linguistic features we can cancel out these “residuals” with highly nonlinear deep neural networks.

• Speaker Gender. Speakers of different sexes tend to present significant differences in pitch change,
speaking speed (which affects the presense of senones related to repetition/deletion/insertion), as
well as word choice (which affects the probability of presence of different senones).

• Speaker Dialectic Region. Speaker dialect tends to significantly affect the their pronunciation of
phones.

• Speaker Age & Education Level. Both might contribute to word choice and/or pronunciation con-
vention of the speaker.

• Speaker Identity. Apart from the information above, some speaker specific habits or personal marks
of word choice, etc.

• Conversation topic. Apart from its evident effect on word choice, conversation topics might also
affect speech speed, pitch change, etc.

In Fig. 1, we have drawn a number of statistics of the above stated properties across the dataset. From
the figure we can see that most linguistic features have a relatively even distribution, which is a good
property for informative features as none of them will provide virtually “zero” information to the deep
neural network.

4 Baselining

Before introducing linguistic features, we briefly analysed the property of the dataset, and performed base-
line training on several different deep neural networks that we will elaborate below. To balance between
performance and training speed, the networks used in our project share the same basic structure with 1,640
acoustic input units, three linear rectifier hidden layer of 2,048 units, and a classification output layer with
8,986 senone classes. The training set statistics of the senone labels is shown in Fig. 2 (log-scale).

1http://www.isip.piconepress.com/projects/switchboard/
2senones used in this project roughly correspond to tri-phone states of the successive HMM in the language model.
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Figure 1: Linguistic features statistics of the Switchboard dataset
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Figure 2: Senone label statistics of the Switchboard dataset (sorted by frequency)
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Table 1: Baseline model performances

Accuracy/% CENet SVMNet HCENet-2k HCENet-4k RwCENet RwSVMNet

Train∗ 71.20 7.90 38.57 47.58 52.63 52.79
Test(dev) 63.66 8.16 36.09 43.91 48.56 48.73

* The training set accuracies are estimated on-the-fly during training, with α = 0.99α+0.01αminibatch,where α is the overall accuracy
estimation and αminibatch the minibatch accuracy for the last-seen minibatch. The same technique is also applied to experiments in
Section 5 to reduce computation time.

From Fig. 2 it is evident that the senone labels follow a very skewed distribution, for which multiclass
classifier (layers) might struggle to achieve high accuracy. As a start, we trained standard softmax deep
neural networks (DNNs) with cross-entropy cost function (codename: CENet) on about 280 hours of speech
data and tested on a separate 4.7 hours. In the meantime, we considered it a good idea to attempt large-
margin cost function (SVMNet), which conceptually should work better on multiclass classification tasks
than CENet because it is purely discriminative rather than generative. Then, to account for the skewed dis-
tribution of the labels, we also tried to modify CENet with hierarchical classification. Specifically, after sort-
ing the labels in decreasing order by their frequencies, we progressively classfied the top 2,000 (HCENet-2k)
or 4,000 (HCENet-4k) senones against the rest until all labels are classified, and added the cost functions
of these classifiers together to optimize with the DNN. Finally, we also attempted another scheme to ad-
dress the skewness, reweighing cost functions. By reweighing the cost function softmax and large-margin
networks with reciprocals of label frequencies, we obtained two final baseline networks RwCENet and
RwSVMNet. The results of these baseline networks are shown in Table 1 after 5 epochs of training (usually
took 5∼10 days for each model with GNumPy).
Surprisingly, CENet alone is capable of working pretty well, while SVMNet, which theoretically would
have been better, turned out to be a lot worse. However, by looking at the reweighed models, we can see
that RwSVMNet improves significantly based on SVMNet, which probably suggests that SVMNet’s fail-
ure resulted from the imbalancement of training examples within each mini-batch of stochastic gradient
descent, in which case the parameters for rare classes hardly got updated with enough positive examples.
On the other hand, reweighing didn’t seem to help CENet, which is predictable as softmax classifiers are
generative models, which works best if the prior knowledge of the data is correctly exploited. Also sur-
prisingly, hierarchical classification scheme didn’t work on this dataset. This might suggest that the major
challenge of the dataset is the distinguish between some frequent class versus some infrequent ones, rather
than among classes with similar frequency in the training set. These observations lead to potential future
work directions on this dataset described in Section 6.

5 Incorporation of Linguistic Features & Analyses

After baselining, we chose the standard softmax network, amongst others, as the baseline model for further
analysis with liguistic features. To assess the contribution of linguistic features that we introduced, we
started with a basic augmented model, where the linguistic features are appended to the acoustic ones and
fed together into the deep neural network (CENet-A). To further ensure that the linguistic features take
part in the training process of the DNN, we also developed a second network structure where the linguistic
features were fed into each hidden and output layer of the DNN, forcing each layer to accommodate the
raw linguistic feature when trying to minimize the model cost function (CENet-A2). The results from the
models with linguistic feature incorporation are shown in Table 2, where the CENet results are also shown
as a baseline.
To address our question in the problem proposal, we also attempted to train a DNN model that also predicts
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Table 2: Baseline model performances

Accuracy/% CENet CENet-A CENet-A2

Train 71.20 71.85 72.03
Test(dev) 63.66 64.05 64.18

the linguistic feature themselves alongside the senone labels, which resembles an autoencoder in some
ways, with the hope that this kind of structure can help us make sure that linguistic features are taking
part in the representation of the DNN. Technically speaking, such models are called multitask learning
systems (MTNet), which generally should reduce overfitting and improve model generalization ability3.
However, as it turned out, the complicated multi-task cost function significantly affected the performance
of the network, which hasn’t yet been able to improve the results of senone classfication as this report is
written. Though not much substantial improvements were achieved, this part of the project did suggest
one of the future direction of our work.
From Table 2 it can be seen that the extra features did improve the classification accuracy of the senones, but
it would be of interest to more closely examine how the features worked, and how much each individual
type of extra information helped.
The 8,986 senones are mapped back to their 46 different center phones to perform error analysis, and the
confusion matrix of these phones are shown in Fig. 3 top row (left). With this confusion matrix for the base-
line CENet model, we can tell that the DNN is already performing impressively to correctly classify most
of the phones, although some major points do attract our attention. The most significant anomaly is that a
major number of classification errors happened when spoken noise (spn), non-spoken noise (nsn), as well
as in-word pause (lau) were misclassified as silence (sil). Some other observations include misclassfications
en as n, confusion among k, g, p, and d, between eh and ae, between z and s, as well as other common
mispronunciations and mishearings. After the incorporation of linguistic features, the major results (confu-
sion matrix) are similar, thus we choose to analyze the change of the confusion matrix. As it turned out, one
of the improvements is that ah’s are significantly less recognized as ae. Other improvements include better
differentiations between s and z, among eh, aw, ay, and ae, and among tailing consonants (t, d, n, m, etc).
While intuitively the confusion of vowels might be majorly related to dialectic regions, the pronunciation
habit of tailing consonants might trace back to the speaker’s age or educational level.
Next, we analyzed the feature effectiveness of the CENet-A model by plotting the average squared second
norm of each class of linguistic features that were fed into the network. With the average value of all
first-layer features plotted in dashed line and its one-standard-deviation range plotted in dotted line, it can
be shown that age, dialectic region, and educational level are the most contributive linguistic features in
this network, which underpins our reasoning in the analyses of confusion matrices. Identity and topical
information helped less in this task, which might result from their sparsity accross the dataset compared to
the top three. To our suprise, gender information seems very unhelpful in this task, which suggests that the
acoustic features that we use have successfully removed gender-related information in the transform, or
that gender-related variabilities in the input is less of a problem given the representational power of deep
neural networks.

3In fact, this experiment roots more deeply in a sense of machine learning, under the assumption that the local optima the softmax
network alone achieves is possibly not as good as that for the multitasking network, or the dynamics of the latter could lead to a better
local optima faster for the classification task with the help of extra information. This might not generally true for most models, but
for highly non-linear models such as DNNs where gradient descent based methods are applied, it seems reasonable to assume the
existence of better local optima unreachable with simple optimization algorithms.
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Figure 3: Analyses of the effect of introduced linguistic features

6 Conclusion & Future Work

In this course project, we examined the effectiveness of various deep learning models with controlled ex-
periments, and applied linguistic features to the softmax network, improving its performance in acoustic
modeling, a crucial part and performance bottleneck of state-of-the-art speech recognition systems. We’ve
demonstrated that with the incorporation of linguistic information when available, the performance of
acoustic models can be improved, and analyzed the importance of each of the features.
One of the next steps of this project should intuitively be applying the linguistic feature-augmented deep
neural networks to the full model of speech recognition, and examine whether word error rate could be
lowered as a result.
Another potential future direction comes from our experience and observations during the project. While
undertaking experiments for the project, the major bottlenecks for us were the efficiency for learning the
deep neural networks, for which stochastic gradient descent is applied in line with the field of active re-
search. However, our discoveries with large-margin cost functions as well as multi-task networks might
suggest that we should research for more efficient and effective learning algorithms for deep learning mod-
els with a large number of parameters on such huge amount of data.
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