
CS224N Final Project
cRhyme: A Computer Engine for Generating Rhyming Sentences

Gil Shotan
Stanford University

gilsho@cs.stanford.edu

Rafael Ferrer
Stanford University

rmferrer@cs.stanford.edu

Abstract

We introduce cRhyme, a computer system that trans-
forms pairs of sentences to make them rhyme. cRhyme takes
in a pair of sentences and performs a series of syntactic
transformations to one or both sentences in order to make
them rhyme without altering the meaning of either. This
makes cRhyme the to-go tool for amateur poets and song-
writers who know what to say but have trouble expressing it
in a poetic form.

1. Introduction
As any amateur poet can attest, generating a pair of

rhyming sentences that convey a given meaning is an ardu-
ous task. Several services exist on the web that assist such
an amateur poet in finding synonyms to words and rhyming
words. However, there is no existing service that tries to
tackle the full problem of paraphrasing sentences to make
them rhyme end-to-end. In this paper we present the prob-
lem of taking pairs of sentences and syntactically transform-
ing them to make them rhyme without altering their mean-
ing. For example, we would like to transform the following
pair of garbled U2 lyrics:

“Twist of destiny and sleight of hand,
On a bed of nails she looks me wait”

Into a pair of sentences the rhyme, such as the original form:

“Sleight of hand and twist of fate
On a bed of nails she looks me wait”

The task at hand involves several different sub-tasks,
each daunting in its very own right. First we need to be able
to accurately determine if two words rhyme or not. Then, if
we cant find examples of words that rhyme we must para-
phrase the sentence in order to generate alternate represen-
tations of the sentence that preserve its original meaning.
Lastly, we need a means of ranking different candidates to
ensure we can produce quality results. The interesting and

fun part about the problem is that it gives us a lot of flexibil-
ity in producing results. As poetry is typically presented in
forms rarely used in day to day speech, and often stretches
the limits of the language to gain expressive power, people
have come to expect poetry that lacks a well defined syn-
tactic structure. Therefore we have a greater degree of syn-
tactic freedom in producing our substitute sentences. More-
over, since poets often use analogies in their poems that are
not straightforward for the readers to understand, we also
have a lot of wiggle room in terms of the content of the
structure that we produce. As long as our candidate sen-
tences can bare some resemblance to the original sentence,
a client of our system can attribute the difference to artistic
freedom and claim that a complex analogy is taking place
in her lyrics.

2. Related Work

Quite of bit of work has been done on the topic of word
pronunciation, culminating in the widely used Carnegie
Mellon Pronunciation Dictionary[7]. Several developers
have used this resource as a foundation to develop rhyming
engines, taking as input a word and generating words that
rhyme with the aforementioned word. We found these
engines satisfactory for our application, and in particular
our application uses the Rhyming Dictionary 0.9 by Brian
Langenberger[4]. Similarly, much work has been done on
finding synonyms of a given word, most notably the Word-
Net project[5]. We utilize the the WordNet project in our
application through a Java plugin written by Brett Spell,
of the Computer Science and Engineering department at
Southern Methodist University[6]. However, we’ve found
very little work relating to sentence transformation, or para-
phrasing, that would be relevant to our application. While
paraphrasing sentences have many applications[1], includ-
ing questions answering, text polishing in natural language
generation, text simplification in computer aided reading,
text summarization, and sentence similarity computation in
the automatic evaluation of machine translation, none of
the aforementioned applications are particularly concerned



with rearrangement of the words in the sentence, a very
important property for our application. As a result, most
of techniques we surveyed for dealing with the problem of
paraphrasing tend to focus on the constituent level, rarely
venturing to alter the deep syntactic structure of the sen-
tence. We identified 4 techniques used in practice[8]:

1. Rule based approaches -In this approach paraphrasing
is performed by subjecting the target sentence to trans-
formations dictated by a paraphrase rule corpora.

2. Thesauras based methods - In this method candidates
words are identified in the target sentence and replaced
by synonyms.

3. NLG-based methods - This approach involves trans-
forming sentences into a knowledge representation
form, and then using natural language generation tech-
niques to convert the knowledge form back into natural
language form. Underlying this technique is the notion
that one representation maps to many different natural
language forms.

4. SMT-based methods - In this approach, also known
as ”pivoting” the target sentence is converted into one
or more different languages, called the pivot language,
and then translated back into the original language[9].
The guiding principle is that two phrases that translate
into the same phrase in the target language share the
same meaning.

NLG based methods are too complex to implement for the
scope of this project. Our survey of SMT based systems
yielded very poor paraphrasing results on our data set, and
in addition, very infrequently did we observe the type of
syntactic re-arrangement necessary for our applications[2].
This left us with approaches 1 and 2 which we combine
together in our system.

3. Method Overview

Recall that our goal is to take two sentences as input
and perform transformations on them such that the result-
ing sentences rhyme and preserve their original meaning.
In order to achieve this goal we first try to generate as many
candidate sentences as possible, and then narrow the results
down by scoring and ranking the candidate sentences pro-
duced. Our approach can be broken down into 4 steps

Figure 1. Illustration of Methodology

3.1. Generating Synonyms

The very first step in our approach is to populate a list
of synonyms for each word in both sentences to produce
a pool from which to choose rhymes. For each word we
consider as synonyms the list of synset objects related to it
by WordNet, but due to the relax-constrained nature of our
problem we also consider the hypernyms and the hyponyms
of a given word as potential synonyms.

3.2. Finding Rhymes

Following step 1, we search through every pair of words
from different sentences, and for each such pair of word we
search through each pair of synonyms associated with that
word, including the original words themselves. If we find a
pair of words that rhyme then we generate a candidate sen-
tence pair. In order to detect if a pair of words rhyme, we
use the Rhyming Dictionary 0.9 developed by Brian Lan-
genberger, which is built on top of CMUs pronunciation
dictionary[4].

3.3. Generating Candidate Sentence Pairs

Once we find a pair of rhyming words we generate a can-
didate sentence pair by first substituting the original words
with the rhyming synonyms, if necessary, and then proceed
to rearrange the sentence to place the rhyming words at the
end of their respective sentences. In order to do so with
minimal disturbance to the rest of the sentence, we use al-
gorithm 1.

An illustration of the algorithm is given in figure 2. Es-
sentially, the algorithm is trying to push the target word to
the end of the sentence while trying not to disturb the unre-
lated parts of the sentence, thus preserving subtrees that are
syntactically correct in the re-arrangement process. Further-
more, the re-arrangement performed at each step matches
the kind of transformations that people, and especially po-
ets use in practice. For example, the sentence “I went to the
store” would be transformed to the sentence “to the store



Algorithm 1: Sentence Rearrangement Algorithm

Parse the sentence to generate a parse tree T ;
S ← Leaf of T corresponding to the rhyming word ;
while S is not the root of T do

P ← parent of S;
if S is not the rightmost child of P then

Make S the leftmost child of P by switching it
with the current leftmost child of P ;
S ← P

end
end

I went” using the algorithm outlined above. This is a rea-
sonable heuristic that preserves meaning, for the most part,
while allowing for positions of words within the sentence to
be re-arranged.

Figure 2. Illustration of Sentence Re-arrangment Algorithm

3.4. Score Candidates Sentences

In this step we evaluate the sentence pairs produced in
step 3 and try to select the most promising candidates. Our
first and foremost concern is producing syntactically correct
sentences, as the heuristic we use for sentence rearrange-
ment is far from perfect. Therefore we prefer candidate
sentence pairs that required no sentence rearrangement, i.e.
candidate sentences in which the last words, or their syn-
onyms rhymed. If such an option is not available, we prefer
candidates in which only one of the sentences has been re-
arranged. Lastly, we consider candidate pairs in which both
sentences have been rearranged. Within each category we
score each candidate by feeding both sentences through a
trigram language model, taken from an old CS224N assign-
ment source code[3], which we trained over a text corpus
containing Wikipedia text, which is similar in syntax and
vocabulary to the sentences in our test set. After recording
the probability generated by the language model for each
sentence we multiply the probabilities to produce the a cum-
mulative score to both sentences. The language model is
a great tool to eliminate syntactically weird sentences, as

well as for for preferring commonly used words overly less
words that are rarely used in day to day speech. We se-
lected the 5 candidate sentence pairs with the highest score
and present them to the user.

4. Experimental Setup
In order to evaluate our system we have created the fol-

lowing scale from 0-4, which we refer to as the cRhyme
rate to evaluate the generated sentence pair for a given input
sentence pair. A 0 on the cRhyme rate corresponds to the
system not generating any matches, indicating that the syn-
onym and rhyming dictionaries could not produce rhyming
word pairs. A 1 on the cRhyme rate corresponds to candi-
date sentences that are syntactically incorrect. A sentence
that has a score of 2 on the cRhyme rate is a sentence that is
syntactically correct, if only barely so, but the meaning of
the sentence has been altered significantly such that it does
not make any sense. A cRhyme rate score of 3 indicates that
the sentence is syntactically correct and preserves meaning,
but in order to see this one needs to allow for some creative
freedom. Finally, a cRyhme rate score of 4 indicates that
the meaning of the sentence has been perfectly preserved,
in addition to being syntactically correct.

cRhyme Rate Interpretation
0 no candidates found
1 syntactically incorrect
2 syntactically correct, meaning is altered
3 syntactically correct, meaning preserved

allowing for creative interpretation
4 syntactically correct, meaning preserved

Using this scale, we proceeded to obtain training and test-
ing data for our system. In order to create a corpus of data
we employed workers from Amazons Mechanical Turk ser-
vice to input pairs of sentences that rhyme, and then alter
one of the sentences such that the original pairs does not
rhyme any more. Specifically, we asked the workers to para-
phrase one of the sentences in the original pair in such a
way that the precise word that made it rhyme with the other
sentence is not present anymore. This required rearranging
words, paraphrasing, and/or substituting synonyms. This
yielded a set of sentence pairs that do not rhyme, and it is
not trivial to discover a way to make them rhyme. How-
ever, using this setup, we were also guaranteed that a solu-
tion does exist, and is not too far out of reach for the sys-
tem to tackle. We then fed this pair of sentences into our
system and asked Amazon Mechanical Turks to manually
score the output based on the cRhyme rate. We asked three
workers to score every example and we used a majority vote
scheme to decide on a score (or the highest score if no ma-
jority was achieved). We also keep around the original two
sentences, our “gold standard” to compare the output with.



While we would have liked to tweak our system, and try dif-
ferent configurations and different features, due to the time
and cost associated with acquiring labeled results, we de-
cided to tweak the system ourselves and present the finished
product to our judges to score.

5. Results and Analysis
Our results on 211 pairs of sentences in the test set were

as follows:

Score 0 1 2 3 4
Count 29 24 26 77 55

Hence our average score on the test set was 2.52. In order
to analyze this results we look at some of the sentences in
the test set and how our system performed on them:

Input
the darkness comes with every night
one sleep more we’ll lose that battle

Output
the darkness comes with every night
one sleep more we’ll lose that fight

Judge Scores: 4, 4, 4. Final Score: 4.
As we can see our system does well when all it needs to
do is perform a synonym substitution transformation with
no reordering. In the next two examples we see that our
system does well with reordering and synonym substitution
in some cases:

Input
rain rain go away

come again another time
Output

go away rain shower
come again another hour

Judge Scores: 4,4,3. Final Score: textbf4.

Input
well my daddy left home when i was three

he didn’t leave much to me -
and to my remaining parent

Output
well my daddy left home when i was three

he didn’t leave much to my remaining parent -
and to me we’ll lose that fight

Judge Scores: 4, 4, 4. Final Score: 4.
However, due to limitations/incompleteness of our rhyming
and synonym dictionaries we sometimes fail to find a syn-
onym that rhymes (when there exists one) as in the follow-
ing case:

Input
i have a pretty little kitten

she always walks around the cookhouse
Output

i have kitten pretty little amp
she always around the cookhouse tramp

Judge Scores: 1, 1, 2. Final Score: 1.

In this case the dictionaries fail to find “kitchen” as a syn-
onym to “cookhouse”, and hence the output became bizarre
and even syntactically incorrect. This was the case for most
of our low score outputs and is the single cause that ad-
versely affects performance the most.

Another addition we made to our system is the use of
hyponyms (a word of more specific meaning than a general
or superordinate term applicable to it) and hypernyms (a
word with a broad meaning that more specific words fall
under). These expand our list of potential substitutions and
hence make it more likely to find a pair of words that rhyme.

Input
orange blossoms they smell so pretty

yet not enough to make me clever
Output

orange blossoms they so pretty snuff
yet not to make me clever enough

Judge Scores: 4, 3, 4. Final Score: 4.

In this example snuff, a hyponym, is replaced for smell.
Since hyponyms have more specific meaning they are more
likely not to alter the meaning of the sentence. Hypernyms,
on the other hand, have broader meaning so they have the
risk of diluting sentence meaning or even syntactic consis-
tency when using them as in the following example.

Input
live the life to its best

make it filled with light
Output

life to its best the motivation
make it filled with illumination

Judge Scores: 2, 2, 3. Final Score: 2.

Finally we can see that the language model does help
in selecting better constructed sentences instead of miscon-
structed ones.



Input
three days ago we walked through mountains high

i want to lay down and expire
Output

top choice:
three days ago we walked through mountains high

want to lay down and expire i

bottom choice:
we walked through mountains high ago three day

i want to expire and down lay

Judge Scores: 4, 4, 3. Final Score: 4.

The disadvantage of a language model is that infrequent
words, although they make great rhymes, get pushed down
quite low. Another disadvantage is that a language model
only cares about whether the sentence formed is a correct
English sentence, but does not care if the meaning was pre-
served or not. Our system currently does not have any pro-
tection against meaning change or corruption and can easily
transform sentences changing their meaning. For example
the sentence “Mary kicked John” can be reordered by our
system to “John kicked Mary” which is a perfectly valid En-
glish sentence yet changes the meaning. Another problem-
atic situation is the case of words with multiple meanings:
we are in trouble if we chose to replace it with a synonym
for another sense of the word. To preserve meaning, we
mainly rely on the fact that at most we make one-word sub-
stitutions on both sentences and reordering, which does not
change much of the sentence content and hence is likely not
to change the meaning. Another limitation of our system
is that it cannot do sophisticated paraphrasing of sentences
in order to expand the set of possible paraphrasings. Our
system only allows one for one word substitutions and re-
orderings, but does not allow many to one or one to many
substitutions. As can be seen in the following example:

Input
i love you more than you will ever know

i could only let you go always
Output

i love you more than you will ever know
i could only let you always go

Judge Scores: 1, 2, 2. Final Score: 2.

The more appropriate paraphrasing of the second sen-
tence would have been “i will never ever let you go” but our
system cannot support this.

6. Conclusion and Future Work
As one can see our system performs fairly well in the

task of transforming pairs of sentences to rhyme. However,

as we saw in the previous section there are some limitations
to our system. First, the biggest factor that affects perfor-
mance negatively is the lack of a better synonym dictionary.
Many of the mistakes made by our system came about be-
cause the synonym dictionary could not find a specific syn-
onym to a word that was beforehand known to rhyme with a
word in the other sentence. By improving the synonym dic-
tionary we could greatly improve the performance of our
system.

A related but less significant problem with our system
is synonym substitution for words with multiple meanings.
Since our system currently cannot infer which of all the
meanings a given word has, it can choose a synonym with a
different meaning and hence makes the sentence pair rhyme
but changes the meaning. This could be addressed by de-
veloping a context sensitive synonym resolution system that
takes into account the context in which a word occurs, infers
the words meaning, and looks up synonyms for that specific
meaning.

Another improvement that can be made to the system in-
volves the capacity to do more complex paraphrasing. Our
system currently only handles one for one word substitu-
tions. By adding more complex paraphrasing techniques
that could do many to one, and many to many word sub-
stitutions we could increase the power of our system since
many more candidates for rhyming are available.

Finally, in order to avoid permuting sentences like Mary
kicks Tom to “Tom kicks Mary” (which are allowed by our
language model but change the meaning), we could write
some rules that prevent switching the subject and object of
a verb.

References
[1] I. Androutsopoulos and P. Malakasiotis. A survey of para-

phrasing and textual entailment methods. J. Artif. Int. Res.,
38(1):135–187, May 2010.

[2] J. Ganitkevitch, B. Van Durme, and C. Callison-Burch. Ppdb:
The paraphrase database. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
pages 758–764, Atlanta, Georgia, June 2013. Association for
Computational Linguistics.

[3] Issao. Stanford language model implementation.
[4] B. Langenberger. The rhyming dictionary 0.9.
[5] G. A. Miller. Wordnet: A lexical database for english. COM-

MUNICATIONS OF THE ACM, 38:39–41, 1995.
[6] B. Spell. Java api for wordnet searching (jaws).
[7] R. L. Weide. Cmu pronouncing dictionary. 1994.
[8] S. Zhao, X. Lan, T. Liu, and S. Li. Application-driven statisti-

cal paraphrase generation. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Processing of
the AFNLP: Volume 2 - Volume 2, ACL ’09, pages 834–842,



Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics.

[9] S. Zhao, H. Wang, T. Liu, and S. Li. Extracting paraphrase
patterns from bilingual parallel corpora. Nat. Lang. Eng.,
15(4):503–526, Oct. 2009.


