Recursive OpenlE e December 2013

Recursive OpenlE

KeEnON WERLING™

Stanford University

keenon@stanford.edu

Abstract

This paper proposes an extension to the OpenlE paradigm, to allow the expression of recursive relations,
and presents a fully implemented extension to the EXEMPLAR system, uncreatively referred to as
Recursive-EXEMPLAR, to extract recursive n-ary relations automatically. A rule-based approach is
shown to achieve very high accuracy. Attempts at the automatic learning of rules from hand-labelled
data proved to be problematic, because I find that my labellings are inconsistent and contradictory, and
automatic labeling methods are too compute intensive for the project timescale. recall.

I. INTRODUCTION

pen Information Extraction (Banko and
OEtZioni, 2008) is an attractive paradigm,

because it frees us from the burden of
manually describing every relation type we
want to extract with large quantities of labelled
training data. At the same time, it is notori-
ously difficult to use as input to higher level
NLP and general reasoning tasks, because cur-
rent state-of-the-art systems ignore many im-
portant limitations on the quality of their ex-
tractions.
Primarily, this is because related extractions
are not linked. For example, "the prime min-
ister proposed that women ascend the throne"
would be extracted traditionally as two seper-
ate relations: proposed(prime minister), as-
cend(women, throne). This repsentation sug-
gests that "women ascend the throne" is already
a fact, and doesn’t give us any information on
what the prime minister proposed, if he pro-
posed anything. We could post-process the
flat relations, after the OpenlE step, and try to
guess that "the prime minister proposed that
women ascend the throne", but this is a fraught
activity, since we’re missing much of the infor-
mation that the OpenlE system used internally
to assign relationships. Much more reliably, we
could instead extract the recursive relation pro-

posed(prime minister, ascend(women, throne))
from within the OpenlE extractor itself. This re-
cursive representation has the benefit that limi-
tations on truth that go beyond the complexity
of basic prepositional relations are easily rep-
resented, and objects that are more complex
than single phrases can still be linked with-
out loss of information. The relative reliability
of a speaker can be factored into the quality
of an extraction if the speaker is known, and
temporal and spatial limitations are still eas-
ily extracted from prepositional attachments at
any point in the recursive relation.

II. ReELATED WORK

OpenlE has seen an explosion of methods in
the last few years, with varying degrees of ac-
curacy and computational cost. The original
OpenlE systems, ReVerb (Fader et al. 2011)
and SONEX (Merhav et al. 2012), putting a
premium on scalability over recall, used only
shallow syntactic information like POS tags for
their extractions. As you would expect, these
systems are very fast because preprocessing
is so light, but their input doesn’t allow them
to distinguish long-range dependencies, and
so accuracy suffers compared to later systems
that use full syntactic parses. The syntactic
parse OpenlE systems, PATTY (Nakashole et

*Many thanks to Gabor Angeli, and the Stanford NLP Lab in general, for data and advice

mailto:keenon@stanford.edu

Recursive OpenlE e December 2013

al., 2012), OLLIE (Mausam et al. 2012), and
TreeKernel (Xu et al., 2013) all use automati-
cally learned dependency parses to attempt to
extract relations. OLLIE and PATTY use tree
regular expressions, and TreeKernel uses an
SVM over sub-trees to classify whether or not
a relation is present between two named en-
tities. Even more computationally expensive
methods use a semantic parse as input, and
can identify from that the n-ary relations in
a sentence, though their accuracy is tied very
tightly to the performance of the underlying
semantic parser.

III. OricINAL EXEMPLAR

A recent paper (Mequita et. al, 2013) did a fair
comparison of several leading methods, and
proposed an elegant and relatively computa-
tionally efficient method for OpenlE with the
highest accuracy of any of the measured sys-
tems, EXEMPLAR. The two major innovations
represented in the design of EXEMPLAR are

1. The ability to extract relation phrases in-
dependently of their arguments, like a
semantic-parse-based system.

2. The return to a rule-based approach as
a solution to a general lack of sufficient
labeled data.

The system presented in this paper builds
directly upon EXEMPLAR’s innovations to
achieve a system for extracting n-ary, recursive
relations with state-of-the-art accuracy.

IV. DeEsigN oF Recursive-EXEMPLAR

The Recursive-EXEMPLAR extraction system
works in a series of deterministic steps, repeat-
edly applied until no new information can be
gained from data. Then post-processing is ap-
plied across the extracted relations, and the
results are returned. The general algorithm is
as follows:
function EXTRACTRELATIONS(S)
P <+ STANFORDPARSER(S)
E < NAMEDENTITIES(P)

R+]
while true do
T < DETECTTRIGGERS(P, E, R)
Ryew + DETECTROLES(P,E, R, T)
Ryew < FILTERRELS(P, Ryerp)
if |Ryew| == 0 then
return PosTPROCESS(R)
else
R <+ MERGE(R, Ryew)
end if
end while
end function

Named entities are detected using the
Stanford NER system. DETECTTRIGGERS(),
DETECTROLES(), FILTERRELS(), and
PosTPrOCESS() will be explained in subse-
quent sections. The major change in the design
of Recursive-EXEMPLAR over EXEMPLAR is
the use of a loop to detect new relations given
old relations, instead of a single pass to de-
tect stand-alone relations all at once, and a
final PosTPROCESS() step to use parse data to
make relations as easy to use as possible for
other applications. The necessity for the loop
design will become clear in the discussion of
DETECTROLES().

V. DETECTING TRIGGERS

The brilliant leap in the design of EXEMPLAR
was to detect "triggers", defined to be words
that indicate the presence of a relation, seper-
ately from their arguments. EXEMPLAR iden-
tifies 3 kinds of triggers, Verb, Copula+Noun,
and Verb+Noun. Recursive-EXEMPLAR adds
the recursive trigger, Conjunction. Their rela-
tive frequencies, automatically collected from
3247 random sentences from Wikipedia, and
55173 sentences from NYT are as follows:

Table 1: Wikipedia Trigger Frequencies

Trigger Type Freq. Avg./Sentence
Verb 53.8% 1.32
Verb+noun 30.2% 0.74
Copula+noun 11.0% 0.27
Conjunction 5.0% 0.12

Recursive OpenlE e December 2013

Table 2: NYT Trigger Frequencies

Trigger Type Freq. Avg./Sentence
Verb 53.2% 1.37
Verb+noun 32.3% 0.83
Copula+noun 12.9% 0.32
Conjunction 5.0% 0.13

Triggers are identified deterministically us-
ing rules on dependency parses. The striking
similarity of the numbers between NYT and
Wikipedia was suprising to me, and suggests
that there is some underly distribution over
the way English speakers communicate.

Verb Triggers: Any verb that does not have
a noun as it’s direct object is classified a verb
trigger. Any noun that is the nominalized form
of a verb is also classified as a verb trigger.
Wordnet’s Morphosemantic Database is used
to find nominalized verbs, by checking if the
classification of a noun is "event". Nominalized
verbs are recorded as the original verb form
relation. This can lead to spurious triggers, but
those are filtered out during FILTERRELS().

Verb+Noun Triggers: In the original EXEM-
PLAR, any verb with a direct object is classified
as a trigger containing two tokens, the verb,
and the direct object. Either token can be the
end of a trigger for a dependency rule de-
scribed in the DETECTROLES(), and the surface
form of the relation is the concatenation of the
lemmas of the verb and the direct object. To
use one of the EXEMPLAR authors” examples,
"NFL approves Falcons’” new stadium in At-
lanta" would extract the Verb+Noun trigger
"approve new stadium". This entire chunk
became the root of the relation. This is less
useful for systems using the output relations,
so instead Recursive-EXEMPLAR extracts only
the Verb as the Verb+Noun trigger, and labels
its direct object the direct object of the rela-
tion. Practically, the difference is that we get
approve(NFL,new stadium) instead of approve
new stadium(NFL).

Copula+Noun Triggers: Any noun to which a
verb has a copula dependency is labeled a Cop-
ula+Noun trigger, with the surface form being
the verb. Also, any noun with any apposition
dependencies is considered as a Copula+Noun
trigger. For appositions, the surface form used
for the relation is "be". For example, "We, the
people" is translated as be(We, the people).

Conjunction Triggers: This is an addition
to the original EXEMPLAR set. Any prepo-
sition or subordinating conjunction with a
"mark" dependency to any word is considered
a Conjunction trigger. This is useful for catch-
ing the information conveyed by "that", which
is traditionally ignored by OpenlE systems.
To use the example in the introduction, "the
prime minister proposed that women ascend
the throne", "that" would be a Conjunction
trigger.

VI. DETECTING ROLES

Once a list of triggers is collected, the next
step assigns arguments to the triggers, which
become preliminary n-ary relations. Each ar-
gument is given a weight of preference, and
at this stage no effort is made to prevent an
n-ary relation from having multiple subjects
and multiple direct objects. The process is
entirely rule-based. Rules take the form of
simple dependency patterns from a trigger,
with restrictions about what trigger type is
applicable (Verb, Verb+Noun, etc), and what
trigger POS is applicable.

Recursive-EXEMPLAR adds one more feature
to rules. Rules may be marked "recursive"
or "non-recursive". A rule marked recursive
is only applicable to words that are already
within an argument or trigger for an n-ary
relation extracted in a previous round, and
then the entire n-ary relation is taken as the ar-
gument. Rules marked non-recursive can only
be applied to words that are not yet contained
in any argument or trigger. In order to faccili-
tate recursive rules, which tend to have longer
dependency paths, Recursive-EXEMPLAR al-

Recursive OpenlE e December 2013

lows dependency path rules of arbitrary length,
where EXEMPLAR considered only paths of
length 1.

Below I reproduce the Recursive-EXEMPLAR
rules, which are largely taken from the original
EXEMPLAR. All bold rules are my additions.
A dependency rule is written as seriese of "<"
(indicating a parent dependency measured
from the trigger) or ">" (indicating a child
dependency measured from the trigger) fol-
lowed by the type of dependency. For instance,
">dobj" would indicate a rule that applied
to any direct child of a trigger with a "dobj"
dependency. Read the a rule as "if POS, Dep.
Type, and Recursive match, assign Role".

Recursive-Exemplar Rules:

Table 3: Verb Trigger Rules

POS | Dep. Type | Role | Recursive
Verb | >nsubj subj false
Verb | >agent subj false
Verb | <partmod subj false
Verb | <rcmod subj false
Verb | >dobj dobj false
Verb | >subjpass dobj false
Verb | >iobj to_obj false
Verb | >prep_* prep_obj false
Noun | >prep_by subj false
Noun | >amod subj false
Noun | >nn subj false
Noun | >poss subj false
Noun | >prep_of dobj false
Noun | >prep_* prep_obj false
Verb | <xcomp subj true
Verb | >xcomp dobj true
Verb | <ccomp subj true

Table 4: Conjunction Rules

POS ‘ Dep. Type ‘ Role ‘ Recursive

IN <mark<*
IN <mark

subj true
dobj true

Table 5: Copula+Noun Trigger Rules

POS | Dep. Type | Role | Recursive

Noun | >nsubj subj false
Noun | >appos subj false
Noun | <appos subj false
Noun | <partmod subj false
Noun | <rcmod subj false
Noun | >prep_of of_obj false
Noun | >amod of_obj false
Noun | >nn of_obj false
Noun | >poss of_obj false
Noun | >prep_* prep_obj false

Table 6: Verb+Noun Trigger Rules

POS ‘ Dep. Type ‘ Role ‘ Recursive
Verb | >nsubj subj false
Verb | >agent subj false
Verb | <partmod subj false
Verb | <rcmod subj false
Verb | >iobj to_obj false
Verb | >prep_* prep_obj false
Noun | >amod of_obj false
Noun | >nn of_obj false
Noun | >poss of_obj false
Noun | >prep_* prep_obj false
Verb | <xcomp subj true
Verb | >xcomp dobj true
Verb | <ccomp subj true

The rules are given a descending (arbitrary)
score at startup, so that rules higher up on the
table trump rules lower down on the table dur-
ing the filter step. The role detection algorithm
is as follows:

function DeTECTROLES(PR,T)
P < STANFORDPARSER(S)
E < NAMEDENTITIES(P)
Ryew < []
for t € T.triggers do
r <— NRELFROMTRIGGER(¢)
for rule € RULES do
for W € P.words do
if Conrorms(rule, t, W, R)
then

Recursive OpenlE e December 2013

ADDARGUMENT(r, rule, W, R)
end if
end for

end for

INSERT (Ryjer, 7)
end for
return R,

end function

The set of rules extracted last round is passed
into CoNFORMS() along with the trigger, word,
and rule, so that the recursive restriction can
be checked. Likewise, the last round’s rules
are passed into ADDARGUMENT(), so that if the
rule is recursive, the argument can be made
recursive as well.

VII. FrrTerRING RULES

In the filtering step, for each n-ary relation, if
it has multiple subject arguments or multiple
direct object arguments, I remove all but the
one generated by the rule the highest on the
list. I allow as many other kinds of relations
as were extracted, though I filter for duplicates.
Any n-ary relation that doesn’t have a subject is
thrown it out, except if the trigger has any child
dependencies of the type "nsubjpass"”, and then
we guess that the action is expressed in pas-
sive voice, and so we use the psuedo-argument
"PASSIVE", and keep the n-ary relation.

VIII. PoOST-PROCESSING

For the convenience of users of the output of
Recursive-EXEMPLAR, a few post-processing
steps are done once the algorithm has returned.

1. An attempt is made to collapse "that" re-
lations. If the subject of the "that" relation
has no direct object, then the direct ob-
ject of the "that" relation is made in the
direct object of the subject of the "that",
and the original "that" is deleted from the
output. To clarify that horrible sentence,
using our running example, "the prime
minister proposed that women ascend
the throne" extracts that(proposed(Prime
Minister),ascend(women,throne)), which

is reduced to proposed(Prime Minis-
ert,ascend(women,throne)).

2. Coreference is applied to all arguments
that contain pronouns, because extrac-
tions containing "he" and "she" are totally
useless for some higher level applications.
Coreference is not applied in general, be-
cause it tends to reduce the accuracy of
the extractions, since any coreference sys-
tem is imperfect. I'd rather leave the ap-
plication of precision reducing tools as a
choice for users when there’s any ambi-

guity in it.
IX. REesuLrTs

Results are measured against Wikipedia arti-
cles and NYT seperately. For each corpus I
hand labeled 100 flat extractions, and 100 re-
cursive extractions as correct or incorrect. I
measured these two groups seperately because
I am primarily interested in the recursive ex-
tractions, and since they are far less frequent,
measuring together would mean that I would
have a label many more flat extractions in or-
der to get a reasonable sample of recursive
extractions. The relative frequency of recursive
extractions, as a percentage of total extractions,
is noted in the first numeric column.

Table 7: Hand Labeled Precision Scores

Corpus Rec. Freq. Flat Prec. Rec. Prec.
Wikipedia 10.9% 71.3% 74.1%
NYT 12.7% 73.1% 81.2%

These numbers are limited to precision only
(no recall values) because I was unable to label
consistent n-ary extractions from a body of
sentences in the time provided for this project.
See Discussion for more detail. I can make
a reasonable lower bound on recall, however,
since the original EXEMPLAR paper measured
recall at 30%, and I can only have increased
recall with additional rules (while potentially
lowering precision) I can lower bound my re-
call at 30%. Having measured precision on

Recursive OpenlE e December 2013

both NYT and Wikipedia, I can also claim
that my recursive extraction rules are highly
precise. The density of high-confidence infor-
mation conveyed by recursive n-ary relations
offsets somewhat their relative scarcity, but
higher recall is none the less an area of further
research.

Below are some examples of the recursive
extractions produced by Recursive-EXEMPLAR
on the test set during the labeling run to gener-
ate the precision numbers you see above:

1. Attorneys for the plaintiffs contended
that Exxon bore responsibility for the ac-
cident because the company "put a drunk
in charge of a tanker in Prince William
Sound."

because(
bore(Exxon, responsibility),
put(company, drunk)
[IN_OBJECT charge]

)
contended(

Attorneys,

bore(Exxon, responsibility)
)

2. The EDSAC’s memory consisted of 1024
locations, though only 512 locations were
initially implemented.

though(
consisted(EDSAC memory)
[OF_OBJECT 1024 locations],
implemented(PASSIVE,
only 512 locations)
)

3. Popular opinion holds that longer scale
length contributes to greater amplitude.

holds(
Popular opinion,
contributes(longer scale length)
[TO_OBJECT greater
amplitude]

4. The economy of the city of Cordova,
Alaska was adversely affected after the
spill damaged stocks of salmon and her-
ring in the area.

after(
affected(PASSIVE, economy),
damaged(spill, stocks)
[IN_OBJECT area]

X. ERROR ANALYSIS

Slightly over 40% of errors observed in both
the Wikipedia and NYT tests came from mis-
parsed sections of sentences. Sublocation,
Location attachments accidentally treated as
apposition was very common, extracting "Lon-
don, England" as be(London,England). This
could be corrected for by attaching a knowl-
edge base to the extractor to look for impos-
sible facts, and remove them. Since it’s such
a common parsing error in Wikipedia, where
locations are often referenced in the "Small,
Large" pattern, a simple location-be-location
filter could go a long way for precision, and
wouldn’t hurt recall very much.

Recursive-EXEMPLAR is designed to attach
arguments to trigger words. It does not have a
step for attaching other words to triggers. This
is the cause of may errors in the presence of a
correct parse. For example, "in" was extracted
where "in order to", "in case" would have been
appropriate. "as" was extracted where "as long
as" would have been appropriate. These id-
ioms are hard to detect automatically, but are a
major cause of confusion, and it’s an issue that
deserves further study.

Working through the errors for Recursive-
EXEMPLAR’s non-recursive extractions, I
found "to" consistently blocked traditional EX-
EMPLAR linkings. For example, "I came to win
it" would parse as came(I) and win(PASSIVE,it).
It would make more sense to parse as
came(I)[TO_OBJECT win(PASSIVE,it)], and
post-process to came(I)[TO_OBJECT win(Lit)]

Recursive OpenlE e December 2013

but currently Recursive-EXEMPLAR doesn’t
support recursive linking of prepositions or
post-processing passive recursive prepositions.
This is an easy fix, and it’s a shame I noticed
it so late in the process. This is definately a
low-hanging fruit for future research.

XI. Di1rricurTties WITH LABELED
Data

I labeled 100 sentences at the beginning of the
project by hand, taking me the suprising length
of 5 hours, and discovered almost immediately
that none of my labels were consistent, and
many of my extractions, though they looked
fine to a human, were completely useless to the
machine. An initial baseline system I imple-
mented using the OLLIE model on my hand-
labeled data could not achieve above 40% pre-
cision, which means that the largest cluster of
interally consistent data I labeled, in terms of
dependency parse rules, was 40%. I made a
significant effort in the last two weeks of the
project to build a system to automatically gen-
erate labeled data, as is briefly described in
the EXEMPLAR papet, using a dismabiguation
system (Cucerzan, 2007) and Freebase to find
words in a sentence with two mapped entities
that are Wordnet synonyms for a relation we
know exists in Freebase between the entities.
Freebase, which now clocks in at 280 gigs of
text, comes in a messy proprietary format, and
so I've had to apply several cleaning and fil-
tering steps, each one taking several days to
compute, and as I submit this, my computer
is on its second day of building indexes for a
Apache Jena database. A major point of inter-
est, and further research, is what I could do
with automatically labeled datasets.

XII. FURTHER RESEARCH

This paper demonstrates an expansion of the
OpenlE paradigm to allow more expressive
first order logic expressions, and shows that it
is possible with a simple rule-based approach
to achieve suprisingly sophisticated and high
precision extractions. I can see two clear areas

that would be worth further exploration with
relation to Recursive-EXEMPLAR:

The first is an idiom expansion system for the
trigger words. Not properly expanding idioms,
and failing to include negations and modifiers
severely hurts the precision of the system.

The second is, if a reliable method of automati-
cally generating training examples is available,
an automated approach to learning and prun-
ing rules based on large training sets. A large
data set may also prove useful for idioms as
well, although I can think of no automated
approach that would get idioms right.

XIII. THANKS

Many thanks to Gabor Angeli in the Stanford
Al lab for providing data, advice, and encour-
agement throughout the process of developing
Recursive-EXEMPLAR.

REFERENCES

[Dan Klein and Chistopher D. Manning, 2003]
Accurate unlexicalized parsing. Proceed-
ings of the 41st Annual Meeting on
Association for Computational Linguistics
- Volume 1, ACL03, pages 423-430,
Stroudsburg, PA, USA. Association for
Computational Linguistics.

[Silviu Cucerzan, 2007] Large-scale named en-
tity disambiguation based on wikipedia
data. Proceedings of Coreference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning,
EMNLP-CoNLL'12, pages 708-716.

[Anthony Fader et al., 2011] Identifying Rela-
tions for Open Information Extraction.
Proceedings of Coreference on Empirical
Methods in Natural Language Processing,
EMNLP-CoNLL'12.

[Mausam et al., 2012] Open language learn-
ing for information extraction. Pro-
ceedings of Coreference on Empirical Meth-
ods in Natural Language Processing and

Recursive OpenlE e December 2013

Computaitonal Natural Language Learning, Learning, EMNLP-CoNLL"12, pages 1135-
EMNLP-CoNLL'12. 1145, Stroudsburg, PA, USA. Association

[Yuval Merhav et al., 2012] Extracting infor- for Computational Linguistics.

mation networks from the blogosphere.

TWEB, 6(3):11. [Ying Xu et al., 2013] Open information ex-

traction with tree kernels. Proceedings of

[Ndapandula Nakshole et al., 2012] Patty: a the 2013 Conference of the North American
taxonomy of relational patterns with se- Chapter of the Association for Computational
mantic types. Proceedings of Coreference on Linguistics: Human Language Technologies,
Empirical Methods in Natural Language Pro- pages 868-877, Atlanta, Georgia, June. As-
cessing and Computaitonal Natural Language sociation for Computational Linguistics.

	Introduction
	Related Work
	Original EXEMPLAR
	Design of Recursive-EXEMPLAR
	Detecting Triggers
	Detecting Roles
	Filtering Rules
	Post-processing
	Results
	Error Analysis
	Difficulties With Labeled Data
	Further Research
	Thanks

