
Picking Out Good Dishes from Yelp

Angela Gong
Dept. of Computer Science

agong@stanford.edu

Jennifer Lu
Dept. of Computer Science

jenylu@stanford.edu

ABSTRACT

Sifting through restaurant reviews on Yelp to find good

dishes can be quite difficult, especially when reviewers

use colloquial terms for the dishes instead of actual menu

names. However, this can be done programmatically. In

this paper, we introduce several methods to accurately

match food items mentioned in reviews with the official

menu item name. These include string-matching algo-

rithms such as ExactMatch and PartialMatch, as well as

a support vector machine matcher, SVMMatch. We achieve

an F1 score of 0.72 with the SVM and a recall of 0.84 with

PartialMatch by comparing our matches with annotated

results. We also use annotations for sentiment analysis on

food mentions and find that most dishes are rated posi-

tively by their reviewer. Finally, we do location analyses

which reveals that of the seven cities in the data set, re-

viewers tend to rate Chicago dishes higher.

1 INTRODUCTION

Yelp is generally the go-to site for restaurant recommen-

dations. One can make a decision about a restaurant after

scanning through its reviews, looking at the star rating

(ranging from 1-5, with 5 being the best), noting the price

range on the side bar, and more. But there is a wealth of

information buried within this data that is not immediately

obvious to a person. A user can read a review recommend-

ing a tasty dish, but it is difficult to map this to a particular

menu item offered by the restaurant.

A machine can more easily map foods mentioned in

reviews to actual menu items, allowing people to know

exactly which dishes are popular, tasty, and worth it. This

is not a simple task, because reviews often mention food

items differently than how they are listed on the menu.

For example, a review may rave about the “vegetable and

seafood dish”, while the menu lists a “chef’s seafood de-

light”. Furthermore, colloquial or regional language may

be used (e.g. “chips” instead of “fries”, or “veggie” in-

stead of “vegetable”), making it even more difficult to

make a match. But it is also difficult to identify a food

mention in the first place!

 While an overall restaurant rating is useful, it is also

helpful to have per-item ratings. Using human-annotated

sentiment analysis, this can be quickly aggregated and

presented to a restaurant-goer. Location-based trends in

the data can also discovered. For example, New York re-

viewers may have more expensive tastes and review pric-

ier menu items, whereas reviewers in Boston may like

cheaper restaurants but rate menu items more negatively.

1.1 Goal

Our goal is to create several models to precisely identify

food mentions and match them up with menu items. We

will compare models using the F1 score. This will involve

extracting mentions from reviews and annotating the data

for a gold matching of mentions to menu items. The an-

notation tool will be exportable across different platforms

and results will be crowdsourced.

Then, using sentiment analysis, we will find a “score”

for each menu item mentioned in a review. We then will

do several analyses over the sentiments to find interesting

trends such as the effect of location on menu item senti-

ment and the overall average sentiment for menu items.

1.2 Applications

We foresee several applications of our work, all of which

can greatly improve the user-experience of anyone using

Yelp or other food review sites:

 Recommendations of popular menu items. Based

on the reviews and number of times a menu item is

mentioned, we can figure out the most popular menu

items and present this to the user.

 Favorite menu items. We can identify how enjoya-

ble specific dishes are using the human-annotated

sentiment analysis. This allows us to present a rank-

ing of favorites from a restaurant and have ratings

per-item instead of for just the restaurant.

 Search by menu item. Food mentions within each

review and image are tagged, meaning that a user will

be able to retrieve the reviews, images, and average

sentiment of a specific food item.

 Location-based suggestions. Based on review senti-

ment, we can find averages over different dimensions,

such as the average rating of different categories of

cuisine. For example, we may find that Boston restau-

rant-goers rate Chinese dishes more positively, and

then suggest highly-rated Chinese dishes to someone

looking for food in Boston.

2 RELATED WORK

Some related work has already been done in exploring re-

view data outside of just averaging ratings. We describe

two that are most relevant from which we draw our inspi-

ration.

2.1 Consumer Sentiment in Reviews

[1] explores the point that reviews go beyond ratings. In-

stead, they are narratives that portray reviewers with char-

acteristics or roles such as "victim", “addicted to choco-

late”, or "well-educated". A variety of positive and nega-

tive reviews are examined. The experiment uses Yelp re-

view data gathered in 2006 to 2011 which we also used.

One method used in their analysis is the “log odds ra-

tio informative Dirichlet prior” [2], which looks for fre-

quency of words in a certain category of the reviews com-

pared to others (e.g. reviews with one star versus five stars

or cheap restaurants versus expensive). Another method

involves ordered logistic regression to predict a review’s

rating score (from one to five stars) or the restaurant’s

price (from $ to $$$$). This associates linguistic variables

with ratings or price after controlling factors.

The results of this paper indicate the variety of narra-

tives and framings across different kinds of reviews. One

star reviews are typically trauma narratives conveying the

author as a victim. Positive reviews from cheap restau-

rants portray the author suffering from junk food crav-

ings. Expensive restaurant reviews use sensual and com-

plex words to show the author’s intelligence and credibil-

ity. In general, reviews are positive to positively present

their author. This study provides a new methodology to

use online text (reviews) and gender computation in order

to draw conclusions about the reviewers and the food.

2.2 Product Features and Opinions

In [3], the authors discuss extracting product features and

opinions from reviews. It can be difficult for a reader to

find relevant information in a review due to differences in

what the reviewer and reader value. The authors break

down this issue of review mining into four main points:

identifying product features (size or speed), identifying

opinions regarding product features (“too big”), determin-

ing the polarity of opinions (“so great”, “complete disap-

pointment”), and ranking opinions based on their strength

(“horrible” is stronger than “bad”).

The paper elaborates on three review mining sub-

tasks. They use OPINE, an unsupervised information ex-

traction system that embodies a solution to each of the

subtasks. Given a product and a set of reviews, OPINE

returns a set of product features along with a list of opin-

ions ranked by strength. It achieves high precision using

relaxation labeling, which finds semantic orientation of

words in context.

The second subtask compares OPINE with a review-

mining system created by Hu and Liu in 2004. The results

showed that OPINE is 22% better in precision but 3%

lower in recall for feature extraction. The increase is due

to OPINE’s feature assessment mechanism and Web PMI

statistics. Finally, most other systems determine the po-

larity of sentences and documents using extracted opinion

phrases. OPINE determines its precision and recall based

on “opinion phrase extraction” and “opinion phrase polar-

ity determination” within the context of known product

features and sentences.

OPINE’s use of the Web and relaxation-labeling tech-

nique allows it to identify product features and customer

opinions/polarity with high precision and recall.

3 DATA AND ANNOTATIONS

3.1 Data Set

Our data set is from [1] and includes Yelp reviews from

2006-2011 for restaurants in seven cities: Boston, Chi-

cago, Los Angeles, New York, Philadelphia, San Fran-

cisco, and Washington D.C. The data is in JSON format

and contains details on each restaurant such as location,

category, costs, menu items and their prices, and more.

3.1.1 Data Set Preview

We analyze the raw data to get a better sense of the overall

trends and features. We include trends discussed in [1].

Figure 1: Average length of reviews (left) and words (right)

vs. price of restaurant

[1] notes that the longer reviews are associated with more

expensive restaurants. Pricier restaurants also have re-

views using bigger words. This is possibly due to a corre-

lation of more verbally-intelligent or eloquent people hav-

ing higher-paying professions, which allows them to fre-

quent more expensive restaurants. Another possibility is

that people feel the need to write more about a restaurant

if they pay more for it. We see later whether or not more

expensive dishes are more enjoyable.

0

50

100

150

200

250

$ $$ $$$ $$$$

A
v
er

ag
e

le
n
g
th

Restaurant price

4.24

4.28

4.32

4.36

4.4

4.44

$ $$ $$$ $$$$

Restaurant price

Figure 2: Number of reviews vs. restaurant rating.

From Figure 2, we see that overall restaurant ratings are

mostly positive. This may be due to a linguistic history of

positive bias in vocabulary. Furthermore, reviewers may

only post about a restaurant if they had a good experience;

if the restaurant was mediocre or bad, they would not

bother writing a review. We later see a similar behavior

for per-item sentiment; the average rating of individual

menu items is also positive.

Figure 3: Average rating of restaurants vs. the city.

In Figure 3, we see that the average rating of a restaurant

does not vary much by city. We are curious if this changes

when we look at it on a per-item basis. We explore this

further in Section 6.

3.2 Annotations

3.2.1 Annotation Tool

In order to do sentiment analysis and train and evaluate

our models, we need to annotate the data and separate it

into train, test, and dev sets. From the 600,000+ re-

views from over 5,000 restaurants, we annotated about

3,000 mentions, and set aside 20% each for test and dev.

 To make annotations easier, we created a small anno-

tation program in Python with an interface shown in Fig-

ure 4. At first, we considered using Amazon’s Mechanical

Turk program for mass annotations, but we had doubts

about the accuracy of the workers and decided it required

too many resources. Instead, we crowdsourced it by en-

listing the help of several friends and colleagues who each

annotated a different portion of the data set. Each person

ran one or more batches of 100 mentions.

Text: ≪fried chicken≫
Review: I enjoyed the ≪fried chicken≫ with
buffalo sauce...

0: Not a food item
1: Chef’s favorite chicken dish – spicy!
 Sautéed chicken with spicy sauce
2: Chicken sandwich – with dressing & salad
3: Buffalo fried chicken
4: Chicken drumstick – fried
 Two drumsticks plus coleslaw on the side
5: Chicken bake
 Chicken wrapped in Hawaiian rolls
6: Can’t tell/ambiguous/not listed above

Which most closely matches ≪fried
chicken≫? Enter the number:

Is the sentiment of ≪fried chicken≫ in
this review:
1: Positive
2: Neutral
3: Negative
Enter the number:

Figure 4: Example prompt from our annotator. This in-

cludes the context of the mention, possible menu items, and

their descriptions. After selecting a menu item match, the

annotator is prompted for the review sentiment.

Each run of the tool prompts the annotator to select a

menu item matching the mention, if one exists. If a match

is made, the annotator is instructed to rate the review as a

positive, negative, or neutral description of the menu

item. The results of all the runs are combined to form one

gold annotated set.

3.2.2 Annotator Agreement

Since the annotations are done in batches, errors will oc-

cur. We evaluate the precision and accuracy of our anno-

tators by taking 100 mentions and comparing the matches

done by different annotators.

63% of the annotations were exact matches. In 7% of

the cases, the difference came from disagreement on

whether or not the mention is a menu item. Sentiment

analysis only differed in 3% of the annotations, when one

annotator thought the review was positive while the other

thought it was neutral. The remaining 27% arose when

one annotator thought the mention was too ambiguous

while the other annotator went ahead and did a menu item

match. Since our matching tool treats ambiguous menu

item matches the same as a non-food item, we essentially

have a 90% rate of agreement among annotators.

We also measure the inter-annotator agreement using

Cohen’s kappa measure, κ. Using the same data as before,

we find 𝑝𝑜 = 0.9 and 𝑝𝑒 = 0.40, giving us 𝜅 ≈ 0.83.

0

10000

20000

30000

40000

50000

60000

70000

0 2 4 6

N
u
m

b
er

 o
f

re
v
ie

w
s

Restaraunt rating (stars)

0

1

2

3

4

5

boston chicago dc la nyc philly sf

A
v
er

ag
e

ra
ti

n
g

4 METHOD

4.1 Implementation

4.1.1 Extracting Mentions

Our code is written in Java. We make use of the JSON

library to parse the data files and Stanford’s CoreNLP li-

brary to extract mentions from the reviews. From this, we

create a set of Restaurant objects, each containing a list

of Reviews, MenuItems, and Mentions.

CoreNLP returns all mentions found within reviews,

even non-food items. We filter these so only food men-

tions are left, using named-entity recognition (“Miscella-

neous”, “Organizations”, or “People”, see Section 4.1.2)

and part-of-speech tagging (only noun phrases). Many

flagged mentions are numbers, such as food quantities or

prices, which we safely ignore.

However, lots of food names are not in English and

CoreNLP cannot properly tag them. For example, “Char

Siu Pork Bun” is tagged an organization (when it should

be a food), and “Tom Yum” is tagged as a person (but

actually is a soup). Thus, of the mentions extracted, we

keep ones that could be foods (all types of nouns, persons,

organizations, and things tagged miscellaneous).

4.1.2 Matching Mentions with Menu Items

To test out different ways to match mentions in the Re-

views with MenuItems, we created a Match class to be

easily extended. This class has a single function that takes

in a Mention. The Mention contains all the information

needed to make a match, such as the context it is found in

and the possible menu items that it could match. After

running, it returns a set of possible menu items to match.

public class Match {
 public List<MenuItem> doMatch(Mention m);
}

Figure 5: The class for matching mentions to menu items.

We use a total of five different models for matching, dis-

cussed further in Section 4.2. Our matching framework is

built such that we can easily change the model we want to

use as a command-line argument.

4.1.3 Sentiment

After matching a food mention to a menu item, we use

human input (via the annotation tool) to figure out the sen-

timent and determine if a dish is positively, neutrally, or

negatively reviewed. For each menu item analyzed, we

aggregate over the sentiment from all relevant reviews.

However, since the space of menu items is much larger

than the space of menu items reviewed and annotated, few

aggregations are made.

4.2 Matching Algorithms

We used several algorithms to match mentions with menu

items, described in the following sections.

4.2.1 ExactMatch

This matches a mention to a menu item if the mention

matches the menu item exactly (ignoring case). This is a

very strict model and doesn’t make many matches. We

chose this to capture the rare occurrence in which a re-

viewer references the full name of a menu item.

4.2.2 SubstringMatch

SubstringMatch will only make a match if every single

word in the mention is found in the menu item’s name, in

the same order. This is a looser requirement than Exact-

Match since it does not require matching in both direc-

tions. This accounts for long menu item names, such as

“Grandma Sally’s special cheese lasagna”, matching with

a short mention, “cheese lasagna”. This usually finds

more than one possible menu item to match with a given

mention. We apply disambiguation (see Section 4.3) to

reduce it down to a single menu item match.

4.2.3 PartialMatch

PartialMatch finds menu items that partially match the

mention. A partial match is when more than half of the

words in the mention can be found in the menu item’s

name and description. We added this model after noticing

several mentions consisting of many words, some that are

extraneous and added by the reviewer. For example, the

reviewer might mention “chicken nuggets with barbeque

sauce” since they had their food with extra sauce, whereas

the menu item is just “chicken nuggets”. Furthermore, this

accounts for when words are reordered between the men-

tion and the menu item listing.

4.2.4 FuzzyMatch

We noticed that reviews often had typos in their mentions,

which would otherwise fully or partially match a menu

item. For example, one reviewer talks about “duck friend

rice”, when they actually meant “duck fried rice”. Fuzzy-

Match is less strict about matches by matching a word

from a mention to a word from a menu item if their edit

distance is less than 3. We use the Damerau-Levenshtein

distance, which accounts for insertion, deletion, substitu-

tion, and transposition. According to [4], these account

for nearly 80% of human errors in spelling, which we

want to capture.

4.2.5 SVMMatch

Here we use a support vector machine for learning and

classification in order to solve two problems: if a mention

is a food item or not and if so, the menu item it matches

with. To do this, we utilize Cornell’s svm_light tool [6]

and our annotated results of the Yelp reviews.

For the first problem, we construct a training file from

our train data. This file lists all mentions and marks

whether or not the mention is categorized as a food item,

as well as many bag-of-words features. We create a dic-

tionary of words taken from our annotated mentions’ con-

text sentences to create features corresponding to the pres-

ence of each word in the mention, before the mention, and

after the mention. The svm_light tool then creates a

model, which predicts on the test or dev set of mentions.

We predict a mention is a food item if the predicted value

is greater than 0 (-1 indicating definitely not a food men-

tion, and 1 indicating that it is).

For the second problem of choosing the menu item to

match with a food mention, we look through every possi-

ble menu item and mark if it is a possible match based off

of the annotations. We then use the same bag-of-words

features along with four additional features. These include

the number of words that overlap between the menu item

and food mention, if they are an ExactMatch, if they are

a SubstringMatch, and if they are a FuzzyMatch (see

Sections 4.2.1 - 4.2.4). This allows us to capture the rela-

tionship between a mention and its corresponding menu

item and context. After training the model, we use the pre-

dictions and pick a menu item for a mention with the high-

est predicted value.

4.3 Disambiguation

Often, a matcher finds multiple menu items that match a

food mention. This makes it difficult to choose a single

menu item match and reduces the precision. Thus, we put

the choices through filters, which are tried out in order

until a single menu item option remains.

4.3.1 Number of Possible Menu Items

We notice that mentions that produce many menu item

choices are not food mentions at all (such as mentions that

are just the restaurant’s name). We toss these mentions

and treat them as non-food items. This may miss mentions

that are food items; however, this occurred more often

than not, so we feel it is better to do so.

4.3.2 Number of Matching Words

This counts the number of words that match between the

mention and the menu item, with a match in the item name

having twice the weight as a match in the item description.

While partial matching methods such as PartialMatch

and FuzzyMatch expand the range of potential menu item

matches, this reduces it back down for higher precision.

4.3.3 Price

Menu items are priced in an interesting way – not accord-

ing to the traditional demand curve [5]. That is, pricing is

not rational, and unpopular menu items are not neces-

sarily priced lower to entice customers. Most customers

have little information about the actual value of a dish,

and the only indication is from the price. Thus, an expen-

sive dish is perceived to have higher quality. Someone

just trying out a restaurant would not get the most expen-

sive or cheapest item. Therefore, if there are still multiple

choices for menu items, we take the median priced one.

4.4 Location-Based Aggregation

We aggregate over a particular location to find average

review sentiment, restaurant prices, etc. and reuse most of

our code for data-parsing. We put the results through Ex-

cel to produce charts. Section 6 describes the results.

5 RESULTS

5.1 Testing Methodology

Our experiment involves trying each matcher, examining

the errors that it makes, and the resulting F1 score. We

tune the models on dev. Training is done on the train set.

We do not do anything with test except evaluate our

score at the end.

5.2 Scores

We use precision, recall, and the F1 score to measure the

success of each matcher.

Definition. The precision 𝒫 is measured as the fraction

of mentions identified as food.

Definition. The recall ℛ is measured as the fraction of

food mention to menu item matchings that are correctly

identified compared to the gold (annotated) set.

Definition. The F1 score is computed as follows:

F1 = 2 ⋅
𝒫 × ℛ

𝒫 + ℛ

Table 1 below shows the results of each matcher on test.

Matcher Precision Recall F1

ExactMatch 0.7951 0.2945 0.4298

SubstringMatch 0.5722 0.7283 0.6409

PartialMatch 0.5148 0.8522 0.6419

FuzzyMatch 0.5212 0.8476 0.6455

SVMMatch 0.6659 0.7791 0.7180

Table 1. Precision, recall, and F1 scores for each matcher on

the test data set.

6 EVALUATION AND ERROR ANALYSIS

6.1 Sentiment

In this subsection and in the next we do analysis on the

sentiment of the mentioned menu items as identified dur-

ing annotation.

6.1.1 Overall Average Sentiment

Sentiment is measured on a scale of -1 (negative) to 1

(positive); neutral sentiment has a score of 0. We average

the sentiment of the annotated menu items and find an av-

erage rating of 0.43, meaning that most of the menu items

received positive sentiment. This is on par with [1] which

found that reviews are generally positive, suggesting that

menu items mentioned would also be received positively.

6.1.2 Sentiment Based on Price

We also examine how price affects the sentiment of the

menu item. Figure 6 shows the average rating of mentions

for different price categories.

Figure 6: Average rating of menu items for different prices.

We see that the average rating is the about the same for

all price ranges except for the most expensive (>$50). We

present two possible explanations.

 First, it could be due to psychological behavior. Small

studies have shown that more expensive food seems to

taste better. That is, given the same dish, people will rate

it higher if they paid more for it. This could be the effect

of price on perceived quality [5], or simply because one

feels guilty paying more for something and is forced to

enjoy it.

 Otherwise, this difference may be due to self-selec-

tion bias. That is, one would not spend that much money

on a dish unless they already knew it was good, thus, in-

flating the average rating of the menu item.

6.2 Location-Based Analyses

Next, we do analysis by aggregating sentiment and price

over the city the restaurant is found in.

Figure 7: Average price of menu items across cities.

From Figure 7, we see that the average price of mentioned

menu items varies between city, with Chicago being the

cheapest at $9.25 per item and New York City the most

expensive at $13.70 an item.

Figure 8: Average rating of menu item aggregated over city.

Figure 8 shows that the average rating of menu items in

Chicago is much higher than in other cities, despite its

lower average price. We suspect this is due to confound-

ing factors such as the type of food that is popular in Chi-

cago (pizza and hot dogs), but it’s interesting that we are

able to find a trend based on sentiment analysis alone.

6.3 Errors in the Data

There are several kinds of errors in the data itself that we

could not fix, no matter which model we use.

6.3.1 Ambiguous Menu Listings

Some restaurants have menus that are ambiguous, which

makes it hard find a single match. Items that come in mul-

tiple sizes have separate listings for each size, but nobody

mentions the size in their review. For example, soups

come in “bowl” and “cup” sizes, and pizzas come in

“small”, “medium”, and “large” sizes. Sometimes, the

same menu items were listed twice.

 To get around this, we instructed the annotators to al-

ways pick the first menu item when matching. Our match-

ers do the same. This essentially collapses the ambiguous

listings into one, but does not fix the problem. We can

solve this by pre-processing the menu data to remove the

ambiguity; however, this change would make the menus

we process different than the menus from the restaurant,

which is not ideal.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0-4 5-9 10-14 15-19 20-49 > 50

A
v
er

ag
e

ra
ti

n
g

Menu item price ($)

0

5

10

15

boston chicago dc la nyc philly sf

P
ri

ce
 (

$
)

0

0.2

0.4

0.6

0.8

boston chicago dc la nyc philly sf

A
v
er

ag
e

ra
ti

n
g

6.3.2 Incomplete Yelp Data

A lot of Yelp data is user-contributed and thus the menu

item listing for smaller or less-popular restaurants are

sparse. This causes a lot of trouble during annotation and

matching, since a food item mention cannot be matched

to anything even if it is clearly a menu item. Luckily, this

error does not affect our F1 score, since it would not have

been hand-annotated either.

6.4 Evaluation of Models

6.4.1 ExactMatch

Our ExactMatch model, unsurprisingly, does not do very

well. Because it requires an exact matching of the mention

and the menu item name, it is very cautious when making

a guess. For example, it will not match “Frutti Di Mare”

with “Frutti Di Mare Shrimp” or “Jumbo Lump Crab

Cake” with “Jumbo Lump Crab Cakes”. Most of the er-

rors that occur are due to the menu item having extra

words or letters.

We expected 100% precision but were surprised

when it only achieved a precision of 0.80. Some of this is

due to human error during annotation (discussed in Sec-

tion 3.2.2) but other cases were due to lack of context. For

example, ExactMatch matched “Mongolian Beef” with

an exact match, but the gold match is “Mongolian Beef

Over Rice”. We use CoreNLP to find mentions, but it isn’t

built to find food mentions, so it is unable to expand the

mention to capture more of the context (in our example,

“Over Rice” is a preposition and not part of the mention).

 However, it achieves a recall of 0.29, meaning that

about 30% of the time, when a review mentions a food

item, it matches the menu item name exactly. This means

that the current search functionality on Yelp (which only

does exact string searches) misses about 70% of the re-

sults! If Yelp implemented one of our inexact string

matches (such as those in Section 4.2, like how Google

Search works), a lot more results could be captured with

a small increase in work.

6.4.2 Substring, Partial, and FuzzyMatch

These three matching models were a large improvement

over the ExactMatch, sacrificing precision for a huge in-

crease in recall. This increase occurs because these mod-

els produce a much larger set of possible menu items to

match with (ExactMatch sometimes gives no possible

matches). The F1 score increases slightly between Sub-

string, Partial, and FuzzyMatch as each have a looser

criterion for menu item matching.

SubstringMatch immediately fixes the problem of

cautious matching with ExactMatch mentioned above.

However, it does not account for word reordering, such as

“Teriyaki Chicken” and “Chicken Teriyaki”. Thus, we

implemented PartialMatch to account for this. How-

ever, there aren’t many instances in which this occurs, as

reflected in the minor boost in F1 score between Sub-

string and PartialMatch.

We used an edit distance of 3 for FuzzyMatch, which

we found gave us the best F1 score. Decreasing this value

made the FuzzyMatch operate basically the same as Par-

tialMatch, whereas increasing it exponentially increased

the number of possible menu items the matcher would

choose from. This was so severe in some cases such that

every listing on the menu would be provided as options.

The error that seems to occur most often is when the

matcher finds a menu item match but the human annotator

does not. This happens when the mention is a single word,

such as “Mexican” or “New”. The matchers, which at

most do a substring match, are able to find menu items

that have these in their name. However, they do not take

into account the context of the mention, which usually re-

veal that the mention is not a food item at all. We added a

filter to immediately toss out mentions with a single word

and tried it out with FuzzyMatch. Without this filter, our

FuzzyMatch achieves an F1 score of 0.65, with precision

0.52 and recall 0.85. With this filter, we get an F1 score

of 0.66, precision of 0.66, and recall of 0.66. We chose

not to keep this filter because while the F1 score increases,

the recall decreases. We feel that for a website such as

Yelp, false positives are preferable to false negatives.

6.4.3 SVMMatch

SVMMatch does very well, achieving an F1 score of 0.72.

There was an initial concern of overfitting, as we are us-

ing a bag-of-words approach for an SVM with over 2000

support vectors and a VC dimension of about 1970. How-

ever, this does not seem to be case.

 Unlike the previous string matching models, SVM-

Match matches foods to menu items based on the trained

feature weights. Thus, some obvious mistakes occur such

as “St. Bernardus” being matched to “Filet Mignon” (a

mistake that PartialMatch or SubstringMatch would

not make). Nevertheless, it is cleverer in some sense be-

cause it is able to use the mention’s context as a feature to

help match menu items. Furthermore, we use two SVMs,

one specifically targeting the identification of food items,

which greatly improves the precision (an increase from

about 0.52 to 0.67). For identifying food items, the SVM

achieves an accuracy of 84%.

 We had the most difficulty getting SVMMatch to work.

Because svm_light only allows features with numerical

values, adding mention context increased the number of

features by thousands, since we added three features for

each unique word. The tool also requires many files, each

with a different format. At some point, the runtime ex-

ceeded 90 minutes! However, we were able to reduce the

runtime to less than 2 minutes after optimizations and er-

ror-fixes.

7 CONCLUSION

7.1 Future Work

We had about one month to do the project and our project

was scoped accordingly. However, there are many in-

sights to be drawn from the data set that we were not able

to do. The following are some of the analyses and exper-

iments we would like to conduct in the future.

7.1.1 Additional Features to SVMMatch

Additional features can be added to SVMMatch in order to

improve predictions, such as a mention’s part of speech in

the sentence. We can look for mentions that have similar

POS or POS that trends towards nouns and noun phrases,

as these are probably more likely to be food items. An-

other feature could be created based off of the price of the

menu item or price range of the restaurant.

7.1.2 Reviewer Gender

Another direction that we would like to look further into

is identifying the reviewer’s gender from their review and

seeing how that affects review sentiment. In related work

[1], it was seen that women tended to talk more about des-

sert. Other than that, there is not much research on differ-

ences between gender in reviews. It would also be inter-

esting to see if there are review sentiment differences in

accordance to the reviewer’s gender.

7.1.3 Restaurant Category

A third thing to look further into is how the restaurant cat-

egory affects rating and price. We want to see if certain

types of cuisine tend to be rated higher or lower and if

they have patterns in the pricing.

7.1.4 More Annotations

We had very few annotated mentions during our early

testing. As we progressed and accumulated annotations,

the F1 scores of our models slightly improved, despite not

changing any algorithms. This is due to the small initial

sample size; the addition of data only reduced the vari-

ance. Adding more annotations will only further improve

the data and give us more data for training the SVM.

7.2 Acknowledgements

We would like to thank Vinodkumar Prabhakaran for

mentoring us and providing guidance throughout the pro-

ject. Professor Chris Manning and his teaching staff also

provided support. We would also like to thank our friends

for helping us annotate the gold data set.

8 REFERENCES

[1] D. Jurafsky, V. Chahuneau, B. R. Routledge and N.

A. Smith, "Narrative framing of consumer sentiment

in online restaurant reviews," First Monday, vol. 19,

no. 4, 2014.

[2] B. Monroe, M. Colaresi and K. Quinn, "Fightin'

words: Lexical feature selection and evaluation for

identifying the content of political conflict," Political

Analysis, vol. 16, no. 4, pp. 372-403, 2008.

[3] A.-M. Popescu and O. Etzioni, "Extracting product

features and opinions from reviews," HLT Proceed-

ings of the conference on Human Language Technol-

ogy and Empirical Methods in Natural Language

Processing, pp. 339-346, 2005.

[4] F. J. Damerau, "A Technique for Computer Detec-

tion and Correction of Spelling Errors," Communica-

tions of the ACM, vol. 7, no. 3, pp. 171-176, 1964.

[5] J. Carmin and G. X. Norkus, "Pricing strategies for

menus: Magic or myth?," The Cornel Hotel and Res-

taurant Administration Quarterly, vol. 31, no. 3, pp.

44-50, 1990.

[6] T. Joachims, "SVMlight Support Vector Machine,"

Cornell University, 14 August 2008. [Online]. Avail-

able: http://svmlight.joachims.org/. [Accessed 21

November 2015].

APPENDIX

You can download all the code and data files needed for

this project at the following link: http://anjoola.com/con-

tent/cs224n-food.zip. Windows is required to run SVM-

Match.

http://anjoola.com/content/cs224n-food.zip
http://anjoola.com/content/cs224n-food.zip

