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ABSTRACT 

 

Sifting through restaurant reviews on Yelp to find good 

dishes can be quite difficult, especially when reviewers 

use colloquial terms for the dishes instead of actual menu 

names. However, this can be done programmatically. In 

this paper, we introduce several methods to accurately 

match food items mentioned in reviews with the official 

menu item name. These include string-matching algo-

rithms such as ExactMatch and PartialMatch, as well as 

a support vector machine matcher, SVMMatch. We achieve 

an F1 score of 0.72 with the SVM and a recall of 0.84 with 

PartialMatch by comparing our matches with annotated 

results. We also use annotations for sentiment analysis on 

food mentions and find that most dishes are rated posi-

tively by their reviewer. Finally, we do location analyses 

which reveals that of the seven cities in the data set, re-

viewers tend to rate Chicago dishes higher. 
 

1   INTRODUCTION 

 

Yelp is generally the go-to site for restaurant recommen-

dations. One can make a decision about a restaurant after 

scanning through its reviews, looking at the star rating 

(ranging from 1-5, with 5 being the best), noting the price 

range on the side bar, and more. But there is a wealth of 

information buried within this data that is not immediately 

obvious to a person. A user can read a review recommend-

ing a tasty dish, but it is difficult to map this to a particular 

menu item offered by the restaurant. 

A machine can more easily map foods mentioned in 

reviews to actual menu items, allowing people to know 

exactly which dishes are popular, tasty, and worth it. This 

is not a simple task, because reviews often mention food 

items differently than how they are listed on the menu. 

For example, a review may rave about the “vegetable and 

seafood dish”, while the menu lists a “chef’s seafood de-

light”. Furthermore, colloquial or regional language may 

be used (e.g. “chips” instead of “fries”, or “veggie” in-

stead of “vegetable”), making it even more difficult to 

make a match. But it is also difficult to identify a food 

mention in the first place! 

 While an overall restaurant rating is useful, it is also 

helpful to have per-item ratings. Using human-annotated 

sentiment analysis, this can be quickly aggregated and 

presented to a restaurant-goer. Location-based trends in 

the data can also discovered. For example, New York re-

viewers may have more expensive tastes and review pric-

ier menu items, whereas reviewers in Boston may like 

cheaper restaurants but rate menu items more negatively. 

 

1.1 Goal 

Our goal is to create several models to precisely identify 

food mentions and match them up with menu items. We 

will compare models using the F1 score. This will involve 

extracting mentions from reviews and annotating the data 

for a gold matching of mentions to menu items. The an-

notation tool will be exportable across different platforms 

and results will be crowdsourced. 

Then, using sentiment analysis, we will find a “score” 

for each menu item mentioned in a review. We then will 

do several analyses over the sentiments to find interesting 

trends such as the effect of location on menu item senti-

ment and the overall average sentiment for menu items. 

 

1.2   Applications 

We foresee several applications of our work, all of which 

can greatly improve the user-experience of anyone using 

Yelp or other food review sites: 

 

 Recommendations of popular menu items. Based 

on the reviews and number of times a menu item is 

mentioned, we can figure out the most popular menu 

items and present this to the user. 

 Favorite menu items. We can identify how enjoya-

ble specific dishes are using the human-annotated 

sentiment analysis. This allows us to present a rank-

ing of favorites from a restaurant and have ratings 

per-item instead of for just the restaurant. 

 Search by menu item. Food mentions within each 

review and image are tagged, meaning that a user will 

be able to retrieve the reviews, images, and average 

sentiment of a specific food item. 

 Location-based suggestions. Based on review senti-

ment, we can find averages over different dimensions, 

such as the average rating of different categories of 

cuisine. For example, we may find that Boston restau-

rant-goers rate Chinese dishes more positively, and 

then suggest highly-rated Chinese dishes to someone 

looking for food in Boston.  



2   RELATED WORK 

 

Some related work has already been done in exploring re-

view data outside of just averaging ratings. We describe 

two that are most relevant from which we draw our inspi-

ration. 

 

2.1   Consumer Sentiment in Reviews 

[1] explores the point that reviews go beyond ratings. In-

stead, they are narratives that portray reviewers with char-

acteristics or roles such as "victim", “addicted to choco-

late”, or "well-educated". A variety of positive and nega-

tive reviews are examined. The experiment uses Yelp re-

view data gathered in 2006 to 2011 which we also used. 

One method used in their analysis is the “log odds ra-

tio informative Dirichlet prior” [2], which looks for fre-

quency of words in a certain category of the reviews com-

pared to others (e.g. reviews with one star versus five stars 

or cheap restaurants versus expensive). Another method 

involves ordered logistic regression to predict a review’s 

rating score (from one to five stars) or the restaurant’s 

price (from $ to $$$$). This associates linguistic variables 

with ratings or price after controlling factors.  

The results of this paper indicate the variety of narra-

tives and framings across different kinds of reviews. One 

star reviews are typically trauma narratives conveying the 

author as a victim. Positive reviews from cheap restau-

rants portray the author suffering from junk food crav-

ings. Expensive restaurant reviews use sensual and com-

plex words to show the author’s intelligence and credibil-

ity. In general, reviews are positive to positively present 

their author. This study provides a new methodology to 

use online text (reviews) and gender computation in order 

to draw conclusions about the reviewers and the food. 

 

2.2   Product Features and Opinions 

In [3], the authors discuss extracting product features and 

opinions from reviews. It can be difficult for a reader to 

find relevant information in a review due to differences in 

what the reviewer and reader value. The authors break 

down this issue of review mining into four main points: 

identifying product features (size or speed), identifying 

opinions regarding product features (“too big”), determin-

ing the polarity of opinions (“so great”, “complete disap-

pointment”), and ranking opinions based on their strength 

(“horrible” is stronger than “bad”). 

The paper elaborates on three review mining sub-

tasks. They use OPINE, an unsupervised information ex-

traction system that embodies a solution to each of the 

subtasks. Given a product and a set of reviews, OPINE 

returns a set of product features along with a list of opin-

ions ranked by strength. It achieves high precision using 

relaxation labeling, which finds semantic orientation of 

words in context. 

The second subtask compares OPINE with a review-

mining system created by Hu and Liu in 2004. The results 

showed that OPINE is 22% better in precision but 3% 

lower in recall for feature extraction. The increase is due 

to OPINE’s feature assessment mechanism and Web PMI 

statistics. Finally, most other systems determine the po-

larity of sentences and documents using extracted opinion 

phrases. OPINE determines its precision and recall based 

on “opinion phrase extraction” and “opinion phrase polar-

ity determination” within the context of known product 

features and sentences. 

OPINE’s use of the Web and relaxation-labeling tech-

nique allows it to identify product features and customer 

opinions/polarity with high precision and recall. 

 

3   DATA AND ANNOTATIONS 

 

3.1   Data Set 

Our data set is from [1] and includes Yelp reviews from 

2006-2011 for restaurants in seven cities: Boston, Chi-

cago, Los Angeles, New York, Philadelphia, San Fran-

cisco, and Washington D.C. The data is in JSON format 

and contains details on each restaurant such as location, 

category, costs, menu items and their prices, and more. 

 

3.1.1   Data Set Preview 

We analyze the raw data to get a better sense of the overall 

trends and features. We include trends discussed in [1].  

 

  

Figure 1: Average length of reviews (left) and words (right) 

vs. price of restaurant 

 

[1] notes that the longer reviews are associated with more 

expensive restaurants. Pricier restaurants also have re-

views using bigger words. This is possibly due to a corre-

lation of more verbally-intelligent or eloquent people hav-

ing higher-paying professions, which allows them to fre-

quent more expensive restaurants. Another possibility is 

that people feel the need to write more about a restaurant 

if they pay more for it. We see later whether or not more 

expensive dishes are more enjoyable. 
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Figure 2: Number of reviews vs. restaurant rating. 

 

From Figure 2, we see that overall restaurant ratings are 

mostly positive. This may be due to a linguistic history of 

positive bias in vocabulary. Furthermore, reviewers may 

only post about a restaurant if they had a good experience; 

if the restaurant was mediocre or bad, they would not 

bother writing a review. We later see a similar behavior 

for per-item sentiment; the average rating of individual 

menu items is also positive. 

 

 

Figure 3: Average rating of restaurants vs. the city. 

 

In Figure 3, we see that the average rating of a restaurant 

does not vary much by city. We are curious if this changes 

when we look at it on a per-item basis. We explore this 

further in Section 6. 

 

3.2   Annotations 

3.2.1   Annotation Tool 

In order to do sentiment analysis and train and evaluate 

our models, we need to annotate the data and separate it 

into train, test, and dev sets. From the 600,000+ re-

views from over 5,000 restaurants, we annotated about 

3,000 mentions, and set aside 20% each for test and dev. 

 To make annotations easier, we created a small anno-

tation program in Python with an interface shown in Fig-

ure 4. At first, we considered using Amazon’s Mechanical 

Turk program for mass annotations, but we had doubts 

about the accuracy of the workers and decided it required 

too many resources. Instead, we crowdsourced it by en-

listing the help of several friends and colleagues who each 

annotated a different portion of the data set. Each person 

ran one or more batches of 100 mentions. 

Text: ≪fried chicken≫ 
Review: I enjoyed the ≪fried chicken≫ with 
buffalo sauce... 
 
0: Not a food item 
1: Chef’s favorite chicken dish – spicy! 
   Sautéed chicken with spicy sauce 
2: Chicken sandwich – with dressing & salad 
3: Buffalo fried chicken 
4: Chicken drumstick – fried 
   Two drumsticks plus coleslaw on the side 
5: Chicken bake 
   Chicken wrapped in Hawaiian rolls 
6: Can’t tell/ambiguous/not listed above 
 
Which most closely matches ≪fried 
chicken≫? Enter the number:  
 
Is the sentiment of ≪fried chicken≫ in 
this review: 
1: Positive 
2: Neutral 
3: Negative 
Enter the number: 

Figure 4: Example prompt from our annotator. This in-

cludes the context of the mention, possible menu items, and 

their descriptions. After selecting a menu item match, the 

annotator is prompted for the review sentiment. 

 

Each run of the tool prompts the annotator to select a 

menu item matching the mention, if one exists. If a match 

is made, the annotator is instructed to rate the review as a 

positive, negative, or neutral description of the menu 

item. The results of all the runs are combined to form one 

gold annotated set. 

 

3.2.2   Annotator Agreement 

Since the annotations are done in batches, errors will oc-

cur. We evaluate the precision and accuracy of our anno-

tators by taking 100 mentions and comparing the matches 

done by different annotators. 

63% of the annotations were exact matches. In 7% of 

the cases, the difference came from disagreement on 

whether or not the mention is a menu item. Sentiment 

analysis only differed in 3% of the annotations, when one 

annotator thought the review was positive while the other 

thought it was neutral. The remaining 27% arose when 

one annotator thought the mention was too ambiguous 

while the other annotator went ahead and did a menu item 

match. Since our matching tool treats ambiguous menu 

item matches the same as a non-food item, we essentially 

have a 90% rate of agreement among annotators. 

We also measure the inter-annotator agreement using 

Cohen’s kappa measure, κ. Using the same data as before, 

we find 𝑝𝑜 = 0.9 and 𝑝𝑒 = 0.40, giving us 𝜅 ≈ 0.83. 
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4   METHOD 

 

4.1   Implementation 

4.1.1   Extracting Mentions 

Our code is written in Java. We make use of the JSON 

library to parse the data files and Stanford’s CoreNLP li-

brary to extract mentions from the reviews. From this, we 

create a set of Restaurant objects, each containing a list 

of Reviews, MenuItems, and Mentions. 

CoreNLP returns all mentions found within reviews, 

even non-food items. We filter these so only food men-

tions are left, using named-entity recognition (“Miscella-

neous”, “Organizations”, or “People”, see Section 4.1.2) 

and part-of-speech tagging (only noun phrases). Many 

flagged mentions are numbers, such as food quantities or 

prices, which we safely ignore. 

However, lots of food names are not in English and 

CoreNLP cannot properly tag them. For example, “Char 

Siu Pork Bun” is tagged an organization (when it should 

be a food), and “Tom Yum” is tagged as a person (but 

actually is a soup). Thus, of the mentions extracted, we 

keep ones that could be foods (all types of nouns, persons, 

organizations, and things tagged miscellaneous). 

 

4.1.2   Matching Mentions with Menu Items 

To test out different ways to match mentions in the Re-

views with MenuItems, we created a Match class to be 

easily extended. This class has a single function that takes 

in a Mention. The Mention contains all the information 

needed to make a match, such as the context it is found in 

and the possible menu items that it could match. After 

running, it returns a set of possible menu items to match. 

 

public class Match { 
  public List<MenuItem> doMatch(Mention m); 
} 

Figure 5: The class for matching mentions to menu items. 

 

We use a total of five different models for matching, dis-

cussed further in Section 4.2. Our matching framework is 

built such that we can easily change the model we want to 

use as a command-line argument. 

 

4.1.3   Sentiment 

After matching a food mention to a menu item, we use 

human input (via the annotation tool) to figure out the sen-

timent and determine if a dish is positively, neutrally, or 

negatively reviewed. For each menu item analyzed, we 

aggregate over the sentiment from all relevant reviews. 

However, since the space of menu items is much larger 

than the space of menu items reviewed and annotated, few 

aggregations are made. 

4.2   Matching Algorithms 

We used several algorithms to match mentions with menu 

items, described in the following sections. 

 

4.2.1   ExactMatch 

This matches a mention to a menu item if the mention 

matches the menu item exactly (ignoring case). This is a 

very strict model and doesn’t make many matches. We 

chose this to capture the rare occurrence in which a re-

viewer references the full name of a menu item. 

 

4.2.2   SubstringMatch 

SubstringMatch will only make a match if every single 

word in the mention is found in the menu item’s name, in 

the same order. This is a looser requirement than Exact-

Match since it does not require matching in both direc-

tions. This accounts for long menu item names, such as 

“Grandma Sally’s special cheese lasagna”, matching with 

a short mention, “cheese lasagna”. This usually finds 

more than one possible menu item to match with a given 

mention. We apply disambiguation (see Section 4.3) to 

reduce it down to a single menu item match. 

 

4.2.3   PartialMatch 

PartialMatch finds menu items that partially match the 

mention. A partial match is when more than half of the 

words in the mention can be found in the menu item’s 

name and description. We added this model after noticing 

several mentions consisting of many words, some that are 

extraneous and added by the reviewer. For example, the 

reviewer might mention “chicken nuggets with barbeque 

sauce” since they had their food with extra sauce, whereas 

the menu item is just “chicken nuggets”. Furthermore, this 

accounts for when words are reordered between the men-

tion and the menu item listing. 

 

4.2.4   FuzzyMatch 

We noticed that reviews often had typos in their mentions, 

which would otherwise fully or partially match a menu 

item. For example, one reviewer talks about “duck friend 

rice”, when they actually meant “duck fried rice”. Fuzzy-

Match is less strict about matches by matching a word 

from a mention to a word from a menu item if their edit 

distance is less than 3. We use the Damerau-Levenshtein 

distance, which accounts for insertion, deletion, substitu-

tion, and transposition. According to [4], these account 

for nearly 80% of human errors in spelling, which we 

want to capture. 

 

4.2.5   SVMMatch 

Here we use a support vector machine for learning and 

classification in order to solve two problems: if a mention 

is a food item or not and if so, the menu item it matches 



with. To do this, we utilize Cornell’s svm_light tool [6] 

and our annotated results of the Yelp reviews. 

For the first problem, we construct a training file from 

our train data. This file lists all mentions and marks 

whether or not the mention is categorized as a food item, 

as well as many bag-of-words features. We create a dic-

tionary of words taken from our annotated mentions’ con-

text sentences to create features corresponding to the pres-

ence of each word in the mention, before the mention, and 

after the mention. The svm_light tool then creates a 

model, which predicts on the test or dev set of mentions. 

We predict a mention is a food item if the predicted value 

is greater than 0 (-1 indicating definitely not a food men-

tion, and 1 indicating that it is). 

For the second problem of choosing the menu item to 

match with a food mention, we look through every possi-

ble menu item and mark if it is a possible match based off 

of the annotations. We then use the same bag-of-words 

features along with four additional features. These include 

the number of words that overlap between the menu item 

and food mention, if they are an ExactMatch, if they are 

a SubstringMatch, and if they are a FuzzyMatch (see 

Sections 4.2.1 - 4.2.4). This allows us to capture the rela-

tionship between a mention and its corresponding menu 

item and context. After training the model, we use the pre-

dictions and pick a menu item for a mention with the high-

est predicted value. 

 

4.3   Disambiguation 

Often, a matcher finds multiple menu items that match a 

food mention. This makes it difficult to choose a single 

menu item match and reduces the precision. Thus, we put 

the choices through filters, which are tried out in order 

until a single menu item option remains. 

 

4.3.1   Number of Possible Menu Items 

We notice that mentions that produce many menu item 

choices are not food mentions at all (such as mentions that 

are just the restaurant’s name). We toss these mentions 

and treat them as non-food items. This may miss mentions 

that are food items; however, this occurred more often 

than not, so we feel it is better to do so. 

 

4.3.2   Number of Matching Words 

This counts the number of words that match between the 

mention and the menu item, with a match in the item name 

having twice the weight as a match in the item description. 

While partial matching methods such as PartialMatch 

and FuzzyMatch expand the range of potential menu item 

matches, this reduces it back down for higher precision. 

 

4.3.3   Price 

Menu items are priced in an interesting way – not accord-

ing to the traditional demand curve [5]. That is, pricing is 

not rational, and unpopular menu items are not neces-

sarily priced lower to entice customers. Most customers 

have little information about the actual value of a dish, 

and the only indication is from the price. Thus, an expen-

sive dish is perceived to have higher quality. Someone 

just trying out a restaurant would not get the most expen-

sive or cheapest item. Therefore, if there are still multiple 

choices for menu items, we take the median priced one. 

 

4.4   Location-Based Aggregation 

We aggregate over a particular location to find average 

review sentiment, restaurant prices, etc. and reuse most of 

our code for data-parsing. We put the results through Ex-

cel to produce charts. Section 6 describes the results. 

 

5   RESULTS 

 

5.1   Testing Methodology 

Our experiment involves trying each matcher, examining 

the errors that it makes, and the resulting F1 score. We 

tune the models on dev. Training is done on the train set. 

We do not do anything with test except evaluate our 

score at the end. 

 

5.2   Scores 

We use precision, recall, and the F1 score to measure the 

success of each matcher. 

 

Definition. The precision 𝒫 is measured as the fraction 

of mentions identified as food. 

 

Definition. The recall ℛ is measured as the fraction of 

food mention to menu item matchings that are correctly 

identified compared to the gold (annotated) set. 

 

Definition. The F1 score is computed as follows: 

 

F1 = 2 ⋅
𝒫 × ℛ

𝒫 + ℛ
 

 

Table 1 below shows the results of each matcher on test. 

 

Matcher Precision Recall F1 

ExactMatch 0.7951 0.2945 0.4298 

SubstringMatch 0.5722 0.7283 0.6409 

PartialMatch 0.5148 0.8522 0.6419 

FuzzyMatch 0.5212 0.8476 0.6455 

SVMMatch 0.6659 0.7791 0.7180 

Table 1. Precision, recall, and F1 scores for each matcher on 

the test data set. 



6   EVALUATION AND ERROR ANALYSIS 

 

6.1   Sentiment 

In this subsection and in the next we do analysis on the 

sentiment of the mentioned menu items as identified dur-

ing annotation. 

 

6.1.1   Overall Average Sentiment 

Sentiment is measured on a scale of -1 (negative) to 1 

(positive); neutral sentiment has a score of 0. We average 

the sentiment of the annotated menu items and find an av-

erage rating of 0.43, meaning that most of the menu items 

received positive sentiment. This is on par with [1] which 

found that reviews are generally positive, suggesting that 

menu items mentioned would also be received positively. 

 

6.1.2   Sentiment Based on Price 

We also examine how price affects the sentiment of the 

menu item. Figure 6 shows the average rating of mentions 

for different price categories.  

 

 

Figure 6: Average rating of menu items for different prices. 

 

We see that the average rating is the about the same for 

all price ranges except for the most expensive (>$50). We 

present two possible explanations. 

 First, it could be due to psychological behavior. Small 

studies have shown that more expensive food seems to 

taste better. That is, given the same dish, people will rate 

it higher if they paid more for it. This could be the effect 

of price on perceived quality [5], or simply because one 

feels guilty paying more for something and is forced to 

enjoy it. 

 Otherwise, this difference may be due to self-selec-

tion bias. That is, one would not spend that much money 

on a dish unless they already knew it was good, thus, in-

flating the average rating of the menu item. 

 

6.2   Location-Based Analyses 

Next, we do analysis by aggregating sentiment and price 

over the city the restaurant is found in. 

 

 

Figure 7: Average price of menu items across cities. 

 

From Figure 7, we see that the average price of mentioned 

menu items varies between city, with Chicago being the 

cheapest at $9.25 per item and New York City the most 

expensive at $13.70 an item. 

 

 

Figure 8: Average rating of menu item aggregated over city. 

 

Figure 8 shows that the average rating of menu items in 

Chicago is much higher than in other cities, despite its 

lower average price. We suspect this is due to confound-

ing factors such as the type of food that is popular in Chi-

cago (pizza and hot dogs), but it’s interesting that we are 

able to find a trend based on sentiment analysis alone. 

 

6.3   Errors in the Data 

There are several kinds of errors in the data itself that we 

could not fix, no matter which model we use. 

 

6.3.1   Ambiguous Menu Listings 

Some restaurants have menus that are ambiguous, which 

makes it hard find a single match. Items that come in mul-

tiple sizes have separate listings for each size, but nobody 

mentions the size in their review. For example, soups 

come in “bowl” and “cup” sizes, and pizzas come in 

“small”, “medium”, and “large” sizes. Sometimes, the 

same menu items were listed twice. 

 To get around this, we instructed the annotators to al-

ways pick the first menu item when matching. Our match-

ers do the same. This essentially collapses the ambiguous 

listings into one, but does not fix the problem. We can 

solve this by pre-processing the menu data to remove the 

ambiguity; however, this change would make the menus 

we process different than the menus from the restaurant, 

which is not ideal. 
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6.3.2   Incomplete Yelp Data 

A lot of Yelp data is user-contributed and thus the menu 

item listing for smaller or less-popular restaurants are 

sparse. This causes a lot of trouble during annotation and 

matching, since a food item mention cannot be matched 

to anything even if it is clearly a menu item. Luckily, this 

error does not affect our F1 score, since it would not have 

been hand-annotated either. 

 

6.4   Evaluation of Models 

6.4.1   ExactMatch 

Our ExactMatch model, unsurprisingly, does not do very 

well. Because it requires an exact matching of the mention 

and the menu item name, it is very cautious when making 

a guess. For example, it will not match “Frutti Di Mare” 

with “Frutti Di Mare Shrimp” or “Jumbo Lump Crab 

Cake” with “Jumbo Lump Crab Cakes”. Most of the er-

rors that occur are due to the menu item having extra 

words or letters. 

We expected 100% precision but were surprised 

when it only achieved a precision of 0.80. Some of this is 

due to human error during annotation (discussed in Sec-

tion 3.2.2) but other cases were due to lack of context. For 

example, ExactMatch matched “Mongolian Beef” with 

an exact match, but the gold match is “Mongolian Beef 

Over Rice”. We use CoreNLP to find mentions, but it isn’t 

built to find food mentions, so it is unable to expand the 

mention to capture more of the context (in our example, 

“Over Rice” is a preposition and not part of the mention). 

 However, it achieves a recall of 0.29, meaning that 

about 30% of the time, when a review mentions a food 

item, it matches the menu item name exactly. This means 

that the current search functionality on Yelp (which only 

does exact string searches) misses about 70% of the re-

sults! If Yelp implemented one of our inexact string 

matches (such as those in Section 4.2, like how Google 

Search works), a lot more results could be captured with 

a small increase in work. 

 

6.4.2   Substring, Partial, and FuzzyMatch 

These three matching models were a large improvement 

over the ExactMatch, sacrificing precision for a huge in-

crease in recall. This increase occurs because these mod-

els produce a much larger set of possible menu items to 

match with (ExactMatch sometimes gives no possible 

matches). The F1 score increases slightly between Sub-

string, Partial, and FuzzyMatch as each have a looser 

criterion for menu item matching. 

SubstringMatch immediately fixes the problem of 

cautious matching with ExactMatch mentioned above. 

However, it does not account for word reordering, such as 

“Teriyaki Chicken” and “Chicken Teriyaki”. Thus, we 

implemented PartialMatch to account for this. How-

ever, there aren’t many instances in which this occurs, as 

reflected in the minor boost in F1 score between Sub-

string and PartialMatch. 

We used an edit distance of 3 for FuzzyMatch, which 

we found gave us the best F1 score. Decreasing this value 

made the FuzzyMatch operate basically the same as Par-

tialMatch, whereas increasing it exponentially increased 

the number of possible menu items the matcher would 

choose from. This was so severe in some cases such that 

every listing on the menu would be provided as options. 

The error that seems to occur most often is when the 

matcher finds a menu item match but the human annotator 

does not. This happens when the mention is a single word, 

such as “Mexican” or “New”. The matchers, which at 

most do a substring match, are able to find menu items 

that have these in their name. However, they do not take 

into account the context of the mention, which usually re-

veal that the mention is not a food item at all. We added a 

filter to immediately toss out mentions with a single word 

and tried it out with FuzzyMatch. Without this filter, our 

FuzzyMatch achieves an F1 score of 0.65, with precision 

0.52 and recall 0.85. With this filter, we get an F1 score 

of 0.66, precision of 0.66, and recall of 0.66. We chose 

not to keep this filter because while the F1 score increases, 

the recall decreases. We feel that for a website such as 

Yelp, false positives are preferable to false negatives. 

 

6.4.3   SVMMatch 

SVMMatch does very well, achieving an F1 score of 0.72. 

There was an initial concern of overfitting, as we are us-

ing a bag-of-words approach for an SVM with over 2000 

support vectors and a VC dimension of about 1970. How-

ever, this does not seem to be case. 

 Unlike the previous string matching models, SVM-

Match matches foods to menu items based on the trained 

feature weights. Thus, some obvious mistakes occur such 

as “St. Bernardus” being matched to “Filet Mignon” (a 

mistake that PartialMatch or SubstringMatch would 

not make). Nevertheless, it is cleverer in some sense be-

cause it is able to use the mention’s context as a feature to 

help match menu items. Furthermore, we use two SVMs, 

one specifically targeting the identification of food items, 

which greatly improves the precision (an increase from 

about 0.52 to 0.67). For identifying food items, the SVM 

achieves an accuracy of 84%. 

 We had the most difficulty getting SVMMatch to work. 

Because svm_light only allows features with numerical 

values, adding mention context increased the number of 

features by thousands, since we added three features for 

each unique word. The tool also requires many files, each 

with a different format. At some point, the runtime ex-

ceeded 90 minutes! However, we were able to reduce the 

runtime to less than 2 minutes after optimizations and er-

ror-fixes. 

 



7   CONCLUSION 

 

7.1   Future Work 

We had about one month to do the project and our project 

was scoped accordingly. However, there are many in-

sights to be drawn from the data set that we were not able 

to do. The following are some of the analyses and exper-

iments we would like to conduct in the future. 

 

7.1.1   Additional Features to SVMMatch 

Additional features can be added to SVMMatch in order to 

improve predictions, such as a mention’s part of speech in 

the sentence. We can look for mentions that have similar 

POS or POS that trends towards nouns and noun phrases, 

as these are probably more likely to be food items. An-

other feature could be created based off of the price of the 

menu item or price range of the restaurant. 

 

7.1.2   Reviewer Gender 

Another direction that we would like to look further into 

is identifying the reviewer’s gender from their review and 

seeing how that affects review sentiment. In related work 

[1], it was seen that women tended to talk more about des-

sert. Other than that, there is not much research on differ-

ences between gender in reviews. It would also be inter-

esting to see if there are review sentiment differences in 

accordance to the reviewer’s gender. 

 

7.1.3   Restaurant Category 

A third thing to look further into is how the restaurant cat-

egory affects rating and price. We want to see if certain 

types of cuisine tend to be rated higher or lower and if 

they have patterns in the pricing. 

 

7.1.4   More Annotations 

We had very few annotated mentions during our early 

testing. As we progressed and accumulated annotations, 

the F1 scores of our models slightly improved, despite not 

changing any algorithms. This is due to the small initial 

sample size; the addition of data only reduced the vari-

ance. Adding more annotations will only further improve 

the data and give us more data for training the SVM. 
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APPENDIX  

You can download all the code and data files needed for 

this project at the following link: http://anjoola.com/con-

tent/cs224n-food.zip. Windows is required to run SVM-

Match. 

http://anjoola.com/content/cs224n-food.zip
http://anjoola.com/content/cs224n-food.zip

