LSA 352: Speech Recognition and Synthesis

Dan Jurafsky

Lecture 3:
Intro to Festival;
Letter-to-Sound Rules
Prosody

IP Notice: lots of info, text, and diagrams on these slides come (thanks!) from Alan Black’s excellent lecture notes and from Richard Sproat’s great new slides.

Outline

1. **Festival**
 - Where it lives, its components
 - Its scripting language: Scheme

2. **From words to strings of phones**
 - Dictionaries
 - Letter-to-Sound Rules
 - “Grapheme-to-Phoneme Conversion”

3. **Prosody**
 1. Linguistic Background
 - Prosody, F0, Pitch, Tunes
 2. Producing Intonation in TTS
 - Predicting Accents
 - Predicting Boundaries
 - Predicting Duration
 - Generating F0
 3. Advanced: The Tobi Prosodic Transcription Theory

1. Festival

- Open source speech synthesis system
- Designed for development and runtime use
- Use in many commercial and academic systems
- Distributed with RedHat 9.x
- Hundreds of thousands of users
- Multilingual
 - No built-in language
 - Designed to allow addition of new languages
- Additional tools for rapid voice development
 - Statistical learning tools
 - Scripts for building models

Festival as software

- http://festvox.org/festival/
- General system for multi-lingual TTS
- C/C++ code with Scheme scripting language
- General replaceable modules:
 - Lexicons, LTS, duration, intonation, phrasing, POS tagging, tokenizing, diphone/unit selection, signal processing
- General tools
 - Intonation analysis (F0, Tilt), signal processing, CART building, N-gram, SCFG, WFST

CMU FestVox project

- Festival is an engine, how do you make voices?
- Festvox: building synthetic voices:
 - Tools, scripts, documentation
 - Discussion and examples for building voices
 - Example voice databases
 - Step by step walkthroughs of processes
 - Support for English and other languages
 - Support for different waveform synthesis methods
 - Diphone
 - Unit selection
 - Limited domain
Synthesis tools

- I want my computer to talk
- Festival Speech Synthesis
- I want my computer to talk in my voice
- FestVox Project
- I want it to be fast and efficient
- Flite

Using Festival

- How to get Festival to talk
- Scheme (Festival’s scripting language)
- Basic Festival commands

Getting it to talk

- Say a file
 - `festival --tts file.txt`
- From Emacs
 - `say region, say buffer`
- Command line interpreter
 - `festival> (SayText "hello")`

Scheme: the scripting lg

- Advantages of a scripting lg
 - Convenient, easy to add functionality
- Why Scheme?
 - Holdover from the LISP days of AI.
 - Many people like it.
 - It’s very simple
 - We’re stuck with it.

Quick Intro to Scheme

- Scheme is a dialect of LISP
- expressions are
 - atoms or
 - lists
 - be a 'hello world' 12.3
 - (a b c)
 - (a (1 2) seven)
- Interpreter evaluates expressions
 - Atoms evaluate as variables
 - Lists evaluate as functional calls
 - `hax`
 - `3.14`
 - `(+ 2 3)`

Quick Intro to Scheme

- Setting variables
 - `(set! a 3.14)`
- Defining functions
 - `(define (timestwo n) (* 2 n))`
 - `(timestwo a)`
 - `6.28`
Lists in Scheme

- festival> (set! alist '(apples pears bananas))
- (apples pears bananas)
- festival> (set! blist (cons 'oranges alist))
- (apples pears bananas oranges)
- festival> (append alist blist)
- (apples pears bananas oranges)
- festival> (length alist)
- 3
- festival> (length (append alist blist))
- 7

Scheme: speech

- Make an utterance of type text
 festival> (set! utt1 (Utterance Text "hello"))
 #<Utterance 0xf6855718>
- Synthesize an utterance
 festival> (utt.synth utt1)
 #<Utterance 0xf6855718>
- Play waveform
 festival> (utt.play utt1)
 #<Utterance 0xf6855718>
- In a file
 (define (SpeechPlus a b)
 (SayText (format nil "%d plus %d equals %d" a b (+ a b))))
- Loading files
 festival> (load "file.scm")

- Do all together
 festival> (SpeechPlus 2 4)
 #<Utterance 0xf6961618>

Scheme: speech

- In a file
 (define (sp_time hour minute)
 (cond
 ((< hour 12) (SayText (format nil "It is %d %d in the morning" hour minute)))
 ((< hour 18) (SayText (format nil "It is %d %d in the afternoon" (- hour 12) minute)))
 (t (SayText (format nil "It is %d %d in the evening" (- hour 12) minute)))))

Getting help

- Online manual
 - http://festvox.org/docs/manual-1.4.3
- Alt-h (or esc-h) on current symbol short help
- Alt-s (or esc-s) to speak help
- Alt-m goto man page
- Use TAB key for completion

Festival Structure

- Utterance structure in Festival
- Features in festival
 - http://www.festvox.org/docs/manual-1.4.2/festival_32.html
II. From Words to Phones

- Dictionaries
- Letter-to-Sound Rules

Converting from words to phones

- Two methods:
 - Dictionary-based
 - Rule-based (Letter-to-sound=LTS, grapheme-to-phoneme = G2P)
- Early systems, all LTS
- MITalk was radical in having ‘huge’ 10K word dictionary
- Modern systems use a combination

Pronunciation Dictionaries: CMU

- CMU dictionary: 127K words
 - http://www.speech.cs.cmu.edu/cgi-bin/cmudict
- Some problems:
 - Has errors
 - Only American pronunciations
 - No syllable boundaries
 - Doesn’t tell us which pronunciation to use for which homophones
 - (no POS tags)
 - Doesn’t distinguish case
 - The word US has 2 pronunciations
 - [AH1 S] and [Y UW1 EH1 S]

Pronunciation Dictionaries: UNISYN

- UNISYN dictionary: 110K words (Fitt 2002)
 - http://www.cstr.ed.ac.uk/projects/unisyn/
- Benefits:
 - Has syllabification, stress, some morphological boundaries
 - Pronunciations can be read off in
 - General American
 - RP British
 - Australia
 - Etc
- (Other dictionaries like CELEX not used because too small, British-only)

Lexical Entries in Festival

- You can explicitly give pronunciations for words
 - Each lg/dialect has its own separate lexicon file
 - You can lookup words with
 - (lex lookup WORD)
 - You can add entries to the current lexicon
 - (lex.add entry WORD ENTRY)
 - Entry: (WORD POS (SYL0 SYL1 ...))
 - Syllable: ((PHONE0 PHONE1 ...) STRESS)
 - Example:
 - "(cepstra" n ((k eh p) 1) ((s t r aa) 0))"

Dictionaries aren’t sufficient

- Unknown words (= OOV = "out of vocabulary")
 - Increase with the (sqrt of) number of words in unseen text
 - Black et al (1998) OALD on 1st section of Penn Treebank:
 - Out of 39923 word tokens,
 - 1775 tokens were OOV: 4.6% (943 unique types):
 - 3.6% 19.8% 76.6%
 - 64 351 1360
 - Typos/other unknown names
Names

- Big problem area is names
- Names are common
- 20% of tokens in typical newswire text will be names
- 1987 Donnelly list (72 million households) contains about 1.5 million names
- Personal names: McArthur, D'Angelo, Jiminez, Rajan, Raghavan, Sondhi, Xu, Hsu, Zhang, Chang, Nguyen
- Company/Brand names: Infinit, Kmart, Cytyc, Medamicus, Inforte, Aaon, Idexx Labs, Bebe

Methods:
- Can do morphology (Walters -> Walter, Lucasville)
- Can write stress-shifting rules (Jordan -> Jordanian)
- Rhyme analogy: Plotsky by analogy with Troitsky (replace tr with tr)
- Liberman and Church: for 250K most common names, got 212K (85%) from these modified-dictionary methods, used LTS for rest.
- Can do automatic country detection (from letter trigrams) and then do country-specific rules
- Can train g2p system specifically on names
- Or specifically on types of names (brand names, Russian names, etc)

Acronyms

- We saw last lecture
- Use machine learning to detect acronyms
 - EXPN
 - ASWORD
 - LETTERS
- Use acronym dictionary, hand-written rules to augment

Letter-to-Sound Rules

- Earliest algorithms: handwritten Chomsky-Halle-style rules:
 - Festival version of such LTS rules:
 - One from Allen et al. 1987
 - English famously evil: one from Allen et al. 1987
 - Where X must contain all prefixes:
 - Assign 1-stress to the vowel in a syllable preceding a weak syllable followed by a morpheme-final syllable containing a short vowel and 0 or more consonants (e.g. difficult)
 - Assign 1-stress to the vowel in a syllable preceding a weak syllable followed by a morpheme-final vowel (e.g. oregano)
 - etc

Modern method: Learning LTS rules automatically

- Induce LTS from a dictionary of the language
- Black et al. 1998
- Applied to English, German, French
- Two steps:
 - alignment
 - (CART-based) rule-induction
Alignment

- Letters: c h e c k e d
- Phones: ch eh k t
- Black et al Method 1:
 - First scatter epsilon in all possible ways to cause letters and phones to align
 - Then calculate stats for P(phone|letter) and select best to generate new stats
 - \(p(y|x) = \frac{\text{count}(y|x)}{\text{count}(x)} \)
 - This is iterated a number of times until settles (5-6)
 - This is EM (expectation maximization) alg

Alignment

- Black et al Method 2

Hand specify which letters can be rendered as which phones

- C goes to k/ch/s/sh
- W goes to v/v/f, etc
- An actual list:
 - Once mapping table is created, find all valid alignments, find \(p(\text{letter}|\text{phone}) \), score all alignments, take best

Building CART trees

- Build a CART tree for each letter in alphabet (26 plus accented) using context of +-3 letters
- \# \# c h e c -> ch
- c h e c k e d -> _

Add more features

- Even more: for French liaison, we need to know what the next word is, and whether it starts with a vowel
- French six
 - [s iy s] in j'en veux six
 - [s iy z] in six enfants
 - [s iy] in six filles
Prosody: Linguistic Background

Defining Intonation

- Ladd (1996) "Intonational phonology"
- "The use of suprasegmental phonetic features"
 Suprasegmental = above and beyond the segment/phone
 - F0
 - Intensity (energy)
 - Duration
- to convey sentence-level pragmatic meanings
 - i.e. meanings that apply to phrases or utterances as a whole, not lexical stress, not lexical tone.

Three aspects of prosody

- Prominence: some syllables/words are more prominent than others
- Structure/boundaries: sentences have prosodic structure
 - Some words group naturally together
 - Others have a noticeable break or disjuncture between them
- Tune: the intonational melody of an utterance.

Graphic representation of F0

The ‘ripples’

F0 is not defined for consonants without vocal fold vibration.

The ‘ripples’

... and F0 can be perturbed by consonants with an extreme constriction in the vocal tract.
Abstraction of the F0 contour

Prominence: Placement of Pitch Accents

Stress vs. accent

- Stress is a structural property of a word — it marks a potential (arbitrary) location for an accent to occur, if there is one.
- Accent is a property of a word in context — it is a way to mark intonational prominence in order to 'highlight' important words in the discourse.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x)</th>
<th>(accented syll)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>stressed syll</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>full vowels</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>vi</td>
<td>ta</td>
<td>mins</td>
</tr>
<tr>
<td>Ca</td>
<td>li</td>
<td>for</td>
</tr>
<tr>
<td>a</td>
<td>nia</td>
<td></td>
</tr>
</tbody>
</table>

Stress vs. accent (2)

- The speaker decides to make the word vitamin more prominent by accenting it.
- Lexical stress tell us that this prominence will appear on the first syllable, hence Vitamin.
- So we will have to look at both the lexicon and the context to predict the details of prominence.
- I'm a little surPRISED to hear it CHARacterized as upBEAT

Which word receives an accent?

- It depends on the context. For example, the 'new' information in the answer to a question is often accented, while the 'old' information usually is not.

 - Q1: What types of foods are a good source of vitamins?
 - A1: LEGUMES are a good source of vitamins.
 - Q2: Are legumes a source of vitamins?
 - A2: Legumes are a GOOD source of vitamins.
 - Q3: I've heard that legumes are healthy, but what are they a good source of?
 - A3: Legumes are a good source of VITAMINS.

Same ‘tune’, different alignment

- The main rise-fall accent (= "I assert this") shifts locations.
Legumes are a GOOD source of vitamins

The main rise-fall accent (= "I assert this") shifts locations.

Levels of prominence
- Most phrases have more than one accent
- The last accent in a phrase is perceived as more prominent
 - Called the Nuclear Accent
- Emphatic accents like nuclear accent often used for semantic purposes, such as indicating that a word is contrastive, or the semantic focus.
 - The kind of thing you represent via ***s in IM, or capitalized letters
 - "I know SOMETHING interesting is sure to happen," she said to herself.
- Can also have words that are less prominent than usual
 - Reduced words, especially function words.
- Often use 4 classes of prominence:
 1. emphatic accent,
 2. pitch accent,
 3. unaccented,
 4. reduced

Intonational phrasing/boundaries

A single intonation phrase
- Broad focus statement consisting of one intonation phrase (that is, one intonation tune spans the whole unit).

Multiple phrases
- Utterances can be 'chunked' up into smaller phrases in order to signal the importance of information in each unit.
I wanted to go to London, but could only get tickets for France.

Temporary ambiguity:
When Madonna sings the song ...

Temporary ambiguity:
When Madonna sings the song % the song is a hit.
When Madonna sings the song % it’s a hit.
[from Speer & Kjelgaard (1992)]

I met Mary and Elena’s mother at the mall yesterday.

One intonation phrase with relatively flat overall pitch range.

Separate phrases, with expanded pitch movements.
Intonational tunes

Yes-No question tune

Yes-No question tune

Yes-No question tune

WH-questions

Broad focus

Are legumes a good source of vitamins

Rise from the main accent to the end of the sentence.

Are legumes a GOOD source of vitamins

Rise from the main accent to the end of the sentence.

Rise from the main accent to the end of the sentence.

What are a good source of vitamins

WH-questions typically have falling contours, like statements.

Tell me something about the world.

In the absence of narrow focus, English tends to mark the first and last ‘content’ words with perceptually prominent accents.
Rising statements

"Tell me something I didn’t already know."

High-rising statements can signal that the speaker is seeking approval.

Yes-No question

"are legumes a good source of VITAMINS"

Rise from the main accent to the end of the sentence.

'Surprise-redundancy’ tune

"legumes are a good source of vitamins"

Low beginning followed by a gradual rise to a high at the end.

'Contradiction’ tune

"I’ve heard that linguini is a good source of vitamins."

Sharp fall at the beginning, flat and low, then rising at the end.

Using Intonation in TTS

1) Prominence/Accent: Decide which words are accented, which syllable has accent, what sort of accent
2) Boundaries: Decide where intonational boundaries are
3) Duration: Specify length of each segment
4) F0: Generate F0 contour from these

Predicting pitch accent
Factors in accent prediction

- Part of speech:
 - Content words are usually accented
 - Function words are rarely accented
 - Of, for, in, on, that, the, a, an, no, to, and but or will may would can her is their its our there is am are was were, etc

Simplest possible algorithm for pitch accent assignment

```
(set! simple_accent_cart_tree
  
  (R:SylStructure.parent.gpos is content)
  
  (stressed is 1)
  
  ((Accented))
  
  ((NONE))
  
  )
  
)
```

But not just function/content:

- A Broadcast News example from Hirschberg (1993)
- SUN MICROSYSTEMS INC, the UPSTART COMPANY that HELPED LAUNCH the DESKTOP COMPUTER industry TREND TOWARD HIGH powered WORKSTATIONS, was UNVEILING an ENTIRE OVERHAUL of its PRODUCT LINE TODAY. SOME of the new MACHINES, PRICED from FIVE THOUSAND NINE hundred NINETY five DOLLARS to SEVENTY THREE thousand nine HUNDRED dollars, BOAST SOPHISTICATED new graphics and DIGITAL SOUND TECHNOLOGIES, HIGHER SPEEDS AND a CIRCUIT board that allows FULL motion VIDEO on a COMPUTER SCREEN.

Factors in accent prediction

- Contrast
 - Legumes are a poor source of VITAMINS
 - Legumes are a GOOD source of vitamins
 - I think JOHN or MARY should go
 - I think JOHN AND MARY should go

List intonation

- I went and saw ANNA, LENNY, MARY, and NORA.

Word order

- Preposed items are accented more frequently
- TODAY we will BEGIN to LOOK at FROG anatomy.
- We will BEGIN to LOOK at FROG anatomy today.
Information Status

- New versus old information.
- Old information is deaccented.
- Something can be old because of explicit lexical repetition, or more subtly:
 - There are LAWYERS, and there are GOOD lawyers.
 - EACH NATION DEFINES its OWN national INTEREST.
 - I LIKE GOLDEN RETRIEVERS, but MOST dogs LEAVE me COLD.

Complex Noun Phrase Structure

- Proper Names, stress on right-most word
 - New York CITY; Paris, FRANCE
- Adjective-Noun combinations, stress on noun
 - Large HOUSE, red PEN, new NOTEBOOK
- Noun-Noun compounds: stress left noun
 - HOTdog (food) versus HOT DOG (overheated animal)
 - WHITE house (place) versus WHITE HOUSE (made of stucco)
- examples:
 - MEDICAL Building, APPLE cake, cherry PIE.
 - What about: Madison avenue, Park street ???
- Some Rules:
 - Furniture+Room -> RIGHT (e.g., kitchen TABLE)
 - Proper-name + Street -> LEFT (e.g. PARK street)

Other features

- POS
- POS of previous word
- POS of next word
- Stress of current, previous, next syllable
- Unigram probability of word
- Bigram probability of word
- Position of word in sentence

Advanced features

- Accent is often deflected away from a word due to focus on a neighboring word.
 - Could use syntactic parallelism to detect this kind of contrastive focus:
 - driving [FIFTY miles] an hour in a [THIRTY mile] zone
 - [WELD] [APPLAUDS] mandatory recycling; [SILBER] [DISMISSES] recycling goals as meaningless.
 - ...but while Weld may be [LONG] on people skills, he may be [SHORT] on money

State of the art

- Hand-label large training sets
- Use CART, SVM, CRF, etc to predict accent
- Lots of rich features from context
- Classic lit:

Predicting boundaries
Predicting Boundaries

- Intonation phrase boundaries
- Intermediate phrase boundaries
- Full intonation phrase boundaries

Police also say | Levy’s blood alcohol level | was twice the legal limit |

Simplest CART

```scheme
(set! simple_phrase_cart_tree
   "((lisp_token_end_punc in ("?" "." ";"))) ((BB))
   ((lisp_token_end_punc in ("" "" "" "" "" "")
   ((B))
   (((n.name is 0) ;; end of utterance
   ((BB))
   ((NB))))))
```

More complex features

- Length features:
 - Phrases tend to be of roughly equal length
 - Total number of words and syllables in utterance
 - Distance of juncture from beginning and end of sentence (in words or syllables)
- Neighboring POS, punctuation
- Syntactic structure (parse trees)
 - Largest syntactic category dominating preceding word but not succeeding word
 - How many syntactic units begin/end between words
- Other:
 - English: boundaries are more likely between content words and function words
 - Type of function word to right
 - Capitalized names
 - # of content words since previous function word

Ostendorf and Veilleux CART

Duration

- Simplest: fixed size for all phones (100 ms)
- Next simplest: average duration for that phone (from training data). Samples from SWBD in ms:
 - aa 118 b 68
 - ax 59 d 68
 - ay 138 dh 44
 - eh 87 f 90
 - ih 77 g 66
- Next Next Simplest: add in phrase-final and initial lengthening plus stress
Klatt duration rules

Models how context-neutral duration of a phone lengthened/shortened by context

- Prepausal lengthening:
 - The vowel or syllabic consonant in the syllable before a pause is lengthened by 1.4
 - Segments which are not phrase-final are shortened by 0.6. Phrase-final postvocalic liquids and nasals are lengthened by 1.4

- Unstressed shortening:
 - Unstressed segments are more compressible, so their minimum duration d_{min} is halved, and are shortened by .7 for most phone types.
 - Lengthening for accent:
 - A vowel which bears accent is lengthened by 1.4
 - Shortening in clusters:
 - A consonant followed by a consonant is shortened by 0.5
 - Pre-vocalic shortening:
 - Vowels are shortened before a voiceless plosive by 0.7

Klatt formula for phone durations:

$$d = d_{\text{min}} + \prod_{i=1}^{N} f_i \times (d - d_{\text{min}})$$

Festival: 2 options

- Klatt rules
 - Use labeled training set with Klatt features to train CART
 - Identity of the left and right context phone
 - Lexical stress and accent values of current phone
 - Position in syllable, word, phrase
 - Following pause

Duration: state of the art

- Lots of fancy models of duration prediction:
 - Using Z-scores and other clever normalizations
 - Sum-of-products model
 - New features like word predictability
 - Words with higher bigram probability are shorter

Duration in Festival

```lang
(set! spanish_dur_tree
  
  ((R:SylStructure.parent.R:Syllable.p.syl_break > 1 ) ;; clause initial
    ((R:SylStructure.parent.stress is 1)
      ((1.5))
      ((1.2)))
    ((R:SylStructure.parent.syl_break > 1) ;; clause final
      ((R:SylStructure.parent.stress is 1)
        ((2.0))
        ((1.5)))
      ((R:SylStructure.parent.stress is 1)
        ((1.2))
        ((1.0)))))
```

F0 Generation

- Generation in Festival
 - F0 Generation by rule
 - F0 Generation by linear regression
- Some constraints
 - F0 is constrained by accents and boundaries
 - F0 declines gradually over an utterance (“declination”)
F0 generation by rule

- F0 is generally defined relative to pitch range
- A speaker’s pitch range is the range between
 - Baseline frequency: lowest freq in a particular utterance
 - Topline frequency: highest freq in a particular utterance
 - Beginning of utterance: target point of 50%
 - Target point for H* accent: 100%
 - Target point for L* accent: 0%
 - Target point for L-H* accent: 20% and 100%
 - Target point for L-L* extra-low: 20%
 - Target point for L-L* extra-low: 20%
- Alignment: where accent lies in syllable
 - H* accent: aligned 60% through syllable
 - IP-initial accent: somewhat earlier

F0 Generation by rule in Festival

- Generate a list of target F0 points for each syllable
- Here’s a rule to generate a simple H* “hat” accent (with fixed = speaker-specific F0 values):

```lisp
(define (targ_func1 utt syl)
  "(targ_func1 UTT STREAMITEM)
  Returns a list of targets for the given syllable."
  (let ((start (item.feat syl 'syllable_start))
        (end (item.feat syl 'syllable_end)))
    (if (equal? (item.feat syl "R:Intonation.daughter1.name") "Accented")
        (list (list start 110) (list (/ (+ start end) 2.0) 140) (list end 100))))
```

F0 generation by regression

- Supervised machine learning again
- We predict: value of F0 at 3 places in each syllable
- Predictor features:
 - Accent of current word, next word, previous
 - Boundaries
 - Syllable type, phonetic information
 - Stress information
- Need training sets with pitch accents labeled

Declination

F0 tends to decline throughout a sentence

ToBI: Tones and Break Indices

- Advanced tones
 - H* “peak accent”
 - L* “low accent”
 - L-H* “rising peak accent” (contrastive)
 - L-H+H* “scooped accent”
 - H+H* downstepped high
- Boundary tones
 - L-L* (final low; Am Eng. Declarative contour)
 - L-H* (continuation rise)
 - H-H* (yes-no question)
- Break indices
 - 0: clitics, 1, word boundaries, 2 short pause
 - 3 intermediate intonation phrase
 - 4 full intonation phrase/final boundary.
Examples of the TOBI system

- I don’t eat beef.
 L* L*L-L%
- Marianna made the marmalade.
 B* L-L%
 L* H-B%
- “I” means insert.
 H* H* H*L-L%
 1
 H*L- H*L-L%
 3

Predicting Boundaries

- Intonation phrase boundaries
 - Intermediate phrase boundaries
 - Full intonation phrase boundaries
- Police also say | Levy’s blood alcohol level | was twice the legal limit |

ToBI

- http://www.ling.ohio-state.edu/~tobi/
- TOBI for American English
 - http://www.ling.ohio-state.edu/~tobi/ame_tobi/
- Beckman and Barn. Guidelines for ToBI Labelling. Web.

TILT

- Like ToBI, a sequence of intonational events like accents and boundary tones
- But instead of ToBI-style phonemic categories
- Each event modeled by continuous parameters representing F0 shape
- Trained on a corpus labeled for pitch accents and boundary tones
- Human label just specifies syllable; parameters learned automatically

TILT

- Each accent in tilt is (optional) rise followed by (optional) fall
- Tilt value: 1.0 = rise, -1.0 = fall, 0 = equal rise and fall

Intermediate representation: using Festival

- Do you really want to see all of it?