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NLP: An Age of Engineering

• 70s/80s: Science of the mind

– Big questions of cognition

– Small simulations (SHRDLU, LUNAR, . . . )

• 1990s: Real problems; rigorous evaluation

– Big corpora on big hard disks

– Applications: web, speech, (vertical)

– Greatly favors statistical techniques

• 2000s: The future is meaning?
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What is statistical NLP?

• P(to|Sarah drove)

• P(time is a verb|S = Time flies like an arrow)

• P(NP→ Det Adj N|Mother = VP[drive])

• Statistical NLP methods:

– Involve deriving numerical data from text

– Are usually but not always probabilistic (broad

church – we include e.g., vector spaces)
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StatNLP: Relation to wider context

• Matches move from logic-based AI to probabilistic AI

– Knowledge→ probability distributions

– Inference→ conditional distributions

• Probabilities give opportunity to unify reasoning, plan-

ning, and learning, with communication

• There is now widespread use of machine learning (ML)

methods in NLP (perhaps even overuse?)

• Use of approximation for hard problems
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Questions that linguistics should answer

• What kinds of things do people say?

• What do these things say/ask/request about the world?

Example: In addition to this, she insisted that women were

regarded as a different existence from men unfairly.

• Text corpora give us data with which to answer these

questions

• They are an externalization of linguistic knowledge

• What words, rules, statistical facts do we find?

• Can we build programs that learn effectively from this

data, and can then do NLP tasks?
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The big questions for linguistics/NLP

• What kinds of things do people say?

• What do these things say/ask/request about

the world?

These involve questions of frequency, probability,

and likelihood

“Statistical considerations are essential to an un-

derstanding of the operation and development of

languages” – Lyons (1968: 98)
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Probabilistic grammars in linguistics

• The predictions about grammaticality and ambiguity of

categorical grammars do not accord with human per-

ceptions or engineering needs

• Categorical grammars aren’t predictive

– They don’t tell us what “sounds natural”

– Grammatical but unnatural e.g.: In addition to this,

she insisted that women were regarded as a differ-

ent existence from men unfairly.
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Big picture claims

• Human cognition has a probabilistic nature

• We are continually faced with uncertain and incomplete

information, and have to reason and interpret as best

we can with the information available

• Language understanding is a case of this

• Language understanding involves mapping from ideas

expressed in a symbol system to an uncertain and in-

complete understanding

Symbol system↔ Probabilistic cognition
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All parts of natural language text are ambigu-
ous

• Real language is highly ambiguous at all levels

• It is thus hard to process

• Humans mostly do not notice the high level of ambiguity

because they resolve ambiguities in real time, by in-

corporating diverse sources of evidence, including fre-

quency information (cf. recent psycholinguistic litera-

ture)

• Goal of computational linguistics is to do as well

• Use of probabilities allows effective evidence combina-

tion within NLP models
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Contextuality of language

• Language use is situated

• People say the little that is needed to be understood in

a certain situation

• Consequently

– language is highly ambiguous

– tasks like translation involve (probabilistically) recon-

structing world knowledge not in the source text

• We also need to explore quantitative techniques to move

away from the unrealistic categorical assumptions of

much of formal linguistics
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Computer NLP

• Is often serial through a pipeline (not parallel)

• All components resolve ambiguities

• Something like an n-best list or word lattice is used to

allow some decisions to be deferred until later

• Progressively richer probabilistic models can filter less

likely word sequences, syntactic structures, meanings,

etc.
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The huge ambiguity of language

• A few of 83+ syntactic parses for: The post office will
hold out discounts and service concessions as incen-
tives. [Shortened WSJ sentence.]
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Where do problems come in?

Syntax

• Part of speech ambiguities

• Attachment ambiguities

Semantics

• Word sense ambiguities → we’ll start here

• (Semantic interpretation and scope ambigui-

ties)
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How do we solve them?

Hand-crafted NLP systems

• Easy to encode linguistic knowledge precisely

• Readily comprehensible rules

• Construction is costly

• Feature interactions are hard to manage

• Systems are usually nonprobabilistic
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Statistical Computational Methods

• Many techniques are used:

– n-grams, history-based models, decision trees / de-

cision lists, memory-based learning, loglinear mod-

els, HMMs, neural networks, vector spaces, graphi-

cal models, PCFGs, . . .

• Robust

• Good for learning (well, supervised learning works well;

unsupervised learning is still hard)

• More work needed on encoding subtle linguistic phe-

nomena
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Distinctiveness of NLP as an ML problem

• Language allows the complex compositional encoding

of thoughts, ideas, feelings, . . . , intelligence.

• We are minimally dealing with hierarchical structures

(branching processes), and often want to allow more

complex forms of information sharing (dependencies).

• Enormous problems with data sparseness

• Both features and assigned classes regularly involve

multinomial distributions over huge numbers of values

(often in the tens of thousands)

• Generally dealing with discrete distributions though!

• The distributions are very uneven, and have fat tails

18



The obligatory Zipf’s law slide:

Zipf’s law for the Brown corpus
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Zipf’s law

f ∝ 1

r
or, there is a k such that f · r = k

(Now frequently invoked for the web too!

See http://linkage.rockefeller.edu/wli/zipf/)

Mandelbrot’s law

f = P (r+ ρ)−B

log f = logP −B log(r+ ρ)
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Corpora

• A corpus is a body of naturally occurring text, normally

one organized or selected in some way

– Latin: one corpus, two corpora

• A balanced corpus tries to be representative across a

language or other domain

• Balance is something of a chimaera: What is balanced?

Who spends what percent of their time reading the sports

pages?
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The Brown corpus

• Famous early corpus. Made by W. Nelson Francis and
Henry Kučera at Brown University in the 1960s. A bal-
anced corpus of written American English in 1960 (ex-
cept poetry!).
• 1 million words, which seemed huge at the time.

Sorting the words to produce a word list took 17 hours of (dedicated)
processing time, because the computer (an IBM 7070) had the equiv-
alent of only about 40 kilobytes of memory, and so the sort algorithm
had to store the data being sorted on tape drives.

• Its significance has increased over time, but also aware-
ness of its limitations.
• Tagged for part of speech in the 1970s

– The/AT General/JJ-TL Assembly/NN-TL ,/, which/WDT
adjourns/VBZ today/NR ,/, has/HVZ performed/VBN
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Recent corpora

• British National Corpus. 100 million words, tagged for
part of speech. Balanced.

• Newswire (NYT or WSJ are most commonly used):
Something like 600 million words is fairly easily avail-
able.

• Legal reports; UN or EU proceedings (parallel multilin-
gual corpora – same text in multiple languages)

• The Web (in the billions of words, but need to filter for
distinctness).

• Penn Treebank: 2 million words (1 million WSJ, 1 mil-
lion speech) of parsed sentences (as phrase structure
trees).
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Common words in Tom Sawyer (71,370 words)

Word Freq. Use

the 3332 determiner (article)
and 2972 conjunction
a 1775 determiner
to 1725 preposition, verbal infinitive marker
of 1440 preposition
was 1161 auxiliary verb
it 1027 (personal/expletive) pronoun
in 906 preposition
that 877 complementizer, demonstrative
he 877 (personal) pronoun
I 783 (personal) pronoun
his 772 (possessive) pronoun
you 686 (personal) pronoun
Tom 679 proper noun
with 642 preposition
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Frequencies of frequencies in Tom Sawyer

Word Frequency of
Frequency Frequency

1 3993 71,730 word tokens
2 1292 8,018 word types
3 664
4 410
5 243
6 199
7 172
8 131
9 82

10 91
11–50 540

51–100 99
> 100 102
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Zipf’s law in Tom Sawyer
Word Freq. Rank f · r

(f ) (r)
the 3332 1 3332
and 2972 2 5944
a 1775 3 5235
he 877 10 8770
but 410 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
about 158 60 9480
more 138 70 9660
never 124 80 9920
Oh 116 90 10440
two 104 100 10400
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Zipf’s law in Tom Sawyer
Word Freq. Rank f · r

(f ) (r)
turned 51 200 10200
you’ll 30 300 9000
name 21 400 8400
comes 16 500 8000
group 13 600 7800
lead 11 700 7700
friends 10 800 8000
begin 9 900 8100
family 8 1000 8000
brushed 4 2000 8000
sins 2 3000 6000
Could 2 4000 8000
Applausive 1 8000 8000
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Zipf’s law

f ∝ 1

r
(1)

There is a constant k such that

f · r = k (2)

(Now frequently invoked for the web too!

See http://linkage.rockefeller.edu/wli/zipf/)

Mandelbrot’s law

f = P (r+ ρ)−B (3)

log f = logP −B log(r+ ρ) (4)
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Zipf’s law for the Brown corpus
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Mandelbrot’s formula for the Brown corpus
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P = 105.4, B = 1.15, ρ = 100

30



Commonest bigrams in the NYT

Frequency Word 1 Word 2

80871 of the
58841 in the
26430 to the
21842 on the
21839 for the
18568 and the
16121 that the
15630 at the
15494 to be
13899 in a
13689 of a
13361 by the
13183 with the
12622 from the
11428 New York
10007 he said
9775 as a
9231 is a
8753 has been
8573 for a
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Filtered common bigrams in the NYT

Frequency Word 1 Word 2 POS pattern

11487 New York A N
7261 United States A N
5412 Los Angeles N N
3301 last year A N
3191 Saudi Arabia N N
2699 last week A N
2514 vice president A N
2378 Persian Gulf A N
2161 San Francisco N N
2106 President Bush N N
2001 Middle East A N
1942 Saddam Hussein N N
1867 Soviet Union A N
1850 White House A N
1633 United Nations A N
1337 York City N N
1328 oil prices N N
1210 next year A N
1074 chief executive A N
1073 real estate A N
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KWIC display

1 could find a target. The librarian “showed off” - running hi ther and thither w
2 elights in. The young lady teachers “showed off” - bending s weetly over pupils
3 ingly. The young gentlemen teachers “showed off” with smal l scoldings and other
4 seeming vexation). The little girls “showed off” in variou s ways, and the littl
5 n various ways, and the little boys “showed off” with such di ligence that the a
6 t genuwyne?” Tom lifted his lip and showed the vacancy. “Wel l, all right,” sai
7 is little finger for a pen. Then he showed Huckleberry how to make an H and an
8 ow’s face was haggard, and his eyes showed the fear that was u pon him. When he
9 not overlook the fact that Tom even showed a marked aversion to these inquests

10 own. Two or three glimmering lights showed where it lay, pe acefully sleeping,
11 ird flash turned night into day and showed every little gra ss-blade, separate
12 that grew about their feet. And it showed three white, star tled faces, too. A
13 he first thing his aunt said to him showed him that he had bro ught his sorrows
14 p from her lethargy of distress and showed good interest in the proceedings. S
15 ent a new burst of grief from Becky showed Tom that the thing in his mind had
16 shudder quiver all through him. He showed Huck the fragmen t of candle-wick pe
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Syntactic frames for showed in Tom Sawyer

NPagent showed off (PP[with/in]manner)

NPagent showed (NPrecipient)















































NPcontent
CP[that ]content
VP[inf]content
how VP[inf]content
CP[where]content















































NPagent showed NP[interest ] PP[in]content
NPagent showed NP[aversion] PP[to]content
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Basic issues in text

• Upper and lower case

– When is it useful to treat black, Black and BLACK

the same or differently?

• Tokenization: what is a word?

– Whitespace separated? “I’m bored!”

– Oddities like Micro$oft or C|net, or even :-)

– May want to have whitespace-separated single words:

New York or make up. Or by and large?

– Word segmentation is much harder in other languages

(Chinese, Thai, etc. – no word breaks marked)
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Basic issues in text

• Periods/Sentence boundaries

– Normally ends of sentences. But also used for ab-

breviations: Calif.

– Can have both functions at once (haplology): I like

you, etc.

– People have researched sentence segmentation.

• Single apostrophes

– How does one treat I’ll or isn’t and/or dog’s

– With final quotes like the kids’ toys you need longer

distance context to tokenize well
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Basic issues in text

• Hyphenation:

– Traditionally, for text line breaks

– e-mail or co-operate or A-1-plus [vs. cooperate]

– the aluminum-export ban or a text-based medium

– the idea of a child-as-required-yuppie-possession must

be motivating them

– In Dow Jones newswire get all of data base, data-

base and database (with choice partly depending on

section of paper).

• Homographs: saw
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Much of the structure is implicit, traditionally

• Two carriage returns indicate a paragrah break

• Now, often SGML or XML gives at least some of the

macro structure (sentences, paragraphs). Commonly

not micro-structure

• <p><s>And then he left.</s>

<s>He did not say another word.</s></p>

• <utt speak="Fred" date="10-Feb-1998">That

is an ugly couch.</utt>

• May not be semantic markup:

– <B><font="+3">Relevant prior approaches</font></B>
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Distinctiveness of NLP as an ML problem

• Language allows the complex, compositional encoding

of thoughts, ideas, feelings, . . . , intelligence.

• Most structure is hidden

• Relational, constraint satisfaction nature

• Long pipelines

• Large and strange, sparse, discrete distributions

• Large scale

• Feature-driven; performance-driven
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Distinctiveness of NLP as an ML problem

• Much hidden structure; long processing pipelines

– Long pipelines of probabilistic decompositions,

through which errors can – and do – propagate

– The problem has a relational/CSP nature. It’s not

just doing a series of (assumed iid) simple classifica-

tion tasks. There are a lot of decisions to coordinate.

– We are often dealing with hierarchical structures (branch-

ing processes), and often want to allow more com-

plex forms of information sharing (dependencies/relational

structure).
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NLP: Large, sparse, discrete distributions

• Both features and assigned classes regularly involve

multinomial distributions over huge numbers of values

(often in the tens of thousands).

• The distributions are very uneven, and have fat tails

• Enormous problems with data sparseness: much work

on smoothing distributions/backoff (shrinkage), etc.

• We normally have inadequate (labeled) data to esti-

mate probabilities

• Unknown/unseen things are usually a central problem

• Generally dealing with discrete distributions though
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Sparsity

• How often does an every day word like kick occur in a

million words of text?

– kick : about 10 [depends vastly on genre, of course]

– wrist : about 5

• Normally we want to know about something bigger than

a single word, like how often you kick a ball, or how

often the conative alternation he kicked at the balloon

occurs.

• How often can we expect that to occur in 1 million words?

• Almost never.

• “There’s no data like more data” [if of the right domain]

42



Distinctiveness of NLP as an ML problem

• Large scale

– Scale is extremely large: tens or hundreds of thou-
sands of features/parameters.

– Need to balance beauty and practicality. Dynamic
programming techniques and speed issues are key.
Need to exploit sparseness.

• Feature-driven; performance-driven

– The emphasis is on developing and finding ways
to effectively exploit useful features from a rich but
sparse representation, rather than on trade-offs be-
tween machine learning methods (there’s still linguis-
tics there!)
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The Approach of Probabilistic Natural Language
Understanding

• Language use is situated in a world context

• People say the little that is needed to be understood by
their interlocutors in a certain situation

• Consequently

– Language is highly ambiguous
– Tasks like interpretation and translation involve (prob-

abilistically) reasoning about meaning, using world
knowledge not in the source text

• Suggests exploring probabilistic and quantitative tech-
niques, and moving away from the unrealistic categori-
cal assumptions of much of formal linguistics
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Distinctiveness of NLP as an ML problem

• Language allows the complex compositional encoding

of thoughts, ideas, feelings, . . . , intelligence.

• We are minimally dealing with hierarchical structures

(branching processes), and often want to allow more

complex forms of information sharing (dependencies).

• Enormous problems with data sparseness

• Both features and assigned classes regularly involve

multinomial distributions over huge numbers of values

(often in the tens of thousands)

• Generally dealing with discrete distributions though!

• The distributions are very uneven, and have fat tails
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Frequencies of frequencies in Tom Sawyer

Word Frequency of
Frequency Frequency

1 3993 71,730 word tokens
2 1292 8,018 word types
3 664
4 410
5 243
6 199
7 172
8 131
9 82

10 91
11–50 540

51–100 99
> 100 102
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The obligatory Zipf’s law slide:

Zipf’s law for the Brown corpus

• • •
• •

• •
•
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Zipf’s law

f ∝ 1

r
or, there is a k such that f · r = k

(Now frequently invoked for the web too!

See http://linkage.rockefeller.edu/wli/zipf/)

Mandelbrot’s law

f = P (r+ ρ)−B

log f = logP −B log(r+ ρ)
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Why is NLU difficult? The hidden structure of
language is hugely ambiguous

• Structures for: Fed raises interest rates 0.5% in effort

to control inflation (NYT headline 17 May 2000)
• S

NP

NNP

Fed

VP

V

raises

NP

NN

interest

NN

rates

NP

CD

0.5

NN

%

PP

P

in

NP

NN

effort

VP

V

to

VP

V

control

NP

NN

inflation
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Where are the ambiguities?

Part of speech ambiguities
Syntactic

VB attachment
VBZ VBP VBZ ambiguities

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 % in effort

to control
inflation

Word sense ambiguities: Fed→ “federal agent”
interest→ a feeling of wanting to know or learn more

Semantic interpretation ambiguities above the word level
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Mathematical Foundations

FSNLP, chapter 2

Christopher Manning and
Hinrich Schütze

© 1999–2002

51



Entropy

• Entropy is the average uncertainty of a random vari-

able:

Entropy H(p) = H(X) = − ∑

x∈X
p(x) log2 p(x)

• Suppose you are reporting the result of rolling an 8-

sided die. Then the entropy is:

H(X) = −
8

∑

i=1
p(i) logp(i) = −

8
∑

i=1

1

8
log

1

8
= − log

1

8
= 3 bits

• Entropy measures are expectations:

H(X) = E



log
1

p(X)




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Simplified Polynesian

• Simplified Polynesian appears to be just a random se-

quence of letters, with the letter frequencies as shown:

• p t k a i u
1/8 1/4 1/8 1/4 1/8 1/8

• Then the per-letter entropy is:

H(P ) = −∑

i∈{p,t,k,a,i,u}P (i) logP (i)

= −[4× 1

8
log

1

8
+ 2× 1

4
log

1

4
] = 2

1

2
bits

We can design a code that on average takes 21
2 bits a

letter:
p t k a i u
100 00 101 01 110 111
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The entropy of a weighted coin

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H(p)
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Joint/conditional entropy

• Joint entropy:

H(X, Y ) = − ∑

x∈X

∑

y∈Y
p(x, y) logp(x, y)

• Conditional entropy:

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x)

=
∑

x∈X
p(x)





− ∑

y∈Y
p(y|x) log p(y|x)







= − ∑

x∈X

∑

y∈Y
p(x, y) log p(y|x)
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The relation of mutual information I to en-
tropy H

• By the chain rule for entropy,

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

Therefore,

H(X)−H(X|Y ) = H(Y )−H(Y |X) = I(X; Y )

• This is called the mutual information between X and Y
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1

I(X; Y )

H(X|Y ) H(Y |X)

H(X) H(Y )

H(X,Y )



Mutual information

I(X; Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X, Y )

=
∑

x
p(x) log

1

p(x)
+

∑

y
p(y) log

1

p(y)
+

∑

x,y
p(x, y) logp(

=
∑

x,y
p(x, y) log

p(x, y)

p(x) p(y)

• Since H(X|X) = 0, note that:

H(X) = H(X)−H(X|X) = I(X; X)

• Hence, entropy is also called self-information

• MI of dependent variables depends on their entropy
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Mutual information in classification problems

• A large mutual information means that knowing a lot
about one variable tells you a lot about the other

• It is thus a useful metric for various problems in building
supervised classification systems:

– The standard decision tree induction algorithm uses
MI to decide the attribute on which to split a node:
∗ information gain= I(C; A)

– Brown et al. (1991a) used MI to find the most in-
formative single feature for WSD, and to partition its
values to correspond to senses

– MI is often used for feature selection in text catego-
rization (e.g., with Bernoulli Naive Bayes models)
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KL divergence or relative entropy

Two pmfs p(x) and q(x):

D(p ‖q) =
∑

x∈X
p(x) log

p(x)

q(x)

Say 0 log 0
q = 0, otherwise p log p

0 =∞.

D(p ‖q) = Ep



log
p(X)

q(X)





I(X; Y ) = D(p(x, y)‖p(x) p(y))
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KL divergence

D(p ‖q) =
∑

x∈X
p(x) log

p(x)

q(x)

• Measure of how different two probability distributions

are

• The average number of bits that are wasted by encod-

ing events from a distribution p with a code based on a

not-quite-right distribution q.

• D(p ‖q) ≥ 0; D(p ‖q) = 0 iff p = q

• Not a metric: not commutative, doesn’t satisfy triangle

equality
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[Slide on D(p‖q) vs. D(q‖p)]
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Cross entropy

• Entropy = uncertainty
• Lower entropy = efficient codes = knowing the structure

of the language = measure of model quality
• Entropy = measure of surprise
• How surprised we are when w follows h is pointwise

entropy:

H(w|h) = − log2 p(w|h)
p(w|h) = 1? p(w|h) = 0?

• Total surprise:

H total = −
n

∑

j=1
log2 m(wj|w1, w2, . . . , wj−1)

= − log2 m(w1, w2, . . . , wn)
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Formalizing through cross-entropy

• Our model of language is q(x). How good a model is

it?

• Idea: use D(p ‖q), where p is the correct model.

• Problem: we don’t know p.

• But we know roughly what it is like from a corpus

• Cross entropy:

H(X,q) = H(X) +D(p ‖q)

= −∑

x
p(x) log q(x)

= Ep(log
1

q(x)
)
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Cross entropy

• Cross entropy of a language L = (Xi) ∼ p(x) ac-

cording to a model m:

H(L,m) = − lim
n→∞

1

n

∑

x1n
p(x1n) logm(x1n)

• If the language is ‘nice’:

H(L,m) = − lim
n→∞

1

n
logm(x1n)

I.e., it’s just our average surprise for large n:

H(L,m) ≈ −1

n
logm(x1n)

• SinceH(L) is fixed if unknown, minimizing cross-entropy

is equivalent to minimizing D(p ‖m)
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1

• Assuming: independent test data, L = (Xi) is sta-

tionary [does’t change over time], ergodic [doesn’t get

stuck]



Entropy of English text

Character n-grams over a 27 letter alphabet

Model Cross entropy (bits)

Uniform uniform 4.75 (log 27)
Zeroth Order unigram 4.03
First Order bigram 3.32
Second Order trigram 3.1
Third Order fourgram 2.8
Shannon’s experiment 1.3 (1.34)

(Cover and Thomas 1991: 140) (though order is named

nonstandardly there)
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Perplexity

perplexity(x1n,m) = 2H(x1n,m)

= m(x1n)
−1
n

(Note that H(·) has been overloaded between total en-

tropy and entropy rate; perplexity is always per decision.)
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Constituent phrases in language are repre-
sented by phrase structure trees

S

NP

That man

VP

VBD

caught

NP

the butterfly

PP

IN

with

NP

a net
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General Context-Free Grammar Parsing:
A phrase structure grammar

• Also known as a context-free grammar (CFG)

• S → NP VP DT → the

NP →















DT NNS
DT NN
NP PP















NNS →















children
students
mountains















VP →















VP PP
VBD
VBD NP















VBD →















slept
ate
saw















PP → IN NP IN →






in
of







NN → cake
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Application of grammar rewrite rules

• S

→ NP VP

→ DT NNS VBD

→ The children slept

• S

→ NP VP

→ DT NNS VBD NP

→ DT NNS VBD DT NN

→ The children ate the cake
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Phrase structure trees

• S

NP

DT

The

NNS

children

VP

VBD

slept
• S

NP

DT

The

NNS

children

VP

VBD

ate

NP

DT

the

NN

cake
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Phrase structure is recursive

So we use at least context-free grammars, in general
S

NP

DT

the

NNS

students

VP

VBD

ate

NP

NP

DT

the

NN

cake

PP

IN

of

NP

NP

DT

the

NN

children

PP

IN

in

NP

DT

the

NN

mountains
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Why we need recursive phrase structure

• Kupiec (1992): Sometimes HMM tagger goes awry:

waves→ verb

• The velocity of the seismic waves rises to . . .

S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .

• Language model: There are similar problems.

The captain of the ship yelled out.
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Why we need phrase structure (2)

• Syntax gives important clues in information extraction

tasks and some cases of named entity recognition

• We have recently demonstrated that stimulation of [CELLTYPEhuman

T and natural killer cells] with [PROTEINIL-12] induces

tyrosine phosphorylation of the [PROTEINJanus family

tyrosine kinase] [PROTEINJAK2] and [PROTEINTyk2].

• Things that are the object of phosphorylate are likely

proteins.
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Constituency

• Phrase structure organizes words into nested constituents.

• How do we know what is a constituent? (Not that lin-

guists don’t argue about some cases.)

– Distribution: behaves as a unit that appears in differ-

ent places:

∗ John talked [to the children] [about drugs].

∗ John talked [about drugs] [to the children].

∗ *John talked drugs to the children about

– Substitution/expansion/pro-forms:

∗ I sat [on the box/right on top of the box/there].

– Coordination, no intrusion, fragments, semantics, . . .
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Natural language grammars are ambiguous:

Prepositional phrase attaching to verb

S

NP

DT

The

NNS

children

VP

VP

VBD

ate

NP

DT

the

NN

cake

PP

IN

with

NP

DT

a

NN

spoon
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Prepositional phrase attaching to noun

S

NP

DT

The

NNS

children

VP

VBD

ate

NP

NP

DT

the

NN

cake

PP

IN

with

NP

DT

a

NN

spoon
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Attachment ambiguities in a real sentence

The board approved [its acquisition] [by Royal Trustco

Ltd.] [of Toronto]

[for $27 a share]

[at its monthly meeting].
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Penn Treebank Sentences: an example
( (S

(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP
(NP (DT a) (NN round))
(PP (IN of)

(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)

(NP (JJ other) (NNS lenders)))
(PP (IN against)

(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
(, ,)
(S-ADV

(NP-SBJ (-NONE- * ))
(VP (VBG reflecting)

(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)

(NP (DT that) (NN market)))))))
(. .)))
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Ambiguity

• Programming language parsers resolve local ambigui-

ties with lookahead

• Natural languages have global ambiguities:

– I saw that gasoline can explode

• What is the size of embedded NP?
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What is parsing?

• We want to run the grammar backwards to find the
structures

• Parsing can be viewed as a search problem

• Parsing is a hidden data problem

• We search through the legal rewritings of the grammar

• We want to examine all structures for a string of words
(for the moment)

• We can do this bottom-up or top-down

– This distinction is independent of depth-first/bread-
first etc. – we can do either both ways

– Doing this we build a search tree which is different
from the parse tree
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Human parsing

• Humans often do ambiguity maintenance

– Have the police . . . eaten their supper?

– come in and look around.

– taken out and shot.

• But humans also commit early and are “garden pathed”:

– The man who hunts ducks out on weekends.

– The cotton shirts are made from grows in Missis-

sippi.

– The horse raced past the barn fell.
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State space search

• States:
• Operators:
• Start state:
• Goal test:
• Algorithm

stack = { startState }
solutions = {}
loop

if stack is empty, return solutions
state = remove-front(stack)
if goal(state) push(state, solutions)
stack = pushAll(expand(state, operators), stack)

end
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Another phrase structure grammar

S → NP VP N → cats
VP → V NP N → claws
VP → V NP PP N → people
NP → NP PP N → scratch
NP → N V → scratch
NP → e P → with
NP → N N PP → P NP

(By linguistic convention, S is the start symbol, but in the

PTB, we use the unlabeled node at the top, which can

rewrite various ways.)
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cats scratch people with claws

S
NP VP
NP PP VP 3 choices
NP PP PP VP
oops!
N VP
cats VP
cats V NP 2 choices
cats scratch NP
cats scratch N 3 choices – showing 2nd
cats scratch people oops!
cats scratch NP PP
cats scratch N PP 3 choices – showing 2nd . . .
cats scratch people with claws
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Phrase Structure (CF) Grammars

G = 〈T,N, S,R〉
• T is set of terminals

• N is set of nonterminals

– For NLP, we usually distinguish out a set P ⊂ N of

preterminals which always rewrite as terminals

• S is start symbol (one of the nonterminals)

• R is rules/productions of the form X → γ, where X

is a nonterminal and γ is a sequence of terminals and

nonterminals (may be empty)

• A grammar G generates a language L
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Recognizers and parsers

• A recognizer is a program for which a given grammar

and a given sentence returns yes if the sentence is

accepted by the grammar (i.e., the sentence is in the

language) and no otherwise

• A parser in addition to doing the work of a recognizer

also returns the set of parse trees for the string
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Soundness and completeness

• A parser is sound if every parse it returns is valid/correct

• A parser terminates if it is guaranteed to not go off into

an infinite loop

• A parser is complete if for any given grammar and sen-

tence it is sound, produces every valid parse for that

sentence, and terminates

• (For many purposes, we settle for sound but incomplete

parsers: e.g., probabilistic parsers that return a k-best

list)
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Top-down parsing

• Top-down parsing is goal directed

• A top-down parser starts with a list of constituents to be

built. The top-down parser rewrites the goals in the goal

list by matching one against the LHS of the grammar

rules, and expanding it with the RHS, attempting to

match the sentence to be derived.

• If a goal can be rewritten in several ways, then there is

a choice of which rule to apply (search problem)

• Can use depth-first or breadth-first search, and goal

ordering.
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Bottom-up parsing

• Bottom-up parsing is data directed

• The initial goal list of a bottom-up parser is the string to
be parsed. If a sequence in the goal list matches the
RHS of a rule, then this sequence may be replaced by
the LHS of the rule.

• Parsing is finished when the goal list contains just the
start category.

• If the RHS of several rules match the goal list, then
there is a choice of which rule to apply (search problem)

• Can use depth-first or breadth-first search, and goal
ordering.

• The standard presentation is as shift-reduce parsing.
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Problems with top-down parsing

• Left recursive rules

• A top-down parser will do badly if there are many differ-
ent rules for the same LHS. Consider if there are 600
rules for S, 599 of which start with NP, but one of which
starts with V, and the sentence starts with V.

• Useless work: expands things that are possible top-
down but not there

• Top-down parsers do well if there is useful grammar-
driven control: search is directed by the grammar

• Top-down is hopeless for rewriting parts of speech (preter-
minals) with words (terminals). In practice that is al-
ways done bottom-up as lexical lookup.
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1

• Repeated work: anywhere there is common substruc-

ture



Problems with bottom-up parsing

• Unable to deal with empty categories: termination prob-
lem, unless rewriting empties as constituents is some-
how restricted (but then it’s generally incomplete)
• Useless work: locally possible, but globally impossible.
• Inefficient when there is great lexical ambiguity (grammar-

driven control might help here)
• Conversely, it is data-directed: it attempts to parse the

words that are there.
• Repeated work: anywhere there is common substruc-

ture
• Both TD (LL) and BU (LR) parsers can (and frequently

do) do work exponential in the sentence length on NLP
problems.
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Principles for success: what one needs to do

• If you are going to do parsing-as-search with a gram-

mar as is:

– Left recursive structures must be found, not predicted

– Empty categories must be predicted, not found

• Doing these things doesn’t fix the repeated work prob-

lem.
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An alternative way to fix things

• Grammar transformations can fix both left-recursion and

epsilon productions

• Then you parse the same language but with different

trees

• Linguists tend to hate you

– But this is a misconception: they shouldn’t

– You can fix the trees post hoc
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A second way to fix things

• Rather than doing parsing-as-search, we do parsing as

dynamic programming

• This is the most standard way to do things

• It solves the problem of doing repeated work

• But there are also other ways of solving the problem of

doing repeated work

– Memoization (remembering solved subproblems)

– Doing graph-search rather than tree-search.
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Filtering

• Conversion to CNF. First remove ǫ categories.

• Directed vs. Undirected parsers: using the opposite

direction for x filtering.
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Left corner parsing

• Left corner parsing: Accept word. What is it left-corner

of? Parse that constituent top down. Can prune on

top-down knowledge. Doesn’t have problem with left

recursion except with unaries. Does have problem with

empties in left corner, but not while working top down.
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n-gram models and statistical
estimation

FSNLP, chapter 6

Christopher Manning and
Hinrich Schütze

© 1999–2002
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Probabilistic language modeling

• Assigns probability P (t) to a word sequence t = w1w2 · · ·wn
• Chain rule and joint/conditional probabilities for text t:

P (t) = P (w1 · · ·wn) = P (w1) · · ·P (wn|w1, · · ·wn−1)

=
n
∏

i=1
P (wi|w1 · · ·wi−1)

where

P (wk|w1 . . . wk−1) =
P (w1 . . . wk)

P (w1 . . . wk−1)
≈ C(w1 . . . wk)

C(w1 . . . wk−1)

• The chain rule leads to a history-based model: we

predict following things from past things

• But there are too many histories; we need to cluster

histories into equivalence classes
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n-gram models: the classic example of a
statistical model of language

• Each word is predicted according to a conditional dis-

tribution based on a limited prior context

• Conditional Probability Table (CPT): P (X|both)

– P (of |both) = 0.066

– P (to|both) = 0.041

– P (in|both) = 0.038

• From 1940s onward (or even 1910s – Markov 1913)

• a.k.a. Markov (chain) models

99



Markov models = n-gram models

• Deterministic FSMs with probabilities

eats:0.01

broccoli:0.002
in:0.01

for:0.05
fish:0.1

chicken:0.15

at:0.03

for:0.1
• No long distance dependencies

– “The future is independent of the past given the present”

• No notion of structure or syntactic dependency

• But lexical

• (And: robust, have frequency information, . . . )
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Markov models = n-gram models

W2
The

W3
of

W4
STOP

W1
〈s〉

W2
In

W3
both

W4
??

aij aij aij

• Simplest linear graphical models

• Words are random variables, arrows are direct depen-

dencies between them (CPTs)
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n-gram models

• Core language model for the engineering task of better

predicting the next word:

– Speech recognition

– OCR

– Context-sensitive spelling correction

• These simple engineering models have just been amaz-

ingly successful.

• It is only recently that they have been improved on for

these tasks (Chelba and Jelinek 1998; Charniak 2001).

• But linguistically, they are appalling simple and naive
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n-th order Markov models

• First order Markov assumption = bigram

P (wk|w1 . . . wk−1) ≈ P (wk|wk−1) =
P (wk−1wk)

P (wk−1)

• Similarly, n-th order Markov assumption

• Most commonly, trigram (2nd order):

P (wk|w1 . . . wk−1) ≈ P (wk|wk−2, wk−1) =
P (wk−2wk−1wk)

P (wk−2, wk−1)
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Why mightn’t n-gram models work?

• Relationships (say between subject and verb) can be

arbitrarily distant and convoluted, as linguists love to

point out:

– The man that I was watching without pausing to look

at what was happening down the street, and quite

oblivious to the situation that was about to befall him

confidently strode into the center of the road.
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Why do they work?

• That kind of thing doesn’t happen much

• Collins (1997):

– 74% of dependencies (in the Penn Treebank – WSJ)

are with an adjacent word (95% with one ≤ 5 words

away), once one treats simple NPs as units:

– Below, 4/6 = 66% based on words

The post office will hold out discounts
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Why is that?

Sapir (1921: 14):

‘When I say, for instance, “I had a good breakfast

this morning,” it is clear that I am not in the throes

of laborious thought, that what I have to transmit

is hardly more than a pleasurable memory symbol-

ically rendered in the grooves of habitual expres-

sion. . . . It is somewhat as though a dynamo capa-

ble of generating enough power to run an elevator

were operated almost exclusively to feed an electric

doorbell.’
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Evaluation of language models

• Best evaluation of probability model is task-based

• As substitute for evaluating one component, standardly

use corpus per-word cross entropy:

H(X,p) = −1

n

n
∑

i=1
log2P (wi|w1, . . . , wi−1)

• Shannon game: try to predict next word in discourse

• Or perplexity (measure of uncertainty of predictions):

PP (X,p) = 2H(X,p) =





n
∏

i=1
P (wi|w1, . . . , wi−1)





−1/n

• Needs to be assessed on independent, unseen, test

data
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Relative frequency = Maximum Likelihood
Estimate

P (w2|w1) =
C(w1, w2)

C(w1)

(or similarly for higher order or joint probabilities)

Makes training data as probable as possible
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I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

Selected bigram counts (Berkeley Restaurant Project – J&M)
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I want to eat Chinese food lunch

I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .56 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Selected bigram probabilities (Berkeley Restaurant Project

– J&M)
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Limitations of Maximum Likelihood Estimator

Problem: We are often infinitely surprised when unseen

word appears (P (unseen) = 0)

• Problem: this happens commonly.

• Probabilities of zero count words are too low

• Probabilities of nonzero count words are too high

• Estimates for high count words are fairly accurate

• Estimates for low count words are mostly inaccurate

• We need smoothing! (We flatten spiky distribution and

give shavings to unseen items.)
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Adding one = Laplace’s law (1851)

P (w2|w1) =
C(w1, w2) + 1

C(w1) + V

• V is the vocabulary size (assume fixed, closed vocab-

ulary)

• This is the Bayesian (MAP) estimator you get by as-

suming a uniform unit prior on events ( = a Dirichlet

prior)
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I want to eat Chinese food lunch

I 9 1088 1 14 1 1 1
want 4 1 787 1 7 9 7
to 4 1 11 861 4 1 13
eat 1 1 3 1 20 3 53
Chinese 3 1 1 1 1 121 2
food 20 1 18 1 1 1 1
lunch 5 1 1 1 1 2 1

Add one counts (Berkeley Restaurant Project – J&M)

113



I want to eat Chinese food lunch

I .0018 .22 .00020 .0028 .00020 .00020 .00020
want .0014 .00035 .28 .00035 .0025 .0032 .0025
to .00082 .00021 .0023 .18 .00082 .00021 .0027
eat .00039 .00039 .0012 .00039 .0078 .0012 .021
Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011
food .0064 .00032 .0058 .00032 .00032 .00032 .00032
lunch .0024 .00048 .00048 .00048 .00048 .00096 .00048

Add one probabilities (Berkeley Restaurant Project – J&M)
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I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I want to eat Chinese food lunch

I 6 740 .68 10 .68 .68 .68
want 2 .42 331 .42 3 4 3
to 3 .69 8 594 3 .69 9
eat .37 .37 1 .37 7.4 1 20
Chinese .36 .12 .12 .12 .12 15 .24
food 10 .48 9 .48 .48 .48 .48
lunch 1.1 .22 .22 .22 .22 .44 .22

Original versus add-one predicted counts
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Add one estimator

• Problem: gives too much probability mass to unseens.

• Not good for large vocab, comparatively little data (i.e.,

NLP)

• e.g 10,000 word vocab, 1,000,000 words of training

data, but comes across occurs 10 times. Of those, 8

times next word is as

– PMLE(as|comes across) = 0.8

– P+1(as|comes across) = 8+1
10+10000 ≈ 0.0009
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Partial fixes

• Quick fix: Lidstone’s law (Mitchell’s (1997) “m-estimate”):

P (w2|w1) =
C(w1, w2) + λ

C(w1) + λV

for λ < 1, e.g., 1/2 or 0.05.
– Mitchell’sm-estimate sets λV to bem and subdivid-

ing it between the words
– Doesn’t correctly estimate difference between things

seen 0 and 1 time
• Unigram prior

– More likely to see next unseen words that are a priori
common

P (w2|w1) =
C(w1, w2) + λP (w2)

C(w1) + λ
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Absolute discounting

• Idea is that we want to discount counts of seen things

a little, and reallocate this probability mass to unseens

• By subtracting a fixed count, probability estimates for

commonly seen things are scarcely affected, while prob-

abilities of rare things are greatly affected

• If the discount is around δ = 0.75, then seeing some-

thing once is not so different to not having seen it at

all

P (w2|w1) = (C(w1, w2)−δ)/C(w1) if C(w1, w2) > 0

P (w2|w1) = (V −N0)δ/N0C(w1) otherwise
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The frequency of previously unseen events

How do you know how likely you are to see a new word

type in the future (in a certain context)?

• Examine some further text and find out [empirical held

out estimators = validation]

• Use things you’ve seen once to estimate probability of

unseen things:

P (unseen) =
N1

N
whereN1 is number of things seen once. (Good-Turing:

Church and Gale 1991; Gale and Sampson 1995)
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Good-Turing smoothing

Derivation reflects leave-one out estimation (Ney et al. 1997):

• For each word token in data, call it the test set; remain-

ing data is training set

• See how often word in test set has r counts in training

set

• This will happen every time word left out has r + 1

counts in original data

• So total count mass of r count words is assigned from

mass of r+ 1 count words [= Nr+1 × (r+ 1)]

• Doesn’t require held out data (which is good!)
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Good-Turing smoothing

• r* is corrected frequency estimate for word occurring r

times

• There are Nr words with count r in the data

• Nr × r* = Nr+1 × (r+ 1) or

• r* =
Nr+1×(r+1)

Nr

• Or if w had frequency r, P (w) = (r+ 1)Nr+1/NrN

• All words with same count get same probability

• This reestimation needs smoothing.

• For small r, Nr > Nr+1. But what of the?

• Simple Good Turing: use best-fit power law on low count

counts.
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Smoothing: Rest of the story (1)

• Other methods: backoff (Katz 1987), cross-validation,

Witten-Bell discounting, . . . (Chen and Goodman 1998;

Goodman 2001)

• Simple, but surprisingly effective: Simple linear interpo-

lation (deleted interpolation; mixture model; shrinkage):

P̂(w3|w1,w2)=λ3P3(w3|w1,w2)+λ2P2(w3|w2)+λ1P1(w3)

• The λi can be estimated on held out data

• They can be functions of (equivalence-classed) histo-

ries

• For open vocabulary, need to handle words unseen in

any context (just use UNK, spelling models, etc.)

122



Smoothing: Rest of the story (2)

• Recent work emphasizes constraints on the smoothed

model

• Kneser and Ney (1995): Backoff n-gram counts not

proportional to frequency of n-gram in training data but

to expectation of how often it should occur in novel

trigram – since one only uses backoff estimate when

trigram not found

• (Smoothed) maximum entropy (a.k.a. loglinear) models

again place constraints on the distribution (Rosenfeld

1996, 2000)
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Size of language models with cutoffs

Seymore and Rosenfeld (ICSLP, 1996): 58,000 word dic-

tionary, 45 M words of training data, WSJ, Sphinx II

Bi/Tri-gram cutoff # Bigrams # Trigrams Memory (MB)
0/0 4,627,551 16,838,937 104
0/1 4,627,551 3,581,187 51
1/1 1,787,935 3,581,187 29

10/10 347,647 367,928 4
80% of unique trigrams occur only once!

• Note the possibilities for compression (if you’re confi-

dent that you’ll be given English text and the encoder/

decoder can use very big tables)
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More LM facts

• Seymore, Chen, Eskenazi and Rosenfeld (1996)

• HUB-4: Broadcast News 51,000 word vocab, 130M words

training. Katz backoff smoothing (1/1 cutoff).

• Perplexity 231

• 0/0 cutoff: 3% perplexity reduction

• 7-grams: 15% perplexity reduction

• Note the possibilities for compression, if you’re confi-

dent that you’ll be given English text (and the encoder/

decoder can use very big tables)
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Extra slides
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Markov models = n-gram models

eats:0.01

broccoli:0.002
in:0.01

for:0.05
fish:0.1

chicken:0.15

at:0.03

for:0.1
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Markov models

• Deterministic FSMs with probabilities

• No long distance dependencies

– “The future is independent of the past given the present”

• No notion of structure or syntactic dependency

• But lexical

• (And: robust, have frequency information, . . . )
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Probability estimates for StatNLP

P (X2|X1 = w1) = P (w2|w1)

Relative frequency = MLE

P (w2|w1) =
C(w1, w2)

C(w1)

Problem: often infinitely surprised when unseen word ap-

pears

Problem: this happens commonly
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Adding one = Laplace’s law

P (w2|w1) =
C(w1, w2) + 1

C(w1) + V

(Is Bayesian estimator assuming a uniform prior on events.)

Problem: gives too much probability mass to unseens.

Quick fix: Lidstone’s law:

P (w2|w1) =
C(w1, w2) + λ

C(w1) + λV

for λ < 1, e.g., 1/2
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Better methods

• Lots – in chapter 6. We won’t dwell on them.

• Simple but surprisingly effective: mixture models. Sim-

ple linear interpolation:

P (w2|w1) = λ1P1(w2) + λ2P2(w2|w1)

• Open vocabulary. Unknown words.
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Managing data

• Training data

• Validation data

• Final testing data

• Cross-validation

– One score doesn’t allow system comparison

– This allows confidence ranges to be computed

– And systems to be compared with confidence!
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Dealing with unseens: Add one estimator =
Laplace’s law (1814)

• Bayesian estimator assuming a uniform prior on events:

P (w|h) =
C(h, w) + 1

C(h) + V

• Problem: gives too much probability mass to unseens.

• Not good for large vocab, comparatively little data

• E.g., word trigrams: 10,000 word vocab; 10,000,000

words of training data; comes across occurs 10 times.

Of those, 8 times next word is as

– PMLE(as|comes across) = 0.8

– P+1(as|comes across) = 8+1
10+10000 ≈ 0.0009
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The frequency of previously unseen events

• Quick fix: Lidstone’s law: P (w|h) = C(h,w)+λ
C(h)+λV

for λ < 1, e.g., 1/2 or 0.05

• How do you know how likely you are to see a new word

type in the future (in a certain context)?

– Examine some further text and find out [held out

estimators]

– Use things you’ve seen once to estimate probability

of unseen things:

P (unseen) =
N1

N
N1 is number of things seen once. (Good-Turing:

Church and Gale 1991; Gale and Sampson 1995)
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Adding one = Laplace’s law

P(w2|w1) =
C(w1, w2) + 1

C(w1) + V

• Is Bayesian estimator assuming a uniform prior

on events.

• Simplest, but not very good answer to avoid-

ing zero probabilities

• There are much better methods, but I’m putting

them aside as ‘technical details’ (Manning and

Schütze 1999: ch.6)
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Language model topic determination

• Start with some documents labeled for topic (ci)

• Train an n-gram language model just on documents of

each topic, which we regard as a ‘language’

• Testing: Decide which topic/language is most likely to

have generated a new document, by calculating the

P (w1 · · ·wn|ci)
• Choose the most probable one as the topic of the doc-

ument
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Disambiguating using ‘language’ models

• Supervised training from hand-labeled examples

• Train n-gram language model for examples of each sense,

treating examples as a ‘language’

– estimate P (port|sailed, into), etc.

– reduce parameters by backing off where there is in-

sufficient data: P (port|into) or P (port) [unigram es-

timate for sense]

• Disambiguate based on in which ‘language’ the sen-

tence would have highest probability

• This gives some of the advantages of wide context bag

of words models (Naive Bayes-like) and use of local

structural cues around word
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Word Sense Disambiguation

FSNLP, chapter 7

Christopher Manning and
Hinrich Schütze

© 1999–2004
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Word sense disambiguation

• The task is to determine which of various senses of a

word are invoked in context:

– the seed companies cut off the tassels of each plant,

making it male sterile

– Nissan’s Tennessee manufacturing plant beat back

a United Auto Workers organizing effort with aggres-

sive tactics

• This is an important problem: Most words are ambigu-

ous (have multiple senses)

• Converse: words or senses that mean (almost) the same:

image, likeness, portrait, facsimile, picture
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WSD: Many other cases are harder

• title:

– Name/heading of a book, statute, work of art or mu-

sic, etc.

– Material at the start of a film

– The right of legal ownership (of land)

– The document that is evidence of this right

– An appellation of respect attached to a person’s name

– A written work
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WSD: The many meanings of interest [n.]

• Readiness to give attention to or to learn about some-

thing

• Quality of causing attention to be given

• Activity, subject, etc., which one gives time and atten-

tion to

• The advantage, advancement or favor of an individual

or group

• A stake or share (in a company, business, etc.)

• Money paid regularly for the use of money
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WSD: Many other cases are harder
• modest:

– In evident apprehension that such a prospect might frighten off the young
or composers of more modest 1 forms –

– Tort reform statutes in thirty-nine states have effected modest 9 changes of
substantive and remedial law

– The modest 9 premises are announced with a modest and simple name –
– In the year before the Nobel Foundation belatedly honoured this modest 0

and unassuming individual,
– LinkWay is IBM’s response to HyperCard, and in Glasgow (its UK launch)

it impressed many by providing colour, by its modest 9 memory require-
ments,

– In a modest 1 mews opposite TV-AM there is a rumpled hyperactive figure
– He is also modest 0: the “help to” is a nice touch.
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WSD: types of problems

• Homonymy: meanings are unrelated: bank of river and

bank financial institution

• Polysemy: related meanings (as on previous slides)

• Systematic polysemy: standard methods of extending

a meaning, such as from an organization to the building

where it is housed.

• A word frequently takes on further related meanings

through systematic polysemy or metaphor
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Word sense disambiguation

• Most early work used semantic networks, frames, logi-
cal reasoning, or “expert system” methods for disam-
biguation based on contexts (e.g., Small 1980, Hirst
1988).
• The problem got quite out of hand:

– The word expert for ‘throw’ is “currently six pages
long, but should be ten times that size” (Small and
Rieger 1982)

• Supervised sense disambiguation through use of con-
text is frequently extremely successful – and is a straight-
forward classification problem
• “You shall know a word by the company it keeps” – Firth
• However, it requires extensive annotated training data
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Some issues in WSD

• Supervised vs. unsupervised

– Or better: What are the knowledge sources used?

• Pseudowords

– Pain-free creation of training data

– Not as realistic as real words

• Upper and lower bounds: how hard is the task?

– Lower bound: go with most common sense (can

vary from 20% to 90+% performance)

– Upper bound: usually taken as human performance

147



Other (semi-)supervised WSD

• Brown et al. (1991b): used just one key indicating (lin-

guistic) feature (e.g., object of verb) and partitioned its

values

• Lesk (1986) used a dictionary; Yarowsky (1992) used a

thesaurus

• Use of a parallel corpus (Brown et al. 1991b) or a bilin-

gual dictionary (Dagan and Itai 1994)

• Use of decomposable models (a more complex Markov

random field model) (Bruce and Wiebe 1994, 1999)
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Unsupervised and semi-supervised WSD

• Really, if you want to be able to do WSD in the large,

you need to be able to disambiguate all words as you

go.

• You’re unlikely to have a ton of hand-built word sense

training data for all words.

• Or you might: the OpenMind Word Expert project:

– http://teach-computers.org/word-expert.html
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Unsupervised and semi-supervised WSD

• Main hope is getting indirect supervision from existing
broad coverage resources:

– Lesk (1986) used a dictionary; Yarowsky (1992) used
a thesaurus

– Use of a parallel corpus (Brown et al. 1991b) or a
bilingual dictionary (Dagan and Itai 1994)

This can be moderately successful. (Still not nearly
as good as supervised systems. Interesting research
topic.

• There is work on fully unsupervised WSD

– This is effectively word sense clustering or word sense
discrimination (Schütze 1998).
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– Usually no outside source of truth

– Can be useful for IR, etc. though



Lesk (1986)

• Words in context can be mutually disambiguated by
overlap of their defining words in a dictionary

– ash
1. the solid residue left when combustible material

is thoroughly burned . . .
2. Something that symbolizes grief or repentence

– coal
1. a black or brownish black solid combustible sub-

stances . . .

• We’d go with the first sense of ash
• Lesk reports performance of 50%–70% from brief ex-

perimentation
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Collocations/selectional restrictions

• Sometimes a single feature can give you very good
evidence – and avoids need for feature combination

• Traditional version: selectional restrictions

– Focus on constraints of main syntactic dependen-
cies

– I hate washing dishes
– I always enjoy spicy dishes
– Selectional restrictions may be weak, made irrele-

vant by negation or stretched in metaphors or by odd
events

• More recent versions: Brown et al. (1991), Resnik
(1993)
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– Non-standard good indicators: tense, adjacent words

for collocations (mace spray ; mace and parliament)



Global constraints: Yarowsky (1995)

• One sense per discourse: the sense of a word is highly
consistent within a document
– True for topic dependent words
– Not so true for other items like adjectives and verbs,

e.g. make, take
– Krovetz (1998) “More than One Sense Per Discourse”

argues it isn’t true at all once you move to fine-grained
senses

• One sense per collocation: A word reoccurring in col-
location with the same word will almost surely have the
same sense
– This is why Brown et al.’s (1991b) use of just one

disambiguating feature was quite effective
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Unsupervised disambiguation

• Word sense discrimination (Schütze 1998) or clustering

• Useful in applied areas where words are usually used

in very specific senses (commonly not ones in dictio-

naries!). E.g., water table as bit of wood at bottom of

door

• One can use clustering techniques

• Or assume hidden classes and attempt to find them us-

ing the EM (Expectation Maximization) algorithm (Schütze

1998)
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WSD: Senseval competitions

• Senseval 1: September 1998. Results in Computers

and the Humanities 34(1–2). OUP Hector corpus.

• Senseval 2: first half of 2001. WordNet senses.

• Senseval 3: first half of 2004. WordNet senses.

• Sense-tagged corpora available:

– http://www.itri.brighton.ac.uk/events/senseval/

• Comparison of various systems, all the usual suspects

(naive Bayes, decision lists, decomposable models, memory-

based methods), and of foundational issues
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WSD Performance

• Varies widely depending on how difficult the disambigua-
tion task is

• Accuracies of over 90% are commonly reported on some
of the classic, often fairly easy, word disambiguation
tasks (pike, star, interest, . . . )

• Senseval brought careful evaluation of difficult WSD
(many senses, different POS)

• Senseval 1: more fine grained senses, wider range of
types:

– Overall: about 75% accuracy
– Nouns: about 80% accuracy
– Verbs: about 70% accuracy
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What is a word sense?

• Particular ranges of word senses have to be distinguished

in many practical tasks, e.g.:

– translation

– IR

• But there generally isn’t one way to divide the uses of

a word into a set of non-overlapping categories. Dictio-

naries provide neither consisentency nor non-overlapping

categories usually.

• Senses depend on the task (Kilgarriff 1997)
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Similar ‘disambiguation’ problems

• Sentence boundary detection

• I live on Palm Dr. Smith lives downtown.

• Only really ambiguous when:

– word before the period is an abbreviation (which can

end a sentence – not something like a title)

– word after the period is capitalized (and can be a

proper name – otherwise it must be a sentence end)

• Can be treated as ‘disambiguating’ periods (as abbre-

viation mark, end of sentence, or both simultaneously

[haplology])
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Similar ‘disambiguation’ problems

• Context-sensitive spelling correction:

• I know their is a problem with there account.
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Text categorization

• Have some predefined categories for texts

– Predefined categories for news items on newswires

– Reuters categories

– Yahoo! classes (extra complexity: hierarchical)

– Spam vs. not spam

• Word sense disambiguation can actually be thought of

as text (here, context) categorization

– But many more opportunities to use detailed (semi-)

linguistic features
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The right features are more important than
snazzy models, methods, and objective func-
tions

• Within StatNLP, if a model lets you make use of more

linguistic information (i.e., it has better features), then

you’re likely to do better, even if the model is theoreti-

cally rancid

• Example:nnnn

– Senseval 2: Features for word sense disambiguation
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Disambiguating using ‘language’ models

• Supervised training from hand-labeled examples
• Train n-gram language model for examples of each sense,

treating examples as a ‘language’
– estimate P (frog|large, green), etc.
– reduce parameters by backing off where there is in-

sufficient data: use P (frog|green) or P (frog)
• Disambiguate based on in which ‘language’ the sen-

tence would have highest probability
• Multinomial Naive Bayes models are class-conditional

unigram language models
• Higher oder models can give some of the advantages

of wide context bag of words models (Naive Bayes-like)
and use of local structural cues around word
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E.g., six senses of interest (Aist et al. 1996)

• Senses:

– Readiness to give attention
– Quality of causing attention to be given
– Activity, subject, etc., which one gives time and at-

tention to
– Advantage, advancement or favor
– A share (in a company, business, etc.)
– Money paid for the use of money

• Performance of 91% correct on independent test data

• (This compares well with other methods, e.g., Bruce
and Wiebe report 78% using decomposable models on
the same data.)
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Bayesian classification in WSD

• Vectors ~x are some representation of the context of use

of a word

• Problem: We usually don’t know P (ck|~x)
• Partial solution: we break it up by Bayes’ rule

A ∩B

Ω
A B

P (B|A) = P (A ∩B)/P (A)

P (A ∩B) = P (B)P (A|B)
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Bayes’ theorem

P (B|A) =
P (A,B)

P (A)
=
P (A|B)P (B)

P (A)

If A ⊆ ∪iBi and the Bi are disjoint, then (sum rule):

P (A) =
∑

iP (A,Bi) =
∑

iP (A|Bi)P (Bi)

Bayes’ theorem: If A ⊆ ∪ni=1Bi, P (A) > 0, and Bi ∩
Bj = ∅ for i 6= j: Likelihood Prior

P (Bj|A) =
P (A|Bj)P (Bj)

P (A)
=

P (A|Bj)× P (Bj)
∑n
i=1P (A|Bi)P (Bi)

Posterior Normalizing term
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Naive Bayes WSD

• ~x is our context (something like a 100 word window)

• ck is a sense of the word

c′ = argmax
ck

P (ck|~x)

= argmax
ck

P (~x|ck)
P (~x)

P (ck)

= argmax
ck

P (~x|ck)P (ck)

= argmax
ck

[logP (~x|ck) + logP (ck)]
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(Multinomial) Naive Bayes classifiers for WSD

• ~x is the context (something like a 100 word window)

• ck is a sense of the word to be disambiguated

Choose c′ = argmax
ck

P (ck|~x)

= argmax
ck

P (~x|ck)
P (~x)

P (ck)

= argmax
ck

[logP (~x|ck) + logP (ck)]

= argmax
ck









∑

vj in ~x

logP (vj|ck) + logP (ck)









• An effective method in practice, but also an example of

a structure-blind ‘bag of words’ model
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WSD methods

• One method: A multinomial naive Bayes classifier, add
1
10 smoothing. Except words near the ambiguous word
are weighted by a strongly peaked function (distance
3–5, 3×; distance 2, 5×, distance 1, 15×)

• Other methods (Senseval 2 entries):

– Bagged decision trees with unigram, bigram, and
long distance bigram features

– Weighted vote of DT, NB, and kNN classifiers over
short and long distance bigram features

– Hierarchical LazyBoosting over large and small win-
dow bag-of-word features, and WordNet features

– Support vector machine with IDF feature weighting
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Senseval 2 results

• The hacked Naive Bayes classifier has no particular
theoretical justification. One really cannot make sense
of it in terms of the independence assumptions, etc.,
usually invoked for a Naive Bayes model

• But it is linguistically roughly right: nearby context is
often very important for WSD: noun collocations (com-
plete accident), verbs (derive satisfaction)

• In Senseval 2, it scores an average accuracy of 61.2%

• This model was just a component of a system we en-
tered, but alone it would have come in 6th place out of
27 systems (on English lexical sample data), beating
out all the systems on the previous slide
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Word Sense Disambiguation

extra or variant slides
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Word sense disambiguation

• The problem of assigning the correct sense to a use of

a word in context

• bank:

– the rising ground bordering a lake, river, or sea

– an establishment for the custody, loan exchange, or

issue of money

• Traders said central banks will be waiting in the wings.

• A straightforward classification problem

171



(Multinomial) Naive Bayes model

• vj is word j of the document

C

v1 v2 v3 v4 · · · vn

• One chooses a category, and then generate words (here

a unigram estimate)

• The CPT for each vi multinomial is identical (tied pa-

rameters), and estimated over the whole vocabulary

• This is the simplest Hidden Markov Model
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Lexical Acquisition

FSNLP, chapter 8

Christopher Manning and
Hinrich Schütze

© 1999–2002

173



Lexical acquisition

• Language acquisition: acquiring the proper-

ties of words

• Practical: filling holes in dictionaries

– Language is productive

– Lots of stuff isn’t in dictionaries anyway

• Claim: most knowledge of language is encoded

in words.
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Evaluation: The 2 ×2 contingency matrix

Actual
System target ¬ target

selected tp fp
¬selected fn tn

Accuracy = (tp+ tn)/N , where N = tp+ tn+ fp+ fn

Error = (fn+ fp)/N = 1− Accuracy

Why is this a bad measure for many NLP tasks?
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A diagram motivating the measures of preci-
sion and recall.

tpfp fn

selected target

tn

Accuracy is not a useful measure when the target set is a

tiny fraction of the total set.
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Precision and recall

• Precision is defined as a measure of the proportion of

selected items that the system got right:

precision =
tp

tp+ fp

• Recall is defined as the proportion of the target items

that the system selected:

recall =
tp

tp+ fn

These two measures allow us to distinguish between ex-

cluding target items and returning irrelevant items.

They still require human-made “gold standard” judgements.
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A combined measure

Does one just average them? Bad, because the measures

aren’t independent.

What’s a sensible model?

Rijsbergen (1979:174) defines and justifies the usually used

alternative.

(see http://www.dcs.gla.ac.uk/Keith/Preface.html)
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Assumptions:

• Interested in document proportions not absolute num-

bers

• Decreasing marginal effectiveness of recall and preci-

sion, e.g.:

(R+ 1, P − 1) > (R,P )

but

(R+ 1, P ) > (R+ 2, P − 1)

Makes curves convex towards origin.
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The F measure

Weighted harmonic mean: The F measure (where F =

1− E):

F =
1

α1
P + (1− α)1

R

where P is precision, R is recall and α weights precision

and recall. (Or in terms of β, where α = 1/(β2 + 1).)

A value of α = 0.5 is often chosen.

F =
2PR

R+ P

At break-even point, when R = P , then F = R = P
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The F measure ( α = 0.5)

f(x,y)
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Ways of averaging

Precision Recall Arithmetic Geometric Harmonic Minimum
80 10 45 28.3 17.8 10
80 20 50 40.0 32.0 20
80 30 55 49.0 43.6 30
80 40 60 56.6 53.3 40
80 50 65 63.2 61.5 50
80 60 70 69.3 68.6 60
80 70 75 74.8 74.7 70
80 80 80 80.0 80.0 80
80 90 85 84.9 84.7 80
80 100 90 89.4 88.9 80
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Subcategorization frames

Here are some subcategorization frames that are common

in English.

• Intransitive verb. NP[subject]. The woman walked.

• Transitive verb. NP[subject], NP[object]. John loves

Mary.

• Ditransitive verb. NP[subject], NP[direct object], NP[indirect

object]. Mary gave Peter flowers.

• Intransitive with PP. NP[subject], PP. I rent in Padding-

ton.

• Transitive with PP. NP[subject], NP[object], PP. She

put the book on the table.

183



• Sentential complement. NP[subject], clause. I know

(that) she likes you.

• Transitive with sentential complement. NP[subj],

NP[obj], clause. She told me that Gary is coming on

Tuesday.
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(5) a. She told the man where Peter grew up.

b. She found the place where Peter grew up.

(6) a. She told [the man] [where Peter grew up].

b. She found [the place [where Peter grew up]].

(Info in learner’s dictionaries.)
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Brent (1993):

• Cues for frames.

e.g., pronoun or capitalized followed by punctuation

• Hypothesis testing

pE = P (vi(f j) = 0|C(vi, cj) ≥ m)

=
n

∑

r=m

(n

r

)

ǫj
r(1− ǫj)n−r

verb vi occurs n times; there are m ≤ n occurrences with

a cue for frame f j C(vi, cj) is the number of times that vi

occurs with cue cj, and ǫj is the error rate for cue f j,

186



Manning (1993)

Uses tagger. More errorful, but much more abundant cues.

• He relies on relatives.

• She compared the results with earlier findings.
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Learned subcategorization frames
Verb Correct Incorrect OALD

bridge 1 1 1
burden 2 2
depict 2 3
emanate 1 1
leak 1 5
occupy 1 3
remark 1 1 4
retire 2 1 5
shed 1 2
troop 0 3
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Two of the errors are prepositional phrases (PPs): to bridge

between and to retire in.

One could argue that retire subcategorizes for the PP in

Malibu in a sentence like John retires in Malibu since the

verb and the PP-complement enter into a closer relation-

ship than mere adverbial modification.

The third error in the table is the incorrect assignment of

the intransitive frame to remark. This is probably due to

sentences like (7) which look like remark is used without

any arguments (except the subject).

(7) “And here we are 10 years later with the same prob-

lems,” Mr. Smith remarked.
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Attachment ambiguities

• I saw the man with a telescope

• What does with a telescope modify?

• Is the problem ‘AI-complete’? Yes, but . . .

• Proposed simple structural factors

– Right association (Kimball 1973) = ‘low’ or

‘near’ attachment = ‘early closure’ (of NP)

– Minimal attachment (Frazier 1978) [depends

on grammar] = ‘high’ or ‘distant’ attachment

= ‘late closure’ (of NP)
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Attachment ambiguities (2)

• Such simple structural factors dominated in

early psycholinguistics, and are still widely in-

voked.

• In the V NP PP context, right attachment gets

right 55–67% of cases.

• But that means it gets wrong 33–45% of cases
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Attachment ambiguities (3)

• The children ate the cake with a spoon.

• The children ate the cake with frosting.

• Moscow sent more than 100,000 soldiers into

Afghanistan . . .

• Sydney Water breached an agreement with

NSW Health . . .

Words are good predictors (even absent under-

standing).
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Importance of lexical factors

Ford, Bresnan and Kaplan (1982) [as part of the

promotion of ‘lexicalist’ linguistic theories]

• Order of grammatical rule processing (by hu-

man) determines closure effects

• Ordering is jointly determined by strengths of

alternative lexical forms, strengths of alterna-

tive syntactic rewrite rules, and the sequence

of hypotheses in the parsing process
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Importance of lexical factors (2)

Ford, Bresnan and Kaplan (1982):

• Joe included the package for Susan.

• Joe carried the package for Susan.

“It is quite evident, then, that the closure effects

in these sentences are induced in some way by

the choice of the lexical items.” (Psycholinguis-

tic studies show that this is true independent of

discourse context.)
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Simple model

(Log) Likelihood Ratio [a common and good way

of comparing between two exclusive alternatives]

λ(v, n, p) = log
P(p|v)
P(p|n)

Problem: ignores preference for attaching “low”.
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Problematic example ( NYT )

• Chrysler confirmed that it would end its trou-

bled venture with Maserati.

• w C(w) C(w,with)
end 5156 607
venture 1442 155

• Get wrong answer:

P(p|v) =
607

5156
≈ 0.118

> P (p|n) =
155

1442
≈ 0.107
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Hindle and Rooth (1993 [1991])

• Event space: all V NP PP* sequences, but PP

must modify V or first N

• Don’t directly decide whether PP modifies V

or N

• Rather look at binary RVs:

– V Ap: Is there a PP headed by p which at-

taches to v

– NAp: Is there a PP headed by p which

attaches to n

• Both can be 1:
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He put the book on World War II on the

table



Independence assumptions:

P (VAp,NAp|v, n) = P (VAp|v, n)P (NAp|v, n)
= P (VAp|v)P (NAp|n)

Decision space: first PP after NP. [NB!]

P (Attach(p) = n|v, n) = P (VAp = 0 ∨ VAp = 1|v)
×P (NAp = 1|n)

= 1.0× P (NAp = 1|n)
= P (NAp = 1|n)

It doesn’t matter what VAp is! If both are true, the first

PP after the NP must modify the noun (in phrase structure

trees, lines don’t cross).
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But conversely, in order for the first PP headed by the prepo-

sition p to attach to the verb, both VAp = 1 and NAp = 0

must hold:

P (Attach(p) = v|v, n) = P (VAp = 1,NAp = 0|v, n)
= P (VAp = 1|v)P (NAp = 0|n)

We assess which is more likely by a (log) likelihood ratio:

λ(v, n, p) = log2
P (Attach(p) = v|v, n)
P (Attach(p) = n|v, n)

= log2
P (VAp = 1|v)P (NAp = 0|v)

P (NAp = 1|n)
If large positive, decide verb attachment; if large negative,

decide noun attachment.
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Building the model

How do we learn probabilities? From (smoothed)

MLEs:

P(VAp = 1|v) =
C(v, p)

C(v)

P(NAp = 1|n) =
C(n, p)

C(n)

How do we get estimates from an unlabelled cor-

pus? Use partial parser, and look for unambigu-

ous cases:

• The road to London is long and winding.
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• She sent him into the nursery to gather up his

toys.



Hindle and Rooth heuristically determiningC(v, p),

C(n, p), and C(n, ∅) from unlabeled data:

1. Build an initial model by counting all unam-

biguous cases.

2. Apply initial model to all ambiguous cases and

assign them to the appropriate count if λ ex-

ceeds a threshold (2/− 2).

3. Divide the remaining ambiguous cases evenly

between the counts (increase bothC(v, p) and

C(n, p) by 0.5 for each).
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Example

Moscow sent more than 100,000 soldiers into Afghanistan

. . .

P (VAinto = 1|send) =
C(send , into)

C(send)

=
86

1742.5
≈ 0.049

P (NAinto = 1|soldiers) =
C(soldiers, into)

C(soldiers)

=
1

1478
≈ 0.0007

P (NAinto = 0|soldiers) = 1− P (NAinto = 1|soldiers)

≈ 0.9993
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λ(send , soldiers, into) ≈ log2
0.049× 0.9993

0.0007
≈ 6.13

Attachment to verb is about 70 times more likely.

Overall accuracy is about 80% (forced choice); 91.7% cor-

rect at 55.2% recall (λ = 3.0).



Final remarks

• Ignores other conditioning factors (noun head in PP,

superlative adjective)

• Just doing the simplest V NP PP case

• Gibson and Pearlmutter (1994) argue that overuse of

this simple case has greatly biased psycholinguistic stud-

ies

The board approved [its acquisition]

[by Royal Trustco Ltd.] [of Toronto]

[for $27 a share]

[at its monthly meeting].
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Final remarks (2)

• There are other attachment cases: coordina-

tion, adverbial and participial phrases, noun

compounds. Data sparseness is a bigger prob-

lem with many of these (more open class heads

needed).

• In general, indeterminacy is quite common:

We have not signed a settlement agree-

ment with them.

Either reading seems equally plausible.
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Attachment ambiguities: The key parsing de-
cision

• The main problem in parsing is working out how to

‘attach’ various kinds of constituents – PPs, adverbial

or participial phrases, coordinations, and so on

• Prepositional phrase attachment

– I saw the man with a telescope

• What does with a telescope modify?

– The verb saw?

– The noun man?

• Is the problem ‘AI-complete’? Yes, but . . .
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Attachment ambiguities (2)

• Proposed simple structural factors

– Right association (Kimball 1973) = ‘low’ or ‘near’ at-

tachment = ‘late closure’ (of NP) [NP→ NP PP]

– Minimal attachment (Frazier 1978) [depends on gram-

mar] = ‘high’ or ‘distant’ attachment = ‘early closure’

(of NP) [VP→ V NP PP]

• Such simple structural factors dominated in early psy-

cholinguistics, and are still widely invoked.

• In the V NP PP context, right attachment gets it right in

55–67% of cases.

• But that means it gets it wrong in 33–45% of cases
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Importance of lexical factors

• Words are good predictors (or even inducers) of attach-

ment (even absent understanding):

– The children ate the cake with a spoon.

– The children ate the cake with frosting.

– Moscow sent more than 100,000 soldiers into Afghanistan

– Sydney Water breached an agreement with NSW

Health

• Ford et al. (1982):

– Ordering is jointly determined by strengths of al-

ternative lexical forms, alternative syntactic rewrite

rules, and the sequence of hypotheses in parsing
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Simple model

(Log) Likelihood Ratio [a common and good way

of comparing between two exclusive alternatives]

λ(v, n, p) = log
P(p|v)
P(p|n)

Problem: ignores preference for attaching “low”
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Problematic example ( NYT )

• Chrysler confirmed that it would end its trou-

bled venture with Maserati.

• w C(w) C(w,with)
end 5156 607
venture 1442 155

• Get wrong answer:

P(p|v) =
607

5156
≈ 0.118

> P (p|n) =
155

1442
≈ 0.107
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Hindle and Rooth (1993) [1991]

• Event space: all V NP PP* sequences, but PP must

modify V or first N

• Don’t directly decide whether PP modifies V or N

• Rather look at binary RVs:

– V Ap: Is there a PP headed by p which attaches to v

– NAp: Is there a PP headed by p which attaches to n

• Both can be 1:

He put the book on World War II on the table
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Hindle and Rooth (1993)

Independence assumptions:

P (VAp,NAp|v, n) = P (VAp|v, n)P (NAp|v, n)
= P (VAp|v)P (NAp|n)

Decision space: first PP after NP. [NB!]

P (Attach(p) = n|v, n) = P (VAp = 0 ∨ VAp = 1|v)
×P (NAp = 1|n)

= 1.0× P (NAp = 1|n)
= P (NAp = 1|n)
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Hindle and Rooth (1993)

In the above case, it doesn’t matter what VAp is! If both

are true, the first PP after the NP must modify the noun (in

phrase structure trees, lines don’t cross).

But conversely, in order for the first PP headed by the prepo-

sition p to attach to the verb, both VAp = 1 and NAp = 0

must hold:

P (Attach(p) = v|v, n) = P (VAp = 1,NAp = 0|v, n)
= P (VAp = 1|v)P (NAp = 0|n)
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We assess which is more likely by a (log) likelihood ratio:

λ(v, n, p) = log2
P (Attach(p) = v|v, n)
P (Attach(p) = n|v, n)

= log2
P (VAp = 1|v)P (NAp = 0|v)

P (NAp = 1|n)
If large positive, decide verb attachment; if large negative,

decide noun attachment.

Overall accuracy is about 80% (forced choice); 91.7% cor-

rect at 55.2% recall (λ = 3.0).
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Building the model

• We learn probabilities from (smoothed) MLEs:

P (VAp = 1|v) =
C(v, p)

C(v)

P (NAp = 1|n) =
C(n, p)

C(n)

• Estimates are gotten from an unlabelled corpus by use

of a tagger – Church’s – and a partial parser – Hindle’s

Fidditch – by looking for unambiguous cases.
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Unambiguous cases

• If a pronoun, assume V attach:

– She sent him into the nursery to gather up his toys.

• If no verb, then N attach:

– The road to London is long and winding.

• If passive then V attach

• etc.
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Hindle and Rooth (1993) algorithm

Hindle and Rooth heuristically determiningC(v, p),C(n, p),

and C(n, ∅) from unlabeled data:

1. Build an initial model by counting all unambiguous cases.

2. Apply initial model to all ambiguous cases and assign

them to the appropriate count if λ exceeds a threshold

(2/− 2).

3. Divide the remaining ambiguous cases evenly between

the counts (increase both C(v, p) and C(n, p) by 0.5

for each).
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Example

Moscow sent more than 100,000 soldiers into Afghanistan

P (VAinto = 1|send) =
C(send , into)

C(send)
=

86

1742.5
≈ 0.049

P (NAinto = 1|soldiers) =
C(soldiers, into)

C(soldiers)
=

1

1478
≈ 0.0007

P (NAinto = 0|soldiers) = 1−P (NAinto = 1|soldiers) ≈ 0.9993

λ(send , soldiers, into) ≈ log2
0.049× 0.9993

0.0007
≈ 6.13

Attachment to verb is about 70 times more likely.
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Collins and Brooks (1995)

• Use fully parsed treebank data

• Includes n2 in model: quadruples 〈v, n1, p, n2〉
• Uses a back-off model to address data sparseness is-

sues.

• About 95% of test quadruples not seen in training data

• Start with full quadruples, backoff to triples and pairs

restricted so as to always contain p

• Accuracy: 86.5%
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More complex situations

• Hindle and Rooth (1993) – and Collins and Brooks (1995)

– are just doing the simplest V NP PP case

• Gibson and Pearlmutter (1994) argue that overuse of

this simple case has greatly biased psycholinguistic stud-

ies

• V NP PP PP has 5 possible attachments; V NP PP PP PP

has 14

• The problem is much harder, and a dumb algorithm will

perform poorly
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Example of complex attachments in a

real sentence

The board approved [its acquisition]

[by Royal Trustco Ltd.] [of Toronto]

[for $27 a share]

[at its monthly meeting].
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Merlo et al. (1997)

• Merlo et al. (1997) attempt some of these more difficult

cases

• Basic analysis is a backoff model like Collins and Brooks

(1995)

• Results:

– 1 PP: 84% (61% baseline – most frequent)

– 2 PPs: 70% (30% baseline)

– 3 PPs: 44% (19% baseline)
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Ratnaparkhi (1998)

• Tagger, simple chunker over unannotated newswire

• Heuristic extraction of exemplars:

– 〈v, p, n2〉 if p not “of”, v nearest verb and within k of

p, no noun between p and n2, . . .

– 〈n1, p, n2〉 if n is nearest noun and within k of p, no

verb between p and n2, . . .

• Noisy data: c. 69% correct

• Accuracy of system on attachments: about 82%

• Easy to port to other languages (did Spanish)
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Final remarks

• Many other similar sorts of attachment decisions: coor-

dination, adverbial and participial phrases, noun com-

pounds

– I drink [coffee with [cream and sugar]]

– I drink [[coffee with cream] and sugar]

• Data sparseness is a bigger problem with many of these

(more open class heads needed).

• In general, indeterminacy is quite common:

– We have not signed a settlement agreement with

them.
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Lexical acquisition

• Simple statistical models give same estimate

to all unseen events

• Unrealistic – could hope to refine that based

on semantic classes of words

• E.g, although never seen, eating pineapple

should be more likely than eating holograms

because pineapple is similar to apples, and

we have seen eating apples

• It’s the same data. Why are classes useful?
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An application: selectional preferences

• Verbs take arguments of certain types (usually! – re-
member metaphor)
• Bill drove a . . .
• Mustang, car, truck, jeep, . . .
• Resnik (1993) uses KL divergence for verb objects dis-

tributions
• Selectional preference strength: how strongly does a

verb constrain direct objects
• see vs. unknotted
• Model via using head words only – a usually correct

assumption
• Use a class-based model of nouns – for generalization.

Resnik uses WordNet.
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Selectional preference strength (how strongly does verb

select?)

S(v) = D(P (C|v)‖P (C)) =
∑

c
P (c|v) log

P (c|v)
P (c)

Selectional association between verb and class:

A(v, c) =
P (c|v) log

P(c|v)
P(c)

S(v)

Proportion that its summand contributes to preference strength.

For nouns in multiple classes – disambiguate as most likely

sense:

A(v, n) = max
c∈classes(n)

A(v, c)
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SPS example (made-up data)

Noun class c P (c) P (c|eat) P (c|see) P (c|find)

people 0.25 0.01 0.25 0.33
furniture 0.25 0.01 0.25 0.33
food 0.25 0.97 0.25 0.33
action 0.25 0.01 0.25 0.01
SPS S(v) 1.76 0.00 0.35

A(eat , food) = 1.08

A(find , action) = −0.13
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SPS example (Resnik, Brown corpus)

Verb v Noun n A(v, n) Class Noun n A(v, n) Class
answer request 4.49 speech act tragedy 3.88 communication
find label 1.10 abstraction fever 0.22 psych. feature
hear story 1.89 communication issue 1.89 communication
remember reply 1.31 statement smoke 0.20 article of commerce
repeat comment 1.23 communication journal 1.23 communication
read article 6.80 writing fashion −0.20 activity
see friend 5.79 entity method −0.01 method
write letter 7.26 writing market 0.00 commerce
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But how might we measure word sim-

ilarity for word classes?

Vector spaces

A document-by-word matrix A.
cosmonaut astronaut moon car truck

d1 1 0 1 1 0
d2 0 1 1 0 0
d3 1 0 0 0 0
d4 0 0 0 1 1
d5 0 0 0 1 0
d6 0 0 0 0 1
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A word-by-word matrix B
cosmonaut astronaut moon car truck

cosmonaut 2 0 1 1 0
astronaut 0 1 1 0 0
moon 1 1 2 1 0
car 1 0 1 3 1
truck 0 0 0 1 2

A modifier-by-head matrix C
cosmonaut astronaut moon car truck

Soviet 1 0 0 1 1
American 0 1 0 1 1
spacewalking 1 1 0 0 0
red 0 0 0 1 1
full 0 0 1 0 0
old 0 0 0 1 1
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Similarity measures for binary vectors.
Similarity measure Definition

matching coefficient |X ∩ Y |
Dice coefficient 2|X∩Y |

|X|+|Y |
Jaccard coefficient |X∩Y |

|X∪Y |
Overlap coefficient |X∩Y |

min(|X|,|Y |)
cosine |X∩Y |√

|X|×|Y |
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Real-valued vector spaces

Vector dot product (how much do they have in

common):

~x · ~y =
n
∑

i=1
xiyi

0 if orthogonal – like matching coefficient, not

normalized.
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Cosine measure:

cos(~x, ~y) =
~x · ~y
|~x||~y| =

∑n
i=1 xiyi

√

∑n
i=1 x

2
i

√

∑n
i=1 y

2
i

maps vectors onto unit circle by dividing through by lengths:

|~x| =
√

∑n
i=1 x

2
i

Euclidean distance gives same ordering for normalized vec-

tors:

|~x− ~y| =
√

∑n
i=1(xi − yi)

2
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Example: cosine as semantic similarity on NYT

Focus word Nearest neighbors
garlic sauce .732 pepper .728 salt .726 cup .726
fallen fell .932 decline .931 rise .930 drop .929
engineered genetically .758 drugs .688 research .687 drug .685
Alfred named .814 Robert .809 William .808 W .808
simple something .964 things .963 You .963 always .962
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Probabilistic measures

(Dis-)similarity measure Definition

KL divergence D(p‖q) =
∑

i pi log pi
qi

Skew D(p‖αq + (1− α)p)
Jensen-Shannon (was IRad) 1

2[D(p‖p+q
2 ) +D(q‖p+q

2 )]

L1 norm (Manhattan)
∑

i |pi − qi|
Generally perform better (Dagan et al. 1999) – perhaps

mainly because they lack the L2 nature of Euclidean dis-

tance, which is very sensitive to outliers
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Neighbors of company (Lee)

Skew (α = 0.99) J.-S. Euclidean
airline business city
business airline airline
bank firm industry
agency bank program
firm state organization
department agency bank
manufacturer group system
network govt. today
industry city series
govt. industry portion

237



Evaluation

• Qualitative

• Task-based

– Language models (Dagan, Pereira, and Lee)

– Resnik

– . . .
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Final remarks

• In general, indeterminacy is quite common:

– We have not signed a settlement agreement with

them.

• Either reading seems equally plausible.

• While later models include n2, they still ignore other

conditioning factors (e.g., superlative adjective in NP1

favours noun attachment)
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To Do

• In the forward probability, it used to be bjot but it seems

you want i. Need to update the later cases that show

the lattice calculations.

• Also, the slide for β probabilities still has a T + 1 in it,

but it seems like you might as well stop at T .

• Discuss in slide state emission vs. arc emission HMMs

• Implement and work through students paying attention

or not.
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Part of Speech Tagging

FSNLP, chapters 9 and 10

Christopher Manning and
Hinrich Schütze

© 1999–2003
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The problem of POS ambiguity

• Structures for: Fed raises interest rates 0.5% in effort

to control inflation (NYT headline 17 May 2000)
• S

NP

NNP
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VP

V

raises

NP

NN

interest

NN

rates

NP

CD

0.5

NN
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PP
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VP

V
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Part-of-speech ambiguities

VB
VBZ VBP VBZ

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 % in effort

to control
inflation
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Part-of-speech examples

NN noun baby, toy
VB verb see, kiss
JJ adjective tall, grateful, alleged
RB adverb quickly, frankly, . . .
IN preposition in, on, near
DT determiner the, a, that
WP wh-pronoun who, what, which, . . .
CC conjunction and, or
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POS ambiguity

• Words often have more than one POS: back

– The back door = JJ

– On my back = NN

– Win the voters back = RB

– Promised to back the bill = VB

• The POS tagging problem is to determine the POS tag

for a particular instance of a word.
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POS Tagging Applications

• Text-to-speech (how do we pronounce “lead”?)

• WSD if the senses are actually different parts of speech. . .

• Information source in all sorts of tasks such as informa-
tion extraction

• All sorts of simple parsing applications: can write reg-
exps like Det Adj* N* over the output (e.g., subcatego-
rization frame learner)

• Preprocessing to speed up a full parser (but a little
dangerous)

• If you know the tag, you can back off to it in other tasks,
such as parsing (back-off: use a simpler representation
with denser statistics)
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Why should we care?

• The first statistical NLP task

• Been done to death by different methods

• Easy to evaluate (how many tags are correct?)

• Canonical sequence (finite-state model) task

• Can be done well with methods that look at local con-

text

• Though should “really” do it by parsing!

• Fast linear task of considerable value
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The bad effects of V/N ambiguities (1)
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The bad effects of V/N ambiguities (2)
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The bad effects of V/N ambiguities (3)
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The task of part of speech tagging

• A lightweight (usually linear time) processing task, which
can usefully empower other applications:
– Knowing how to pronounce a word: récord [noun]

vs. recórd [verb]; lead as noun vs. verb
– Matching small phrasal chunks or particular word

class patterns for tasks such as information retrieval,
information extraction or terminology acquisition (col-
location extraction). E.g., just matching nouns, com-
pound nouns, and adjective noun patterns:
∗ {A|N}* N

– POS information can be used to lemmatize a word
correctly (i.e., to remove inflections):
∗ saw [n]→ saw ; saw [v]→ see
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The task of part of speech tagging

• – Can differentiate word senses that involve part of

speech differences

– POS can be used as backoff in various class-based

models, when too little information is known about a

particular word

– Can be a preprocessor for a parser (speeds up parser;

often better, but more expensive, to let the parser do

the tagging as well)

– Tagged text helps linguists find interesting syntactic

constructions in texts (ssh used as a verb)
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The linguistics of parts of speech and tag sets

• We’re not going to substantively discuss parts of speech

in class

– Read section 3.1 to learn about parts of speech, par-

ticularly the kind of richer sets of distinctions com-

monly made by linguists and in NLP applications

– Read section 4.3.2 for discussion of POS tag sets

used in NLP.

∗ There’s a handy table explaining tag abbreviations

on pp. 141–142
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Part of speech tagging

Information sources:

• Sequence of words: syntagmatic information

– Surprisingly weak information source

– Many words have various parts of speech – cf. the

example above

• Frequency of use of words

– Surprisingly effective: gets 90+% performance by

itself (for English)∗

∗ This acts as a baseline for performance

∗Even up to 93.7%, based on the results of Toutanova et al. (2003).
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(Hidden) Markov model tagger

• View sequence of tags as a Markov chain. Assump-

tions:

– Limited horizon. P (Xi+1 = tj|X1, . . . , Xi) =

P (Xi+1 = tj|Xi)
– Time invariant (stationary). P (Xi+1 = tj|Xi) =

P (X2 = tj|X1)

We assume that a word’s tag only depends on the pre-

vious tag (limited horizon) and that this dependency

does not change over time (time invariance)

• A state (part of speech) generates a word. We assume

it depends only on the state

256



Hidden Markov Models – POS example

X1
〈s〉

X2
NNP

X3
VBZ

X4
NN

X5
NNS

〈s〉 Fed
rai-
ses

inte-
rest

rates

P (x2|x1) P (x3|x2) P (x4|x3) P (x5|x4)

P (s|x1) P (F |x2) P (r|x3) P (i|x4) P (r|x5)

• Top row is unobserved states, interpreted as POS tags

• Bottom row is observed output observations

• We normally do supervised training, and then (Bayesian

network style) inference to decide POS tags
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Standard HMM formalism

• 〈X,O,Π, A,B〉
• X is hidden state sequence; O is observation sequence

• Π is probability of starting in some state

(can be folded into A: let A′ = [Π|A], i.e., a0j = πj)

• A is matrix of transition probabilities (top row condi-

tional probability tables (CPTs))

• B is matrix of output probabilities (vertical CPTs)

HMM is also a probabilistic (nondeterministic) finite state

automaton, with probabilistic outputs (from vertices, not

arcs, in the simplest case)
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Probabilistic inference in an HMM

Three fundamental questions:

• Given an observation sequence, compute the most likely

hidden state sequence

• Compute the probability of a given observation sequence

• Given an observation sequence and set of possible mod-

els, which model most closely fits the data?
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Most likely hidden state sequence

• Given O = (o1, . . . , oT) and model µ = (A,B,Π)

• We want to find:

argmax
X

P (X|O, µ) = argmax
X

P (X,O|µ)
P (O|µ) = argmax

X
P (X,O|µ)

• P (O|X,µ) = bx1o1bx2o2 · · · bxToT
• P (X|µ) = πx1ax1x2ax2x3 · · · aXT−1XT

• P (O,X|µ) = P (O|X,µ)P (X|µ)
• argmaxX P (O,X|µ) = argmaxx1···xT

∏T
t=1 aXt−1Xtbxtot

• Problem: Exponential in sequence length!
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Dynamic Programming

• Efficient computation of this maximum: Viterbi algo-

rithm

• Intuition: Probability of the first t observations is the

same for all possible t+ 1 length state sequences.

• Define forward score

δi(t) = maxx1...xt−1 P (o1o2 · · · ot−1, x1 · · ·xt−1,Xt =

i|µ)
• δj(t+ 1) = maxNi=1 δi(t)biotaij

• Compute it recursively from beginning

• Remember best paths

• A version of Bayes Net most likely state inference
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Trellis algorithms

t1

t2

Tag t3

tN
1 2 3

Word, k

T
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Closeup of the computation at one node

s1
δ1(t)

s2
δ2(t)

s3
δ3(t)

sj
δj(t+ 1)

sN
δN(t)

t t+ 1

b
1o
t a

1j

b2o
ta2j

b3ota3j

bNo
t
aNj

δj(t+1) = maxNi=1 δi(t)biotaij
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Viterbi algorithm (Viterbi 1967)

• Used to efficiently find the state sequence that gives

the highest probability to the observed outputs

• A dynamic programming algorithm. Essentially the same

except you do a max instead of a summation, and record

the path taken:

δi+1(t
j) = max

1≤k≤T
[δi(t

k)× P (wi|tk)× P (tj|tk)]

ψi+1(t
j) = argmax

1≤k≤T
[δi(t

k)× P (wi|tk)× P (tj|tk)]

• This gives a best tag sequence for POS tagging

• (Note: this is different to finding the most likely tag for

each time t!)
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Probability of an observation sequence

• Given O = (o1, . . . , oT) and model µ = (A,B,Π)

• P (O|X,µ) = bx1o1bx2o2 · · · bxToT
• P (X|µ) = πx1ax1x2ax2x3 · · · aXT−1XT

• P (O,X|µ) = P (O|X,µ)P (X|µ)
• P (O|µ) =

∑

X P (O|X,µ)P (X|µ) [Marginalization]

• P (O|µ) =
∑

x1···xT
∏T
t=1 aXt−1Xtbxtot

• Difficult to compute like this!
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Dynamic Programming

• Efficient computation of this quantity: forward proce-

dure

• Intuition: Probability of the first t observations is the

same for all possible t+ 1 length state sequences.

• Define forward probability

αi(t) = P (o1o2 · · · ot−1, Xt = i|µ)
• αj(t+ 1) =

∑N
i=1αi(t)aijbiot

• Compute it recursively from beginning

• Similarly calculated backward probability βi(t) from end

• A version of the variable elimination algorithm for Bayes

Net inference
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Trellis algorithms

t1

t2

Tag t3

tN
1 2 3

Word, k

T
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Closeup of the computation at one node

s1
α1(t)

s2
α2(t)

s3
α3(t)

sj
αj(t+ 1)

sN
αN(t)

t t+ 1

a
1j b
jo
t

a
2jbjo

t

a3jbjot

aN
jbj

ot

αj(t+1) =
∑N
i=1αi(t)aijbjot
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Dynamic Programming (2)

• Similarly, calculate backward probability βi(t) from end

• The probability of the rest of the observations given a

middle state

• βi(t) = P (ot · · · oT |Xt = i)

• βi(T + 1) = 1

• βi(t) =
∑

j=1,...,N aijbiotβj(t+ 1)

• Forward: P (O|µ) =
∑N
i=1αi(T )

• Backward: P (O|µ) =
∑N
i=1 πiβi(1)

• Combination: P (O|µ) =
∑N
i=1αi(t)βi(t), for any t
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Viterbi algorithm

• Used to efficiently find the state sequence that gives

the highest probability to the observed outputs

• Another dynamic programming algorithm. Essentially

the same except you do a max instead of a summation,

and record the path taken:

δi+1(t
j) = max

1≤k≤T
[δi(t

k)× P (tj|tk)× P (wi+1|tj)]

ψi+1(t
j) = argmax

1≤k≤T
[δi(t

k)×P (tj|tk)×P (wi+1|tj)]

• This gives a tag sequence for POS tagging
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(H)MM POS tagging

• Estimate a and b parameters, preferably by doing counts

from tagged training data, or else by using lexicons,

Baum-Welch, as best one can

– i.e., in simplest case, train as visible Markov model,

and only tag as hidden Markov model

• Use Viterbi algorithm to tag unseen text

• On Penn tag set, can get accuracy of up to 96.7%

(Brants 2000)

• Many other methods have also been used for POS tag-

ging, the best having similar accuracy
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Tagging: Other topics

• Trigram taggers, variable memory models, etc.

• Smoothing

• Unknown words

– Need to model via word features

• Building taggers without a hand-tagged corpus

• Other methods of tagging:

– Transformation based learning

– Decision trees

– Maximum entropy models

– . . .
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Tagging: Other topics

• Other languages

• Accuracy (factors: training data, tag set, drift, unknown

words)

• You gain by having an explicit end symbol/state (mak-

ing it a probabilistic regular grammar)

• Parameter tying (see following language model exam-

ple)

• Linguistic foundations of tags: not always determinate

• Applications: IR, IE, QA, terminology extraction
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Some of an HMM for an interpolated language model
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The third problem: Parameter estimation
= Parameter learning

• We want to find the most likely model parameters given

the data (using MLE):

argmax
µ

P (Otraining|µ)

• This would let us learn model probabilities from raw

data

• Can’t determine these probabilities analytically.

• Use iterative hill-climbing algorithm to try to find good

model
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HMM Training: Baum-Welch reestimation

• Used to automatically estimate parameters of an HMM

• a.k.a. the Forward-Backward algorithm

• A case of the Expectation Maximization (EM) algorithm

• One starts with initial probability estimates

• One computes expectations of how often each transi-

tion/emission is used

• One re-estimates the probabilities based on those ex-

pectations

• . . . and repeat until convergence
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HMM Training: Baum-Welch reestimation

• Needed because the state paths are hidden, and the
equations cannot be solved analytically

• Provides a maximum likelihood estimate: attempts to
find the model that assigns the training data the highest
likelihood

• Hill-climbing algorithm that can get stuck in local max-
ima

• Not so effective for inductive POS tagging (the ML re-
estimation procedure doesn’t know the meaning we have
given to the hidden states)

• But good in many tasks (speech, including information
extraction)
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Probability of an observation sequence

• Given O = (o1, . . . , oT) and model µ = (A,B,Π)

• P (O|X,µ) = bx1o1bx2o2 · · · bxToT
• P (X|µ) = πx1ax1x2ax2x3 · · · axT−1xT

• P (O,X|µ) = P (O|X,µ)P (X|µ)
• P (O|µ) =

∑

X P (O|X,µ)P (X|µ) [Marginalization]

• P (O|µ) =
∑

x1···xT
∏T
t=1 aXt−1Xtbxtot

• Again, difficult to compute like this!
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Dynamic Programming

• Efficient computation of this quantity: forward proce-

dure

• Intuition: Probability of the first t observations is the

same for all possible t+ 1 length state sequences.

• Define forward probability

αi(t) = P (o1o2 · · · ot−1, Xt = i|µ)
• αj(t+ 1) =

∑N
i=1αi(t)aijbiot

• Compute it recursively from beginning

• A version of the variable elimination algorithm for Bayes

Net inference
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Closeup of the computation at one node

s1
α1(t)

s2
α2(t)

s3
α3(t)

sj
αj(t+ 1)

sN
αN(t)

t t+ 1

a
1j b
jo
t

a
2jbjo

t

a3jbjot

aN
jbj

ot

αj(t+1) =
∑N
i=1αi(t)aijbjot
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Dynamic Programming (2)

• Similarly, calculate backward probability βi(t) from end

• The probability of the rest of the observations given a

middle state

• βi(t) = P (ot · · · oT |Xt = i)

• βi(T + 1) = 1

• βi(t) =
∑

j=1,...,N aijbiotβj(t+ 1)

• Forward: P (O|µ) =
∑N
i=1αi(T )

• Backward: P (O|µ) =
∑N
i=1 πiβi(1)

• Combination: P (O|µ) =
∑N
i=1αi(t)βi(t), for any t
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Maximum likelihood parameter estimation

• For some observed data O = 〈o1 · · · on〉, and a model,

here a bigram model, the data likelihood for a particular

set of parameters Θ = {P (ok|oj)} is:

L(O|Θ) =
n
∏

i=1
P (oi|oi−1) =

V
∏

j=1

V
∏

k=1

P (ok|oj)#(ojok)

• People often use the log because its easier to manipu-

late, and the log is monotonic with the likelihood:

LL(O|Θ) =
n

∑

i=1
logP (oi|oi−1) =

V
∑

j=1

V
∑

k=1

#(ojok) logP (ok|oj)

• We can work out how to maximize this likelihood using

calculus (assignment)
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Maximum likelihood parameter estimation

• For an HMM with observed state data X, and s states,

we do the same:

L(O,X|Θ) =
n
∏

i=1
P (xi|xi−1)P (oi|xi)

=
s

∏

j=1

s
∏

k=1

P (xk|xj)#(xjxk)
s

∏

k=1

V
∏

m=1
P (om|xk)#(x

= ax0x1ax1x2ax2x3 · · · axn−1xnbx1o1bx2o2 · · · bxnon
• We can maximize this likelihood by setting the parame-

ters in Θ, and get the same form of relative frequency

estimates

• But if our state sequence is unobserved we can’t do

that directly
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HMM maximum likelihood parameter estima-
tion

• However, we can work out the likelihood of being in dif-
ferent states at different times, given the current model
and the observed data:

P (Xt = xk|O,Θ) =
αk(t)βk(t)

∑s
j=1αj(t)βj(t)

• Given, these probabilities, something we could do is
sample from this distribution and generate pseudo-data
which is complete.

• From this data 〈O, X̂〉, we could do ML estimation as
before – since it is complete data

• And with sufficient training data, this would work fine.
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HMM maximum likelihood parameter estima-
tion

• For the EM algorithm, we do something just slightly

subtler. We work out the expected number of times

we made each state transition and emitted each sym-

bol from each state. This is conceptually just like an

observed count, but it’ll usually be a non-integer

• We then work out new parameter estimates as relative

frequencies just like before.
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Parameter reestimation formulae

π̂i = expected frequency in state i at time t = 1

= γi(1)

âij =
expected num. transitions from state i to j

expected num. transitions from state i

=

∑T
t=1 pt(i, j)

∑T
t=1 γi(t)

b̂ik =
expected num. times k observed in state i

expected num. transitions from i

=

∑

{t:ot=k,1≤t≤T} γi(t)
∑T
t=1 γi(t)
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EM Algorithm

• Changing the parameters in this way must have in-
creased (or at any rate not decreased) the likelihood
of this completion of the data: we’re setting the pa-
rameters on the pseudo-observed data to maximize the
likelihood of this pseudo-observed data
• But, then, we use these parameter estimates to com-

pute new expectations (or, to sample new complete
data)
• Since this new data completion is directly based on the

current parameter settings, it is at least intuitively rea-
sonable to think that the model should assign it higher
likelihood than the old completion (which was based on
different parameter settings)
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We’re guaranteed to get no worse

• Repeating these two steps iteratively gives us the EM

algorithm

• One can prove rigorously that iterating it changes the

parameters in such a way that the data likelihood is

non-decreasing (Baum et al. 1970; Dempster et al. 1977)

• But we can get stuck in local maxima or on saddle

points, though

– For a lot of NLP problems with a lot of hidden struc-

ture, this is actually a big problem
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Information extraction evaluation

• Example text for IE:

Australian Tom Moody took six for 82 but Chris Adams

, 123 , and Tim O’Gorman , 109 , took Derbyshire

to 471 and a first innings lead of 233 .

• Boxes shows attempt to extract person names (correct

ones in purple)

• What score should this attempt get?

• A stringent criterion is exact match precision/recall/F1
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Precision and recall

• Precision is defined as a measure of the proportion of

selected items that the system got right:

precision =
tp

tp+ fp

• Recall is defined as the proportion of the target items

that the system selected:

recall =
tp

tp+ fn

These two measures allow us to distinguish between ex-

cluding target items and returning irrelevant items.

They still require human-made “gold standard” judgements.
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Combining them: The F measure

Weighted harmonic mean: The F measure (where F =

1− E):

F =
1

α1
P + (1− α)1

R

where P is precision, R is recall and α weights precision

and recall. (Or in terms of β, where α = 1/(β2 + 1).)

A value of α = 0.5 is often chosen.

F =
2PR

R+ P

At break-even point, when R = P , then F = R = P
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The F measure ( α = 0.5)
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Ways of averaging

Precision Recall Arithmetic Geometric Harmonic Minimum
80 10 45 28.3 17.8 10
80 20 50 40.0 32.0 20
80 30 55 49.0 43.6 30
80 40 60 56.6 53.3 40
80 50 65 63.2 61.5 50
80 60 70 69.3 68.6 60
80 70 75 74.8 74.7 70
80 80 80 80.0 80.0 80
80 90 85 84.9 84.7 80
80 100 90 89.4 88.9 80
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EM Algorithm Intuition

• We don’t know what the model is.

• But we can work out the probability of the observation

sequence using some (perhaps random) model

• Looking at that calculation, we can see which state

transitions and symbol emissions were probably used

the most

• By increasing the probability of those, we can choose

a revised model which gives a higher probability to the

observation sequence
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The likelihood of being in state i at time t

Using forward and backward variables, we can calculate

γi(t), the probability of being in state i at time t:

γi(t) = P (Xt = i|O,µ)

=
P (Xt = i, O|µ)

P (O|µ)

=
αi(t)βi(t)

∑N
j=1αj(t)βj(t)
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Chance of moving from state i to j at time t

Define pt(i, j), the probability of traversing an arc i − j at
time t given observations O.

si sj

t− 1 t t+ 1 t+ 2

aijbiot

αi(t) βj(t+ 1)
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Computing probability of traversing arc

pt(i, j) = P (Xt = i,Xt+1 = j|O, µ)

=
P(Xt=i,Xt+1=j,O|µ)

P(O|µ)

=
αi(t)aijbiotβj(t+1)
∑N
m=1 αm(t)βm(t)

=
αi(t)aijbiotβj(t+1)

∑N
m=1

∑N
n=1αm(t)amnbmotβn(t+1)

Note that γi(t) =
∑N
j=1 pt(i, j).
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Expectations

Now, if we sum over the time index, this gives us expecta-

tions (counts):
∑T
t=1 γi(t) = expected number of transitions from state i in

O
∑T
t=1 pt(i, j) = expected number of transitions from state i

to j in O
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Parameter reestimation formulae

π̂i = expected frequency in state i at time t = 1

= γi(1)

âij =
expected num. transitions from state i to j

expected num. transitions from state i

=

∑T
t=1 pt(i, j)

∑T
t=1 γi(t)

b̂ik =
expected num. times k observed in state i

expected num. transitions from i

=

∑

{t:ot=k,1≤t≤T} γi(t)
∑T
t=1 γi(t)
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Baum-Welch training algorithm

• Begin with some model µ (perhaps random, perhaps

preselected)

• Run O through the current model to estimate the ex-

pectations of each model parameter

• Change the model to maximize the values of the paths

that are used a lot (while still respecting the stochastic

constraints)

• Repeat, hoping to converge on optimal values for the

model parameters µ.
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We’re guaranteed to get no worse

From µ = (A,B,Π), one iteration derives µ̂ = (Â, B̂, Π̂).

Baum initially proved for HMMs, and the EM framework in

general gives us that:

P (O|µ̂) ≥ P (O|µ)
But we may stay in a local optimum.
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HMMs: The crazy soft drink machine

Cola
Pref.

Iced Tea
Pref.

0.3

0.5

start

0.50.7

Output probability given state

cola iced tea lemonade
(ice t) (lem)

CP 0.6 0.1 0.3
IP 0.1 0.7 0.2
Always starts off in cola-preferring state.
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Values for pt(i, j) on O = (lem, ice t, cola):

Time (and j) 1 CP IP γ1
i CP 0.3 0.7 1.0

IP 0.0 0.0 0.0

2 CP IP γ2
i CP 0.28 0.02 0.3

IP 0.6 0.1 0.7

3 CP IP γ3
i CP 0.616 0.264 0.88

IP 0.06 0.06 0.12
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The parameters will be reestimated as follows
by EM:

Original Reestimated
Π CP 1.0 1.0

IP 0.0 0.0

CP IP CP IP
A CP 0.7 0.3 0.548 0.451

IP 0.5 0.5 0.804 0.195

cola ice t lem cola ice t lem
B CP 0.6 0.1 0.3 0.404 0.138 0.459

IP 0.1 0.7 0.2 0.146 0.854 0.0
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Other uses of HMMs: Topic extraction

• More fine-grained IR: a text can be about multiple top-

ics, some words of it generated by each

• Train classifiers for individual topics

• Commonly use hierarchical classification, so smaller

classifiers can be trained for individual decisions
The federal government
and many of the nation’s
leading telephone compa-
nies agreed today to a
reshuffling of phone rates
that would reduce the bills
of tens of millions of less-
affluent consumers.

telecommunications

U.S. government

FCC

social equity

305



Generative HMM for topic extraction

• Choose a set of topics T = {T1, . . . , Tm}
• Put a distribution over how many topics are in the set –

disfavoring a lot of topics

• For each word in the story, choose a topic according to

P (Tj|T )

• Choose a word according to P (wn|Tj)
• Proceed to decode by finding out the use of which set

of topics would give highest probability to the observed

story [often restrict when topic can change. . . ]

• BBN: 4600 topics, 76% of first choices in annotated

labels (vs. 45% for IR-style tf.idf)
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Generative HMM for topic extraction

T0 P (wn|Tj)

T1

Start T2 End

...

Tm
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Other uses of HMMs: Extracting facts

• The problem with IR: You search for “soldiers attacking
rebels” and the top matches are:

– Hutu rebels attacked soldiers in one of Bujumbura’s
suburbs (Google 2000/10/03)

– Sudanese rebels say they have killed or wounded
more than 300 government soldiers (Hotbot 2000/10/03)

– [Altavista: a Confederate soldier’s memorial!]

• We need to be able to match relationships like:

– attack(soldiers, rebels)

• Models that see sentence structure, like HMMs or de-
pendency parsers, let us capture these relations, though
we still need to deal with synonymy and polysemy
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Other uses of HMMs: Information Extraction
(Freitag and McCallum 1999)

• IE: extracting instance of a relation from text snippets

• States correspond to fields one wishes to extract, token

sequences in the context that are good for identifying

the fields to be extracted, and a background “noise”

state

• Estimation is from tagged data (perhaps supplemented

by EM reestimation over a bigger training set)

• The Viterbi algorithm is used to tag new text

• Things tagged as fields to be extracted are returned
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Information Extraction (Freitag and McCallum
1999)

• State topology is set by hand. Not fully connected

• Use simpler and more complex models, but generally:

– Background state

– Preceding context state(s)

– Target state(s)

– Following context state(s)

• Preceding context states connect only to target state,

etc.
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Information Extraction (Freitag and McCallum
1999)

• Each HMM is for only one field type (e.g., “speaker”)

• Use different HMMs for each field (bad: no real notion

of multi-slot structure)

• Semi-supervised training: target words (generated only

by target states) are marked

• Shrinkage/deleted interpolation is used to generalize

parameter estimates to give more robustness in the

face of data sparseness

• Some other work has done multi-field extraction over

more structured data (Borkar et al. 2001)
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Information Extraction (Freitag and McCallum
1999)

• Tested on seminar announcements and corporate ac-

quisitions data sets

• Performance is generally equal to or better than that of

other information extraction methods

• Though probably more suited to semi-structured text

with clear semantic sorts, than strongly NLP-oriented

problems

• HMMs tend to be especially good for robustness and

high recall
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Information extraction

• Getting particular fixed semantic relations out of text
(e.g., buyer, sell, goods) for DB filling

• Statistical approaches have been explored recently, par-
ticularly use of HMMs (Freitag and McCallum 2000)

• States correspond to elements of fields to extract, token
sequences in the context that identify the fields to be
extracted, and background “noise” states

• Estimation is from labeled data (perhaps supplemented
by EM reestimation over a bigger training set)

• Structure learning used to find a good HMM structure

• The Viterbi algorithm is used to tag new text

• Things tagged as within fields are returned
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Information extraction: locations and speak-
ers
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HMMs in Computational Biology

• Determining coding/non-coding regions of DNA

• Determining protein-binding sites of DNA

• Aligning and analyzing protein families

• Aligning DNA regions

• Unlike human languages, observation alphabets are

normally small, and so clever smoothing/shrinkage meth-

ods are less necessary
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Identifying G-protein-coupled receptors (Baldi
and Chauvin 1994)

• Long but very variable length chains (200–1200) of amino

acids

• HMM trained on known examples, with states equal to

average length

• Effectively HMM is computing a kind of probabilistic

‘edit distance’, measuring changes, repeats, and dele-

tions

• Model can effectively discriminate GPCR sequences

from random or non-GPCR sequences based on cal-

culated log-likelihood of sequence
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Gene finding in DNA sequences (Krogh, Mian
and Haussler 1994)

• Finds protein-coding genes in E. coli DNA.

• HMM states model codons, intergenic regions (incl. palin-

dromic sequences, etc.)

• Allows for insertions and deletions

• HMM parameters estimated from 1 million nucleotides

of annotated DNA

• On independent data, model finds exact location of about

80% of known E. coli genes, and approximate location

of a further 10%.

• It also potentially finds several new genes. . . .
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Summary

• HMMs are one simple, well-understood, and generally

effective form of probabilistic model

• Their math is well understood

• Suitable for problems with a linear (or finite-state or

time-series) character

• Widely used in speech, language, vision & movement,

and DNA alignment applications

• Probabilistic context-free grammar and richer models

also exist when richer recursive structure is required.
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Extra variant slides
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Hidden Markov Models – POS example

X1
〈s〉

X2
NNP

X3
VBZ

X4
NN

X5
NNS

〈s〉 Fed
rai-
ses

inte-
rest

rates

aij aij aij aij

bik bik bik bik bik

• Top row is unobserved states, interpreted as POS tags

• Bottom row is observed output observations (i.e., words)
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Hidden Markov Models (HMMs)

X1 X2 X3 X4 X5

o1 o2 o3 o4 o5

aij aij aij aij

bik bik bik bik bik

• HMMs are dynamic Bayes Nets (graphical models) with

a simple linear structure

• Vertices (circles) are variables; arrows show direct prob-

abilistic dependencies
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Hidden Markov Models (HMMs)

X1 X2 X3 X4 X5

o1 o2 o3 o4 o5

aij aij aij aij

bik bik bik bik bik

• Top row circles are unobserved hidden vari-

ables, which can have various values (states)

• Dependent only on previous state (Markov as-

sumption)
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Hidden Markov Models (HMMs)

X1 X2 X3 X4 X5

o1 o2 o3 o4 o5

aij aij aij aij

bik bik bik bik bik

• Bottom row circles are observed variables/output

observations.

• Directly dependent only on hidden state above

them
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HMMs – POS example

X1
〈s〉

X2
NNP

X3
VBZ

X4
NN

X5
NNS

〈s〉 Fed
rai-
ses

inte-
rest

rates

aij aij aij aij

bik bik bik bik bik

• aij = P (Xn = j|Xn−1 = i)

• bik = P (On = k|Xn = i)
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Dynamic Programming

• Efficient computation of this quantity: forward proce-

dure

• Intuition: Probability of the first t observations is the

same for all possible t+ 1 length state sequences.

• Define forward probability

αi(t) = P (o1o2 · · · ot−1, Xt = i|µ)
• αj(t+ 1) =

∑N
i=1αi(t)aijbijot

• Compute it recursively from beginning

• A version of the polytree algorithm for Bayes Net infer-

ence
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Dynamic Programming

• The forward procedure efficiently computes this prob-

ability

• Intuition: Probability of the first t observations is the

same for all possible t+ 1 length state sequences.

• Define forward prob. αi(t) = P (o1o2 · · · ot−1, Xt =

i|µ)
• αj(t+ 1) =

∑N
i=1αi(t)aijbijot

• Compute it recursively from beginning

• Similarly calculated backward probability βi(t) from end

• A version of the variable elimination algorithm for Bayes

Net inference
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Trellis algorithms

s1

s2

State s3

sN 1 2 3

Time, t

T + 1
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‘Trellis algorithms’

s1

s2

States3

sN
1 2 3

Time, t

T + 1
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s1
α1(t)

s2
α2(t)

s3
α3(t)

sj
αj(t+ 1)

sN
αN(t)t t+ 1

a
1
j b

1
jo
ta

2j b
2jo

t

a3jb3jot

a N
j
b N
jo
t
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Viterbi algorithm

• Used to efficiently find the state sequence that gives

the highest probability to the observed outputs

• Want: argmaxX P (X|O, µ)
• Sufficient to maximize for a fixed O:

argmax
X

P (X,O|µ)

• This gives a maximum likelihood tag sequence for POS

tagging
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Viterbi algorithm

• Another dynamic programming algorithm. Essentially

the same except you do a max instead of a summation,

and record the path taken.

• δ variables record maximum probability to (t, i)

• ψ variables record a backpointer

δi+1(t
j) = max

1≤k≤T
[δi(t

k)× P (tj|tk)× P (wi+1|tj)]

ψi+1(t
j) = argmax

1≤k≤T
[δi(t

k)×P (tj|tk)×P (wi+1|tj)]

331



Where do HMM POS taggers make errors?

• Inconsistent labeling: is chief or maximum an NN or a

JJ?

• Difficulties with unknown words (NN/NNP/NNPS/NNS)

• Systematic tag ambiguities, for which there are good

structural cues:

– John has quite clearly made great progress . . .

• Subtle semantic distinctions, for which there aren’t good

distributional syntactic cues, e.g., RP/IN/RB ambiguity,

but where semantic annotation might help
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{Probabilistic |Stochastic}
Context-Free Grammars

(PCFGs)

FSNLP, chapter 11

Christopher Manning and
Hinrich Schütze

© 1999–2002
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Question answering from text

• TREC 8+ QA competition (1999–; it’s ongoing): an idea
originating from the IR community

• With massive collections of on-line documents, manual
translation of textual information into knowledge bases
covering large numbers of domains is impractical: We
want to answer questions from textbases

• Evaluated output is 5 answers of 50/250 byte snippets
of text drawn from a 3 GB text collection, and required
to contain at least one concept of the semantic cate-
gory of the expected answer type. (Until 2002. IR think:
Suggests the use of named entity recognizers.)

• Get reciprocal points for highest correct answer.
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Pasca and Harabagiu (2001) demonstrates the
value of sophisticated NLP processing

• Good IR is needed: paragraph retrieval based on SMART

• Large taxonomy of question types and expected an-
swer types is crucial

• Parsing: A statistical parser (modeled on Collins 1997)
is used to parse questions, relevant text for answers,
and WordNet to build a knowledge base for reasoning

• Controlled query expansion loops (morphological, lexi-
cal synonyms, and semantic relations) are all important
in retrieving the correct answer.

• Answer ranking by ML method based on this informa-
tion surpasses IR-style empirical methods.
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Question Answering Example (1)

• Q261: What company sells most greetings cards ?

• sells(ORGANIZATION, cards(greeting), most)

• “Hallmark remains the largest maker of greeting cards”
maker(ORGANIZATION(Hallmark), cards(greeting), largest)

• Need an entailment between producing, or making and
selling goods

• Derived from WordNet, since synset make, produce,
create has the genus manufacture , defined in the gloss

of its nominalization as (for ) sale

• Also, need most ≈ largest

• Therefore the semantic form of question Q261 and its

illustrated answer are similar
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Question Answering Example (2)

• How hot does the inside of an active volcano get ?

• get(TEMPERATURE, inside(volcano(active)))

• “lava fragments belched out of the mountain were as
hot as 300 degrees Fahrenheit”

• fragments(lava, TEMPERATURE(degrees(300)),
belched(out, mountain))

• – volcano ISA mountain
– lava ISPARTOF volcano � lava inside volcano
– fragments of lava HAVEPROPERTIESOF lava

• The needed semantic information is available in Word-
Net definitions, and was successfully translated into a
form that can be used for rough ‘proofs’
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Why we need recursive phrase structure

• The velocity of the seismic waves rises to . . .

• Kupiec (1992): HMM tagger goes awry: waves→ verb

S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .
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PCFGs

A PCFG G consists of the usual parts of a CFG

• A set of terminals, {wk}, k = 1, . . . , V

• A set of nonterminals, {N i}, i = 1, . . . , n

• A designated start symbol, N1

• A set of rules, {N i → ζj}, (where ζj is a sequence of

terminals and nonterminals)

and

• A corresponding set of probabilities on rules such that:

∀i ∑

j
P (N i→ ζj) = 1
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PCFG notation

Sentence: sequence of words w1 · · ·wm
wab: the subsequence wa · · ·wb
N i
ab: nonterminal N i dominates wa · · ·wb

Nj

wa · · ·wb
N i ∗

=⇒ ζ: Repeated derivation from N i gives ζ.
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PCFG probability of a string

P (w1n) =
∑

t
P (w1n, t) t a parse of w1n

=
∑

{t:yield(t)=w1n}
P (t)
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A simple PCFG (in CNF)

S→ NP VP 1.0 NP→ NP PP 0.4
PP→ P NP 1.0 NP→ astronomers 0.1
VP→ V NP 0.7 NP→ ears 0.18
VP→ VP PP 0.3 NP→ saw 0.04
P→ with 1.0 NP→ stars 0.18
V→ saw 1.0 NP→ telescopes 0.1
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t1: S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears
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t2: S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears
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t1: S1.0

NP0.7

N0.5

people

VP0.4

V0.6

fish

NP0.7

N0.2

tanks

PP1.0

P1.0

with

NP0.7

N0.1

rods
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t2: S1.0

NP0.7

N0.5

people

VP0.6

V0.6

fish

NP0.2

NP0.7

N0.2

tanks

PP1.0

P1.0

with

NP0.7

N0.1

rods
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The two parse trees’ probabilities and the sen-
tence probability

P (t1) = 1.0× 0.1× 0.7× 1.0× 0.4

×0.18× 1.0× 1.0× 0.18

= 0.0009072

P (t2) = 1.0× 0.1× 0.3× 0.7× 1.0

×0.18× 1.0× 1.0× 0.18

= 0.0006804

P (w15) = P (t1) + P (t2) = 0.0015876
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Attachment ambiguities: A key parsing deci-
sion

• The main problem in parsing is working out how to

‘attach’ various kinds of constituents – PPs, adverbial

or participial phrases, coordinations, and so on

• Prepositional phrase attachment

– I saw the man with a telescope

• What does with a telescope modify?

– The verb saw?

– The noun man?

• Is the problem ‘AI-complete’? Yes, but . . .
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Attachment ambiguities (2)

• Proposed simple structural factors

– Right association (Kimball 1973) = ‘low’ or ‘near’ at-

tachment = ‘late closure’ (of NP) [NP→ NP PP]

– Minimal attachment (Frazier 1978) [depends on gram-

mar] = ‘high’ or ‘distant’ attachment = ‘early closure’

(of NP) [VP→ V NP PP]

• Such simple structural factors dominated in early psy-

cholinguistics, and are still widely invoked.

• In the V NP PP context, right attachment gets it right in

55–67% of cases.

• But that means it gets it wrong in 33–45% of cases
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Importance of lexical factors

• Words are good predictors (or even inducers) of attach-

ment (even absent understanding):

– The children ate the cake with a spoon.

– The children ate the cake with frosting.

– Moscow sent more than 100,000 soldiers into Afghanistan

– Sydney Water breached an agreement with NSW

Health

• Ford et al. (1982):

– Ordering is jointly determined by strengths of al-

ternative lexical forms, alternative syntactic rewrite

rules, and the sequence of hypotheses in parsing
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Attachment ambiguities S

NP

PRP

I

VP

V

VBD

saw

NP

DT

the

NN

man

PP

IN

with

NP

DT

a

NN

telescope

S

NP

PRP

I

VP

V

VBD

saw

v

NP

NP

DT

the

NN

man

n1

PP

IN

with

p

NP

DT

a

NN

telescope

n2
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Assumptions of PCFGs

1. Place invariance (like time invariance in HMM):

∀k P (N
j
k(k+c) → ζ)is the same

2. Context-free:

P (N
j
kl → ζ|words outside wk . . . wl) = P (N

j
kl → ζ)

3. Ancestor-free:

P (N
j
kl → ζ|ancestor nodes of Nj

kl) = P (N
j
kl → ζ)

The sufficient statistics of a PCFG are thus simply counts

of how often different local tree configurations occurred

(= counts of which grammar rules were applied).
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Let the upper left index in iNj be an arbitrary identifying index for a
particular token of a nonterminal.

Then,

P













1S

2NP

the man

3VP

snores













= P(1S13 → 2NP12
3V P33,

2NP12 → the1 man2,
3V P33

= . . .

= P(S → NP V P)P(NP → the man)P(V P → snores)
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Some features of PCFGs

Reasons to use a PCFG, and some idea of their limitations:

• Partial solution for grammar ambiguity: a PCFG gives
some idea of the plausibility of a sentence.
• But, in the simple case, not a very good idea, as in-

dependence assumptions are two strong (e.g., not lex-
icalized).

• Gives a probabilistic language model for English.
• In the simple case, a PCFG is a worse language model

for English than a trigram model.
• Better for grammar induction (Gold 1967 vs. Horning

1969)

• Robustness. (Admit everything with low probability.)
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Some features of PCFGs

• A PCFG encodes certain biases, e.g., that smaller trees

are normally more probable.

• One can hope to combine the strengths of a PCFG and

a trigram model.

We’ll look at simple PCFGs first. They have certain in-

adequacies, but we’ll see that most of the state-of-the-art

probabilistic parsers are fundamentally PCFG models, just

with various enrichments to the grammar
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Improper (inconsistent) distributions

• S→ rhubarb P = 1
3

S→ S S P = 2
3

• rhubarb 1
3

rhubarb rhubarb 2
3 ×

1
3 ×

1
3 = 2

27

rhubarb rhubarb rhubarb
(

2
3

)2 ×
(

1
3

)3 × 2 = 8
243

. . .
• P (L) = 1

3 + 2
27 + 8

243 + . . . = 1
2

• Improper/inconsistent distribution

• Not a problem if you estimate from parsed treebank:

Chi and Geman (1998).
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Questions for PCFGs

Just as for HMMs, there are three basic questions we wish

to answer:

• Language modeling: P (w1m|G)

• Parsing: argmaxtP (t|w1m, G)

• Learning algorithm: Find G such that P (w1m|G) is

maximized.
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Chomsky Normal Form grammars

We’ll do the case of Chomsky Normal Form grammars,

which only have rules of the form:

N i → NjNk

N i → wj

Any CFG can be represented by a weakly equivalent CFG

in Chomsky Normal Form. It’s straightforward to generalize

the algorithm (recall chart parsing).
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PCFG parameters

We’ll do the case of Chomsky Normal Form grammars,

which only have rules of the form:

N i → NjNk

N i → wj

The parameters of a CNF PCFG are:
P (Nj → NrNs|G) A n3 matrix of parameters
P (Nj → wk|G) An nt matrix of parameters

For j = 1, . . . , n,
∑

r,s
P (Nj → NrNs) +

∑

k
P (Nj → wk) = 1
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Probabilistic Regular Grammar:

N i→ wjNk

N i→ wj

Start state, N1

HMM:
∑

w1n

P (w1n) = 1 ∀n

whereas in a PCFG or a PRG:
∑

w∈L
P (w) = 1
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Probabilistic Regular Grammar

Consider:

P (John decided to bake a)

High probability in HMM, low probability in a PRG or a

PCFG. Implement via sink (end) state.

A PRG

Start HMM Finish
Π
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Comparison of HMMs (PRGs) and PCFGs

X: NP −→ N′ −→ N′ −→ N0 −→ sink
| | | |

O: the big brown box

NP

the N′

big N′

brown N0

box
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Inside and outside probabilities

This suggests: whereas for an HMM we have:

Forwards = αi(t) = P (w1(t−1), Xt = i)

Backwards = βi(t) = P (wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabili-

ties, defined as follows:

Outside = αj(p, q) = P (w1(p−1), N
j
pq, w(q+1)m|G)

Inside = βj(p, q) = P (wpq|Nj
pq, G)

A slight generalization of dynamic Bayes Nets covers PCFG

inference by the inside-outside algorithm (and-or tree of

conjunctive daughters disjunctively chosen)
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Inside and outside probabilities in PCFGs.

w1 wmwp−1wp wqwq+1

N1

Nj

· · · · · · · · ·

α

β
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Probability of a string

Inside probability

P (w1m|G) = P (N1 ⇒ w1m|G)

= P (w1m, N
1
1m, G) = β1(1,m)

Base case: We want to find βj(k, k) (the probability of a

rule Nj → wk):

βj(k, k) = P (wk|Nj
kk, G)

= P (Nj → wk|G)
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Induction: We want to find βj(p, q), for p < q. As this is the inductive
step using a Chomsky Normal Form grammar, the first rule must be of
the form Nj → Nr Ns, so we can proceed by induction, dividing the
string in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

These inside probabilities can be calculated bottom up.
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For all j,

βj(p, q) = P(wpq|Nj
pq, G)

=
∑

r,s

q−1
∑

d=p

P(wpd, N
r
pd, w(d+1)q, N

s
(d+1)q|N

j
pq, G)

=
∑

r,s

q−1
∑

d=p

P(Nr
pd, N

s
(d+1)q|N

j
pq, G)

P(wpd|Nj
pq, N

r
pd, N

s
(d+1)q, G)

P(w(d+1)q|Nj
pq, N

r
pd, N

s
(d+1)q, wpd, G)

=
∑

r,s

q−1
∑

d=p

P(Nr
pd, N

s
(d+1)q|N

j
pq, G)

P(wpd|Nr
pd, G)P(w(d+1)q|Ns

(d+1)q, G)

=
∑

r,s

q−1
∑

d=p

P(Nj → NrNs)βr(p, d)βs(d+ 1, q)
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Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5
1 βNP = 0.1 βS = 0.0126 βS = 0.0015876
2 βNP = 0.04

βV = 1.0
βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296
4 βP = 1.0 βPP = 0.18
5 βNP = 0.18

astronomers saw stars with ears
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Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤ m,

P(w1m|G) =
∑

j

P(w1(k−1), wk, w(k+1)m, N
j
kk|G)

=
∑

j

P(w1(k−1), N
j
kk, w(k+1)m|G)

×P(wk|w1(k−1), N
j
kk, w(k+1)n, G)

=
∑

j

αj(k, k)P(Nj → wk)

Inductive (DP) calculation: One calculates the outside probabilities top
down (after determining the inside probabilities).
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Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j 6= 1

Inductive Case:

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm
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Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j 6= 1

Inductive Case: it’s either a left or right branch – we will some over
both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm
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Outside probabilities – inductive case

A node Nj
pq might be the left or right branch of the parent node. We

sum over both possibilities.

N1

N
f
eq

N
g
e(p−1)

w1 · · ·we−1 we · · ·wp−1

N
j
pq

wp · · ·wq wq+1 · · ·wm
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Inductive Case:

αj(p, q) =
[

∑

f,g

m
∑

e=q+1

P (w1(p−1), w(q+1)m, N
f
pe, N

j
pq, N

g
(q+1)e)

]

+
[

∑

f,g

p−1
∑

e=1

P (w1(p−1), w(q+1)m, N
f
eq, N

g
e(p−1)

, N j
pq)

]

=
[

∑

f,g

m
∑

e=q+1

P (w1(p−1), w(e+1)m, N
f
pe)P (N j

pq, N
g
(q+1)e

|Nf
pe)

×P (w(q+1)e|Ng
(q+1)e)

]

+
[

∑

f,g

p−1
∑

e=1

P (w1(e−1), w(q+1)m, N
f
eq)

×P (N
g
e(p−1)

, N j
pq|Nf

eq)P (we(p−1)|Ng
e(p−1)

]

=
[

∑

f,g

m
∑

e=q+1

αf(p, e)P (Nf → N j Ng)βg(q+ 1, e)
]

+
[

∑

f,g

p−1
∑

e=1

αf(e, q)P (Nf → Ng N j)βg(e, p− 1)
]
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Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P (w1(p−1), N
j
pq, w(q+1)m|G)P (wpq|Nj

pq, G)

= P (w1m, N
j
pq|G)

Therefore,

p(w1m, Npq|G) =
∑

j
αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.
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Finding the most likely parse (Viterbi algorithm)

Like inside algorithm, but find maximum rather than sum

Record which rule gave this maximum

δi(p, q) = the highest inside probability parse of a subtree N i
pq

1. Initialization: δi(p, p) = P (N i→ wp)

2. Induction

δi(p, q) = max
1≤j,k≤n
p≤r<q

P (N i→ Nj Nk)δj(p, r)δk(r+1, q)

3. Store backtrace

ψi(p, q) = argmax
(j,k,r)

P (N i→ Nj Nk)δj(p, r)δk(r+1, q)

4. From start symbol N1, most likely parse t is:
t begins with ψ1(1,m). P (t̂) = δ1(1,m)
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(Probabilistic) CKY algorithm

function CKY(words, grammar) returns most probable parse/probability
score = new double[#(words)+1][#(words)+1][#(nonterms)];
back = new Pair[#(words)+1][#(words)+1][#(nonterms)];
for i = 0; i < #(words); i++

for A in nonterms
if A→ words[i] in grammar

score[i][i+1][A] = P(A→ words[i])
// handle unaries
boolean added = true
while added

added = false
for A, B in nonterms

if score[i][i+1][B] > 0 && A→ B in grammar
prob = P(A→ B) × score[i][i+1][B]
if (prob > score[i][i+1][A])

score[i][i+1][A] = prob
back[i][i+1][A] = B
added = true
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(Probabilistic) CKY algorithm [continued]

for span = 2 to #(words)
for begin = 0 to #words − span

end = begin + span
for split = begin + 1 to end − 1

for A, B, C in nonterms
prob = score[begin][split][B] * score[split][end][C] * P(A→ B C)
if (prob > score[begin][end][A]

score[begin][end][A] = prob
back[begin][end][A] = new Triple(split,B,C)

// handle unaries
boolean added = true
while added

added = false
for A, B in nonterms

prob = P(A→ B) × score[begin][end][B]
if (prob > score[begin][end][A])

score[begin][end][A] = prob
back[begin][end][A] = B
added = true

return buildTree(score, back)
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Calculation of Viterbi probabilities (CKY algorithm)

1 2 3 4 5
1 δNP = 0.1 δS = 0.0126 δS = 0.0009072

2 δNP = 0.04
δV = 1.0

δVP = 0.126 δVP = 0.009072

3 δNP = 0.18 δNP = 0.01296
4 δP = 1.0 δPP = 0.18
5 δNP = 0.18

astronomers saw stars with ears
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Training a PCFG

We construct an EM training algorithm, as for HMMs. We would like to
calculate how often each rule is used:

P̂ (Nj → ζ) =
C(Nj → ζ)

∑

γ C(Nj → γ)

Have data⇒ count; else work iteratively from expectations of current
model.
Consider:

αj(p, q)βj(p, q) = P (N1 ∗
=⇒ w1m, N

j ∗
=⇒ wpq|G)

= P (N1 ∗
=⇒ w1m|G)P (N j ∗

=⇒ wpq|N1 ∗
=⇒ w1m, G)

We have already solved how to calculate P(N1 ⇒ w1m); let us call
this probability π. Then:

P(Nj ∗
=⇒ wpq|N1 ∗

=⇒ w1m, G) =
αj(p, q)βj(p, q)

π
and

E(N j is used in the derivation) =

m
∑

p=1

m
∑

q=p

αj(p, q)βj(p, q)

π
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In the case where we are not dealing with a preterminal, we substitute
the inductive definition of β, and ∀r, s, p > q:

P(Nj → Nr Ns ⇒ wpq|N1 ⇒ w1n, G) =

∑q−1
d=pαj(p, q)P(Nj → Nr Ns)βr(p, d)βs(d+ 1, q)

π

Therefore the expectation is:

E(Nj → Nr Ns, Nj used)
∑m−1

p=1

∑m
q=p+1

∑q−1
d=p αj(p, q)P (N j → N r N s)βr(p, d)βs(d+ 1, q)

π

Now for the maximization step, we want:

P(Nj → Nr Ns) =
E(Nj → Nr Ns, Nj used)

E(Nj used)
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Therefore, the reestimation formula, P̂ (Nj → Nr Ns) is the quotient:

P̂ (Nj → Nr Ns) =
∑m−1

p=1

∑m
q=p+1

∑q−1
d=p αj(p, q)P (N j → N r N s)βr(p, d)βs(d+ 1, q)
∑m

p=1

∑m
q=1 αj(p, q)βj(p, q)

Similarly,

E(Nj → wk|N1 ⇒ w1m, G) =

∑m
h=1αj(h, h)P(Nj → wh, wh = wk)

π
Therefore,

P̂ (Nj → wk) =

∑m
h=1 αj(h, h)P(Nj → wh, wh = wk)

∑m
p=1

∑m
q=1 αj(p, q)βj(p, q)

Inside-Outside algorithm: repeat this process until the estimated prob-
ability change is small.
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Multiple training instances: if we have training sentencesW = (W1, . . .Wω),
with Wi = (w1, . . . , wmi) and we let u and v bet the common sub-
terms from before:

ui(p, q, j, r, s) =

∑q−1
d=pαj(p, q)P(Nj → NrNs)βr(p, d)βs(d+ 1, q)

P(N1 ⇒Wi|G)

and

vi(p, q, j) =
αj(p, q)βj(p, q)

P(N1 ⇒Wi|G)

Assuming the observations are independent, we can sum contribu-
tions:

P̂ (Nj → Nr Ns) =

∑ω
i=1

∑mi−1
p=1

∑mi
q=p+1 ui(p, q, j, r, s)

∑ω
i=1

∑mi
p=1

∑mi
q=p vi(p, q, j)
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1

and

P̂ (Nj → wk) =

∑ω
i=1

∑

{h:wh=wk} vi(h, h, j)
∑ω
i=1

∑mi
p=1

∑mi
q=p vi(p, q, j)



Variant slides
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Probabilistic context-free grammars (PCFGs)

A PCFG G consists of:

• A set of terminals, {wk}
• A set of nonterminals, {N i}, with a start symbol, N1

• A set of rules, {N i → ζj}, (where ζj is a sequence of

terminals and nonterminals)

• A set of probabilities on rules such that:

∀i ∑

j P (N i→ ζj) = 1

• A generalization of HMMs to tree structures (branching

processes)

• A similar DP algorithm to the Viterbi algorithm is used

for finding the most probable parse
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PCFGs

• Like a regular CFG but put probability on each rule

• Probabilities are also completely context-free, depend-

ing just on parent node

• Just as for HMMs, there are three basic questions we

wish to answer:

– P (w1m|G)

– argmaxtP (t|w1m, G)

– Learning algorithm. Find G such that P (w1m|G) is

maximized.
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Learning PCFGs (1)

• We would like to calculate how often each rule is used:

P̂ (Nj → ζ) =
C(Nj → ζ)

∑

γ C(Nj → γ)

• If we have labeled data, we count and find out

• Relative frequency again gives maximum likelihood prob-

ability estimates

• This is the motivation for building Treebanks of hand-

parsed sentences
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Learning PCFGs (2): the Inside-Outside algo-
rithm (Baker 1979)

• Otherwise we work iteratively from expectations of cur-

rent model.

• We construct an EM training algorithm, as for HMMs

• For each sentence, at each iteration, we work out ex-

pectation of how often each rule is used using inside

and outside probabilities

• We assume sentences are independent and sum ex-

pectations over parses of each

• We re-estimate rules based on these ‘counts’
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The EM algorithm

• Estimates the values of the hidden parameters of a

model.

• If we have seen dataX; we can estimate P (X|p(Θ)),

the prob. of X according to some model p with param-

eters Θ.

• We want to find the model which maximizes the likeli-

hood of the data

• This point is a maximum in the parameter space⇒ the

probability surface is flat there.

• So for each model parameter θi, we want to set
∂
∂θi

logP (. . .) = 0 and solve for the θi.
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The EM algorithm

• These parameters have to be adjusted subject to stochas-

tic constraints (constrained optimization)

• In general, one can’t do these differentiations analyti-

cally.

• So we attempt to find the maximum using the (iterative,

hill-climbing) EM algorithm.

• It’s roughly like gradient-descent, but specialized for learn-

ing likelihood functions
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EM algorithm

• Initalize all parameters (randomly or intelligently)

• E-step: We work out the expectation of the hidden vari-

ables, given the current parameters for the model

• M-step: (Assuming these expectations are right), we

calculate the maximum likelihood estimates for the pa-

rameters

• Repeat until convergence

(Dempster, Laird, and Rubin 1977). Guaranteed to not

diminish the likelihood of the data according to the model.

Feasible for a large range of models (where E and M step

can be computed).
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Problems with the Inside-Outside algorithm

1. Slow. Each iteration isO(m3n3), wherem =
∑ω
i=1mi,

and n is the number of nonterminals in the grammar.

2. Local maxima are much more of a problem. Charniak

(1993) reports that on each of 300 trials a different

local maximum was found. Use simulated annealing?

Restrict rules by initializing some parameters to zero?

Or HMM initialization?
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Problems with the Inside-Outside algorithm

3. Lari and Young (1990) suggest that you need many

more nonterminals available than are theoretically nec-

essary to get good grammar learning (about a threefold

increase?). This compounds the first problem.

4. There is no guarantee that the nonterminals that the

algorithm learns will have any satisfactory resemblance

to the kinds of nonterminals normally motivated in lin-

guistic analysis (NP, VP, etc.).
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Why we need recursive phrase structure

• The velocity of the seismic waves rises to . . .

• Kupiec (1992): HMM tagger goes awry: waves→ verb

S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .

• Or you can use dependency grammar representations
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DP: Inside and outside probabilities

Whereas for an HMM we cache:

Forwards = αi(t) = P (w1(t−1), Xt = i)

Backwards = βi(t) = P (wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabili-

ties, defined as follows:

Outside = αj(p, q) = P (w1(p−1), N
j
pq, w(q+1)m|G)

Inside = βj(p, q) = P (wpq|Nj
pq, G)

A slight generalization of Dynamic Bayes Nets covers prob-

abilistic context free grammars and inference by the inside-

outside algorithm (and-or tree of conjunctive daughters dis-

junctively chosen)
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2. Complex NLP Case Study:
Question Answering

• Task is a long pipeline of many subtasks

• Task seems AI complete

• NLP offers compelling performance advantages over

IR-style techniques

• But still lots of room for improvement
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Question answering from text

• TREC 8/9 QA competition: an idea originating from the
IR community

• With massive collections of on-line documents, manual
translation of textual information into knowledge bases
covering large numbers of domains is impractical: We
want to answer questions from textbases

• Evaluated output is 5 answers of 50/250 byte snippets
of text drawn from a 3 GB text collection, and required
to contain at least one concept of the semantic cate-
gory of the expected answer type. (IR think. Suggests
the use of named entity recognizers.)

• Get reciprocal points for highest correct answer.
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Pasca and Harabagiu (2001) demonstrates the
value of sophisticated NLP processing

• Good IR is needed: paragraph retrieval based on SMART

• Large taxonomy of question types and expected an-
swer types is crucial

• Statistical parser (modeled on Collins 1997) used to
parse questions and relevant text for answers, and to
build knowledge base

• Controlled query expansion loops (morphological, lexi-
cal synonyms, and semantic relations) are all important
in retrieving the correct answer.

• Answer ranking by ML method based on this informa-
tion surpasses IR-style empirical methods.
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Question Answering Example (1)

• Q261: What company sells most greetings cards ?

• sells(ORGANIZATION, cards(greeting), most)

• “Hallmark remains the largest maker of greeting cards”
maker(ORGANIZATION(Hallmark), cards(greeting), largest)

• Need an entailment between producing, or making and
selling goods

• Derived from WordNet, since synset make, produce,
create has the genus manufacture , defined in the gloss

of its nominalization as (for ) sale

• Also, need most ≈ largest

• Therefore the semantic form of question Q261 and its

illustrated answer are similar
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Question Answering Example (2)

• How hot does the inside of an active volcano get ?

• get(TEMPERATURE, inside(volcano(active)))

• “lava fragments belched out of the mountain were as
hot as 300 degrees Fahrenheit”

• fragments(lava, TEMPERATURE(degrees(300)),
belched(out, mountain))

• – volcano ISA mountain
– lava ISPARTOF volcano � lava inside volcano
– fragments of lava HAVEPROPERTIESOF lava

• The needed semantic information is available in Word-
Net definitions, and was successfully translated into a
form that can be used for rough ‘proofs’
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What’s used where? QA lessons learned

• IR: is not probabilistic, but is thoroughly quantitative,
with well-honed, if ad hoc, ranking schemes

• Parsing: probabilistic parser (Collins 1997 clone) – the
one big practical success of probabilistic parsing [speech
wins (Charniak 2001) are still theoretical].

• Semantic interpretation: all loosely logical (though prob-
abilistic parser is used to build knowledge base from
WordNet) – succeeded by aiming low?

• Result ranking: ordering of paragraphs done by a per-
ceptron classifier (7 features: question word matches,
distance from words to answer type word, punctuation
after answer, etc.). Statistical, but not high tech.
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PCFGs

• Like a regular CFG but put probability on each rule

• Key independence assumption: Probabilities are also

completely context-free, depending just on parent node

• Allow probabilistic inference:

– P (w1 · · ·wm|G)

– argmaxtP (t|w1 · · ·wm, G)

– Find G such that P (w1 · · ·wm|G) is maximized

• Give a partial solution for resolving grammar ambigui-

ties – but not too good, as not lexicalized

• Better for grammar induction (Gold (1967) vs.Horning

(1969)) and robustness
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Probabilistic Parsing

FSNLP, chapter 12

Christopher Manning and
Hinrich Schütze

© 1999–2002
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Modern Statistical Parsers

• A greatly increased ability to do accurate, robust, broad
coverage parsing (Charniak 1997; Collins 1997; Ratna-
parkhi 1997b; Charniak 2000; Charniak and Johnson
2005)
• Achieved by converting parsing into a classification task

and using statistical/machine learning methods
• Statistical methods (fairly) accurately resolve structural

and real world ambiguities
• Much faster: rather than being cubic in the sentence

length or worse, many statistical parsers parse in linear
time (by using beam search)
• Provide probabilistic language models that can be inte-

grated with speech recognition systems.
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Supervised ML parsing

• The crucial resource has been treebanks of parses,

especially the Penn Treebank (Marcus et al. 1993)

• From these, we train classifiers:

– Mainly probabilistic models, but also:

– Conventional decision trees

– Decision lists/transformation-based learning

• Possible only when extensive resources exist

• Somewhat uninteresting from Cog. Sci. viewpoint – which

would prefer bootstrapping from minimal supervision
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Penn Treebank Sentences: an example
( (S

(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP
(NP (DT a) (NN round))
(PP (IN of)

(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)

(NP (JJ other) (NNS lenders)))
(PP (IN against)

(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
(, ,)
(S-ADV

(NP-SBJ (-NONE- * ))
(VP (VBG reflecting)

(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)

(NP (DT that) (NN market)))))))
(. .)))

410



A Penn Treebank tree (POS tags not shown)
( (S (NP-SBJ The move)

(VP followed
(NP (NP a round)

(PP of
(NP (NP similar increases)

(PP by
(NP other lenders))

(PP against
(NP Arizona real estate loans)))))

,
(S-ADV (NP-SBJ * )

(VP reflecting
(NP (NP a continuing decline)

(PP-LOC in
(NP that market))))))

.))

411



Probabilistic models for parsing

• Conditional/Parsing model: We estimate directly the
probability of parses of a sentence

t̂ = argmaxtP (t|s,G) where
∑

tP (t|s,G) = 1

• We don’t learn from the distribution of sentences we
see (but nor do we assume some distribution for them)
– (Magerman 1995; Ratnaparkhi 1999)

• Generative/Joint/Language model:
∑

{t: yield(t)∈L} P (t) = 1

• Most likely tree

t̂ = argmaxtP (t|s) = argmaxt
P(t,s)
P(s)

= argmaxtP (t, s)

– (Collins 1997; Charniak 1997, 2000)
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Generative/Derivational model = Chain rule

P (t) =
∑

{d: d is a derivation of t}
P (d)

r1

r2

r3

S

NP

NP

Det N

PP

VP

Or: P (t) = P (d) where d is the canonical derivation of t

d = P (S
r1→α1

r2→ . . .
rm→αm = s) =

m
∏

i=1
P (ri|r1, . . . ri−1)

• History-based grammars

P (d) =
∏m
i=1P (ri|π(hi))
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Enriching a PCFG

• A naive PCFG with traditional nonterminals (NP, PP,
etc.) works quite poorly due to the independence as-
sumptions it embodies (Charniak 1996)
• Fix: encode more information into the nonterminal space

– Structure sensitivity (Manning and Carpenter 1997;
Johnson 1998b; Klein and Manning 2003)
∗ Expansion of nodes depends on their tree context.

E.g., enrich nodes by recording their parents: SNP
is different to VPNP

– (Head) Lexicalization (Collins 1997; Charniak 1997)
∗ The head word of a phrase gives a good represen-

tation of the phrase’s structure and meaning
∗ Puts the properties of words back into a PCFG
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Enriching a PCFG

• A naive PCFG with traditional nonterminals (NP, PP,

etc.) works quite poorly due to the independence as-

sumptions it embodies (Charniak 1996)

• Fix: encode more information into the nonterminal space

– Structure sensitivity (Manning and Carpenter 1997;

Johnson 1998b)

∗ Expansion of nodes depends a lot on their position

in the tree (independent of lexical content)

∗ E.g., enrich nodes by also recording their parents:
SNP is different to VPNP
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Enriching a PCFG (2)

– (Head) Lexicalization (Collins 1997; Charniak 1997)

∗ The head word of a phrase gives a good represen-

tation of the phrase’s structure and meaning

∗ Puts the properties of words back into a PCFG

Swalked

NPSue

NNPSue

Sue

VPwalked

VBDwalked

walked

PPinto

Pinto

into

NPstore

DTthe

the

NNstore

store

416



Parsing via classification decisions:
Charniak (1997)

• A very simple, conservative model of lexicalized PCFG

• Probabilistic conditioning is “top-down” (but actual com-

putation is bottom-up)

Srose

NPprofits

JJcorporate

corporate

NNSprofits

profits

VProse

Vrose

rose
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Charniak (1997) example

Srose

NP VProse

a. h = profits; c = NP

b. ph = rose; pc = S

c. P (h|ph, c, pc)
d. P (r|h, c, pc)

Srose

NPprofits VProse

Srose

NPprofits

JJ NNSprofits

VProse
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Charniak (1997) linear interpolation/shrinkage

P̂ (h|ph, c, pc) = λ1(e)PMLE(h|ph, c, pc)
+λ2(e)PMLE(h|C(ph), c, pc)

+λ3(e)PMLE(h|c, pc) + λ4(e)PMLE(h|c)
• λi(e) is here a function of how much one would ex-

pect to see a certain occurrence, given the amount of

training data, word counts, etc.

• C(ph) is semantic class of parent headword

• Techniques like these for dealing with data sparseness

are vital to successful model construction
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Charniak (1997) shrinkage example

P (prft|rose,NP,S) P (corp|prft, JJ,NP)
P (h|ph, c, pc) 0 0.245
P (h|C(ph), c, pc) 0.00352 0.0150
P (h|c, pc) 0.000627 0.00533
P (h|c) 0.000557 0.00418
• Allows utilization of rich highly conditioned estimates,

but smoothes when sufficient data is unavailable

• One can’t just use MLEs: one commonly sees previ-

ously unseen events, which would have probability 0.
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Sparseness & the Penn Treebank

• The Penn Treebank – 1 million words of parsed En-

glish WSJ – has been a key resource (because of the

widespread reliance on supervised learning)

• But 1 million words is like nothing:

– 965,000 constituents, but only 66 WHADJP, of which

only 6 aren’t how much or how many, but there is an

infinite space of these (how clever/original/incompetent

(at risk assessment and evaluation))

• Most of the probabilities that you would like to compute,

you can’t compute
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Sparseness & the Penn Treebank (2)

• Most intelligent processing depends on bilexical statis-
tics: likelihoods of relationships between pairs of words.

• Extremely sparse, even on topics central to the WSJ:

– stocks plummeted 2 occurrences
– stocks stabilized 1 occurrence
– stocks skyrocketed 0 occurrences
– #stocks discussed 0 occurrences

• So far there has been very modest success augment-
ing the Penn Treebank with extra unannotated materi-
als or using semantic classes or clusters (cf. Charniak
1997, Charniak 2000) – as soon as there are more than
tiny amounts of annotated training data.
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Probabilistic parsing

• Charniak (1997) expands each phrase structure tree in

a single step.

• This is good for capturing dependencies between child

nodes

• But it is bad because of data sparseness

• A pure dependency, one child at a time, model is worse

• But one can do better by in between models, such as

generating the children as a Markov process on both

sides of the head (Collins 1997; Charniak 2000)
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Correcting wrong context-freedom assumptions

Horizonal Markov Order
Vertical Order h = 0 h = 1 h ≤ 2 h = 2 h =∞

v = 0 No annotation 71.27 72.5 73.46 72.96 72.62
(854) (3119) (3863) (6207) (9657)

v ≤ 1 Sel. Parents 74.75 77.42 77.77 77.50 76.91
(2285) (6564) (7619) (11398) (14247)

v = 1 All Parents 74.68 77.42 77.81 77.50 76.81
(2984) (7312) (8367) (12132) (14666)

v ≤ 2 Sel. GParents 76.50 78.59 79.07 78.97 78.54
(4943) (12374) (13627) (19545) (20123)

v = 2 All GParents 76.74 79.18 79.74 79.07 78.72
(7797) (15740) (16994) (22886) (22002)
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Correcting wrong context-freedom assumptions

VPˆS

TO

to

VPˆVP

VB

see

PPˆVP

IN

if

NPˆPP

NN

advertising

NNS

works

VPˆS

TOˆVP

to

VPˆVP

VBˆVP

see

SBARˆVP

INˆSBAR

if

SˆSBAR

NPˆS

NNˆNP

advertising

VPˆS

VBZˆVP

works

(a) (b)
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Correcting wrong context-freedom assumptions

Cumulative Indiv.
Annotation Size F1 ∆ F1 ∆ F1

Baseline 7619 77.72 0.00 0.00
UNARY-INTERNAL 8065 78.15 0.43 0.43
UNARY-DT 8078 80.09 2.37 0.22
UNARY-RB 8081 80.25 2.53 0.48
TAG-PA 8520 80.62 2.90 2.57
SPLIT-IN 8541 81.19 3.47 2.17
SPLIT-AUX 9034 81.66 3.94 0.62
SPLIT-CC 9190 81.69 3.97 0.17
SPLIT-% 9255 81.81 4.09 0.20
TMP-NP 9594 82.25 4.53 1.12
GAPPED-S 9741 82.28 4.56 0.22
POSS-NP 9820 83.06 5.34 0.33
SPLIT-VP 10499 85.72 8.00 1.41
BASE-NP 11660 86.04 8.32 0.78
DOMINATES-V 14097 86.91 9.19 1.47
RIGHT-REC-NP 15276 87.04 9.32 1.99
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Evaluation

(a) ROOT

S

NP

NNS

0 Sales 1

NNS

executives 2

VP

VBD

were

VP

VBG

3 examining

NP

DT

4 the

NNS

5 figures

PP

IN

6 with

NP

JJ

7 great

NN

8 care 9

NP

NN

yesterday 10

.

. 11

(b) Brackets in gold standard tree (a.):
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)

(c) Brackets in candidate parse:
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)

(d) Precision: 3/8 = 37.5% Crossing Brackets: 0
Recall: 3/8 = 37.5% Crossing Accuracy: 100%
Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9%
Labeled Recall: 3/8 = 37.5%
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8 care 9

NP

NN

yesterday 10

.
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NNS

5 figures

PP

IN

6 with

NP

JJ

7 great

NN

8 care 9

NN

yesterday 10

.

. 11

Gold standard brackets: S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)
Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)
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Gold standard brackets: S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Labeled Precision: 3/7 = 42.9%
Labeled Recall: 3/8 = 37.5%
LP/LR F1 40.0%
Tagging Accuracy: 11/11 = 100.0%
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Parser results

• Parsers are normally evaluated on the relation between
individual postulated nodes and ones in the gold stan-
dard tree (Penn Treebank, section 23)

• Normally people make systems balanced for precision/recall

• Normally evaluate on sentences of 40 words or less

• Magerman (1995): about 85% labeled precision and
recall

• Charniak (2000) gets 90.1% labeled precision and re-
call

• Good performance. Steady progress in error reduction

• At some point size of and errors in treebank must be-
come the limiting factor
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– (Some thought that was in 1997, when several sys-

tems were getting 87.x%, but apparently not.)



Bod’s (1998) Data Oriented Parsing (DOP)

• A memory-based approach using linguistic experiences
• Suppose we have a corpus of two sentences:

S

NP

Sue

VP

V

saw

NP

Jo

S

NP

Kay

VP

V

heard

NP

Jim
• To parse the new sentence Sue heard Jim, we put to-

gether tree fragments that we have already seen:
S

NP

Sue

VP

VP

V

heard

NP

Jim
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Bod’s (1998) Data Oriented Parsing (DOP)

• Probability of fragment F expanding mother M :

P (F |M) = #(F)/#(M)

• We assume independence across fragments

• So, we just multiply to get a derivation probability

– E.g., 8 fragments with VP as mother, 1 heard Jim,
so P([VP [V heard ] [NP Jim]]) = 1/8.

• I gave one DOP derivation of a tree. There are many:
S

NP

Sue

VP

V NP

V

heard

NP

Jim

• Need to sum over derivations to find tree probability
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Data Oriented Parsing results (Bod 2000)

• The model has a lot of really bad problems:

– The estimator is biased and inconsistent

– Big trees are greatly over-represented in estimates

∗ # of fragments is exponential in the tree size

– There is little explicit modeling of linguistic structure,

as in the head percolation of lexicalized PCFGs

• But DOP learns nonhead dependencies, topical corre-

lations and idioms, that no other approach treats.

• Because of this, it works well:

– 89.5% LP, 89.3% LR – better than Charniak (1997),

Collins (1997); a smidgen behind Charniak (2000)
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Extra/variant slides
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Statistical Parsing

• Recent work on statistical parsing, including (Mager-
man 1995; Charniak 1997; Collins 1996, 1997; Ratna-
parkhi 1997b; Charniak 2000) has greatly raised the
bar of parsing performance

• It’s redefined the ability to do robust, rapid broad cover-
age parsing

– Around 1990: Probably no parser could do better
than around 65% labeled precision/recall over broad
coverage text (evaluation was less rigorous)

– 2000: Over 90% labeled precision/recall

• How? By converting parsing into a classification task
and using machine learning methods
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Probabilistic models for parsing

• Parsing model: We estimate directly the probability of

parses of a sentence

t̂ = argmax
t

P (t|s,G) where
∑

t
P (t|s,G) = 1

(Magerman 1995; Collins 1996)

• We don’t learn from the distribution of sentences we

see (but nor do we assume some distribution for them)

• But in effect we’re always generalizing over sentences

in estimating rules
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Language model

• Language model:
∑

{t: yield(t)∈L}
P (t) = 1

• Sentence probability

P (s) =
∑

t
P (s, t) =

∑

{t: yield(t)=s}
P (t)

• Most likely tree

t̂ = argmax
t

P (t|s) = argmax
t

P (t, s)

P (s)
= argmax

t
P (t, s)

• (Collins 1997; Charniak 1997, 2000)
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Derivational model

P (t) =
∑

{d: d is a derivation of t}
P (d)

Or: P (t) = P (d) where d is the canonical derivation of

t

d = P (S
r1→α1

r2→ . . .
rm→αm = s) =

m
∏

i=1
P (ri|r1, . . . ri−1)

• History-based grammars:

P (d) =
m
∏

i=1
P (ri|π(hi)) r1

r2

r3

S

NP

NP

Det N

PP

VP
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Enrichments

• Structure sensitivity

– Expansions of nodes depends a lot on their position

in the tree (independent of lexical content)

– (Manning and Carpenter 1997; Johnson 1998a)

• Lexicalization – getting back properties of words
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A standard CFG phrase structure tree

S

NP

NNP

Sue

VP

VBD

walked

PP

P

into

NP

DT

the

NN

store

440



Lexicalization: From this we form a lexical-
ized tree

Swalked

NPSue

NNPSue

Sue

VPwalked

VBDwalked

walked

PPinto

Pinto

into

NPstore

DTthe

the

NNstore

store
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Modern enhanced PCFG parsing
E.g., Charniak (1997)

• A very simple, conservative model of a lexicalized PCFG

Srose

NPprofits

JJcorporate

corporate

NNSprofits

profits

VProse

Vrose

rose
• Probabilistic conditioning is “top-down” (but actual com-

putation is bottom-up)
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Charniak (1997) example

Srose

NP VProse

a. h = profits; c = NP

b. ph = rose; pc = S

c. P (h|ph, c, pc)
d. P (r|h, c, pc)

Srose

NPprofits VProse

Srose

NPprofits

JJ NNSprofits

VProse
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Charniak (1997) linear interpolation/shrinkage

P̂ (h|ph, c, pc) = λ1(e)PMLE(h|ph, c, pc)
+λ2(e)PMLE(h|C(ph), c, pc)

+λ3(e)PMLE(h|c, pc) + λ4(e)PMLE(h|c)
• λi(e) is here a function of how much one would ex-

pect to see a certain occurrence, given the amount of

training data, word counts, etc.

• C(ph) is semantic class of parent headword

• Techniques like these for dealing with data sparseness

are vital to successful model construction
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Charniak (1997) shrinkage example

P (prft|rose,NP,S) P (corp|prft, JJ,NP)
P (h|ph, c, pc) 0 0.245
P (h|C(ph), c, pc) 0.00352 0.0150
P (h|c, pc) 0.000627 0.00533
P (h|c) 0.000557 0.00418

• Allows utilization of rich highly conditioned estimates,

but smoothes when sufficient data is unavailable

• In practice, one is frequently having to back off to sim-

ple conditioning which is purely syntactic
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Topics in Information
Retrieval

FSNLP, chapter 15

Christopher Manning and
Hinrich Schütze

© 1999–2001
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Information Retrieval

• Getting information from document repositories

• Normally text (though spoken, image, and video data

are all becoming more important)

• Traditionally a rather separate field from NLP, and al-

ways very empirically based

• A field of some antiquity: the famous SMART IR system

(Salton) predates the relational model in databases

• New directions: the Web, email, multimedia, . . .

• There is much scope for greater profitable interaction

between IR and Statistical NLP
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Tasks

• “Ad hoc retrieval”: the user enters query terms which

describe the desired information; the system returns a

set of (sometimes ranked) documents.

• Document categorization: assign a document to one or

more categories (e.g., subject codes) [chapter 16]

– Filtering: categorization with binary choice about the

relevance of a document (e.g., screen for junk email).

– Routing: categorization for the purpose of transmit-

ting a document to one or more users (e.g., cus-

tomer service by product)
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Tasks (continued)

• Document clustering: group similar documents into clus-

ters (e.g., for making sense of ad hoc retrieval results)

[chapter 14]

• Text segmentation: identify semantically coherent units

within a text (e.g., for retrieval below the document level)

[section 15.4]

• Text summarization: create a shorter version of a doc-

ument containing just the relevant information

– Knowledge-based: generate new text

– Selection-based: extract the n most important sum-

mary sentences from the orginal document
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[ AltaVista] [ Advanced Query] [ Simple Query] [ Private eXtension Products] [ Help with Query] 

Search the  Web  Usenet
Display results  Compact  Detailed 

  
Tip: When in doubt use lower-case. Check out Help for better matches. 

 Word count: glass pyramid:  about 200; Pei:9453; Louvre:26578

Documents 1-10 of about 10000 matching the query, best matches first.

Paris, France
Paris, France. Practical Info.-A Brief Overview. Layout: One of the most densely populated cities
in Europe, Paris is also one of the most accessible,...
http://www.catatravel.com/paris.htm - size 8K - 29 Sep 95

Culture
Culture. French culture is an integral part of France’s image, as foreign tourists are the first to
acknowledge by thronging to the Louvre and the Centre..
http://www.france.diplomatie.fr/france/edu/culture.gb.html - size 48K - 20 Jun 96

Travel World - Science Education Tour of Europe
Science Education Tour of Europe. B E M I D J I S T A T E U N I V E R S I T Y Science
Education Tour of EUROPE July 19-August 1, 1995...
http://www.omnitravel.com/007etour.html - size 16K - 21 Jul 95
http://www.omnitravel.com/etour.html - size 16K - 15 May 95

FRANCE REAL ESTATE RENTAL
LOIRE VALLEY RENTAL. ANCIENT STONE HOME FOR RENT. Available to rent is a
furnished, french country decorated, two bedroom, small stone home, built in the..
http://frost2.flemingc.on.ca/~pbell/france.htm - size 10K - 21 Jun 96

LINKS
PAUL’S LINKS. Click here to view CNN interactive and WEBNEWSor CNET. Click here to
make your own web site. Click here to manage your cash. Interested in...
http://frost2.flemingc.on.ca/~pbell/links.htm - size 9K - 19 Jun 96

Digital Design Media, Chapter 9: Lines in Space
Construction planes... Glass-sheet models... Three-dimensional geometric transformations...
Sweeping points... Space curves... Structuring wireframe...
http://www.gsd.harvard.edu/~malcolm/DDM/DDM09.html - size 36K - 22 Jul 95

No Title
Boston Update 94: A VISION FOR BOSTON’S FUTURE. Ian Menzies. Senior Fellow,
McCormack Institute. University of Massachusetts Boston. April 1994. Prepared..
http://www.cs.umb.edu/~serl/mcCormack/Menzies.html - size 25K - 31 Jan 96

Paris - Photograph
The Arc de Triomphe du Carrousel neatly frames IM Pei’s glass pyramid, Paris 1/6. © 1996
Richard Nebesky.

Results of the search ‘ “glass pyramid” Pei Louvre’ on AltaVista
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IR system design

• Unlike databases, IR systems index everything

• Usually by an inverted index that contains postings of

all word occurrences in documents

• Having position-in-file information enables phrase match-

ing (where an IR “phrase” is just contiguous words)

• A stop list of common, meaningless words is often not

indexed

• This greatly cuts the inverted index size (given Zipf’s

Law)

• Stemming means indexing only truncated morphologi-

cal roots. This sometimes helps (but not always).
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Stop words: A small stop list for English

a also an and as at be but
by can could do for from go
have he her here his how
i if in into it its
my of on or our say she
that the their there therefore they
this these those through to until
we what when where which while who with
would you your
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The probability ranking principle (PRP)

IR fundamentally addresses this problem: Given a query

W1 and a document W2 attempt to decide relevance of

W2 to W1, where relevance is meant to be computed with

respect to their hidden meanings M1 and M2.

The model underlying most IR systems (van Rijsbergen

1979: 113):

• PRP: Rank documents in order of decreasing probabil-

ity of relevance is optimal.

Problems: documents that aren’t independent. Any that

don’t give additional information (especially, duplicates!).

Implies not doing word-sense disambiguation.
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The Vector Space Model (Salton, TREC)

Represents terms and documents as vectors in k-dimen.

space based on the bag of words they contain:

d = The man said that a space age man appeared

d′ = Those men appeared to say their age

~d =















d1
d2
...
dn















~d ~d′

age 1 1
appeared 1 1
man 2 0
men 0 1
said 1 0
say 0 1
space 1 0
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Real-valued vector spaces

Vector dot product (how much do they have in common?):

~x · ~y =
n

∑

i=1
xiyi

0 if orthogonal (no words in common)

Length of a vector:

|~x| =
√

∑n
i=1 x

2
i
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Normalized vectors

A vector can be normalized (i.e., given a length of 1) by

dividing each of its components by the vector’s length

This maps vectors onto the unit circle by dividing through

by lengths:

Then, |~x| =
√

∑n
i=1 x

2
i = 1

If we didn’t normalize vectors, long documents would be

more similar to each other! (By the dot product measure.)
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The Vector Space Model (normalized vectors)

0 1
0

1

insurance

car

q

d1

d2

d3
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Cosine measure of similarity (angle between
two vectors)

cos(~x, ~y) =
~x · ~y
|~x||~y| =

∑n
i=1 xiyi

√

∑n
i=1 x

2
i

√

∑n
i=1 y

2
i

For normalized vectors, the cosine is simply the dot prod-

uct: cos(~x, ~y) = ~x · ~y
Developed in SMART system (Salton) and standardly used

by TREC participants
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Euclidean distance between vectors

Euclidean distance:

|~x− ~y| =
√

∑n
i=1(xi − yi)

2

For normalized vectors, Euclidean distance gives the same

closeness ordering as the cosine measure (simple exer-

cise).
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The Vector Space Model: Doing a query

We return the documents ranked by the closeness of their

vectors to the query, also represented as a vector.

0 1
0

1

insurance

car

q

d1

d2

d3
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Measuring performance: The 2 ×2 contingency
matrix

Black-box or “end-to-end” system performance

Actual
System target ¬ target

selected tp fp
¬selected fn tn

Accuracy = (tp+ tn)/N

Error = (fn+ fp)/N = 1− Accuracy

Why is this measure inadequate for IR?
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The motivation for precision and recall

tpfp fn

selected target

tn

Accuracy is not a useful measure when the target set is a

tiny fraction of the total set.
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Precision is defined as a measure of the proportion of se-

lected items that the system got right:

precision P =
tp

tp+ fp

Recall is defined as the proportion of the target items that

the system selected:

recall R =
tp

tp+ fn

These two measures allow us to distinguish between ex-

cluding target items and returning irrelevant items.

They still require human-made “gold standard” judgements.
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Evaluation of ranked Ranking 1 Ranking 2 Ranking 3
results d1: X d10: × d6: ×

d2: X d9: × d1: X

d3: X d8: × d2: X

d4: X d7: × d10: ×
d5: X d6: × d9: ×
d6: × d1: X d3: X

d7: × d2: X d5: X

d8: × d3: X d4: X

d9: × d4: X d7: ×
d10: × d5: X d8: ×

precision at 5 1.0 0.0 0.4
precision at 10 0.5 0.5 0.5
uninterpolated av. prec. 1.0 0.3544 0.5726
interpolated av. prec. (11-point) 1.0 0.5 0.6440
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Interpolated average precision

0 1
0

1

×
×

×
× ×

precision

recall 0 1
0

1

×
×

×
× ×

interpolated
precision

recall
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Combined measures

If we can decide on the relative importance of precision and

recall, then they can be combined into a single measure.

Does one just average them? Bad, because the measures

aren’t independent.

What’s a sensible model?

Rijsbergen (1979:174) defines and justifies the usually used

alternative, the F measure

(see http://www.dcs.gla.ac.uk/Keith/Preface.html).
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Assumptions:

• Interested in document proportions not absolute num-

bers

• Decreasing marginal effectiveness of recall and preci-

sion, e.g.:

(R+ 1, P − 1) > (R,P )

but

(R+ 1, P ) > (R+ 2, P − 1)

Makes curves convex towards origin.
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The F measure (where F = 1− E)

F =
1

α1
P + (1− α)1

R

where P is precision, R is recall and α weights

precision and recall. (Or in terms of β, where

α = 1/(β2 + 1).)

A value of α = 0.5 is often chosen.

F =
2PR

R+ P
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The F measure ( α = 0.5)

f(x,y)
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The F measure ( α = 0.9)

f(x,y)
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Term weighting

• Simplest term (vector component) weightings are:

– count of number of times word occurs in document

– binary: word does or doesn’t occur in document

• However, general experience is that a document is a

better match if a word occurs three times than once,

but not a three times better match.

• This leads to a series of weighting functions that damp
the term weighting, e.g., 1 + log(x), x > 0, or

√
x.

• This is a good thing to do, but still imperfect: it doesn’t

capture that the occurrence of a term in a document

is more important if that term does not occur in many

other documents.
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Example of term frequency (from Steven Bird)

• Documents: Austen’s Sense and Sensibility, Pride and

Prejudice; Bronte’s Wuthering Heights

• Terms: affection, jealous, gossip

• SAS: (115, 10, 2); PAP: (58, 7, 0); WH: (20, 11, 6)

• SAS: (0.996, 0.087, 0.017); PAP: (0.993, 0.120, 0.0);

WH: (0.847, 0.466, 0.254)

cos(SAS, PAP ) = .996× .993 + .087× .120 + .017× 0.0 = 0.

cos(SAS,WH) = .996× .847 + .087× .466 + .017× .254 = 0
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Document frequency: indicates informative-
ness

Word Collection Frequency Document Frequency
insurance 10440 3997
try 10422 8760
Adding this in (one of many ways):

weight(i, j) =







(1 + log(tfi,j)) log N
dfi

if tfi,j ≥ 1

0 if tfi,j = 0

Document frequency weighting is only possible if we have

a static collection. Sometimes we don’t – it’s dynamically

created.
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Term weighting summary

term frequency tfi,j number of occurrences of wi in dj
document frequency dfi number of documents in the col-

lection that wi occurs in

collection frequency cfi total number of occurrences of

wi in the collection

Note that dfi ≤ cfi and that
∑

j tfi,j = cfi.

• tf.idf weighting: term frequency times inverse docu-

ment frequency. This is the standard in IR (but it is

really a family of methods depending on how each fig-

ure is scaled)
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Language and implementation problems

• Traditional IR relies on word matching. There are two

fundamental query matching problems:

– synonymy (image, likeness, portrait, facsimile, icon)

– polysemy (port: harbor, fortified wine, computer jack,

. . . )

• Effective indexing needs scale, and accuracy

• Dimensionality reduction techniques address part of the

first problem, while remaining fairly efficient
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Latent Semantic Indexing (LSI)

• Approach: Treat word-to-document association data as

an unreliable estimate of a larger set of applicable words

lying on ‘latent’ dimensions.

• Goal: Cluster similar documents which may share no

terms in a low-dimensional subspace (improve recall).

• Preprocessing: Compute low-rank approximation to the

original term-by-document (sparse) matrix

• Vector Space Model: Encode terms and documents

using factors derived from SVD

• Evaluation: Rank similarity of terms and docs to query

via Euclidean distances or cosines
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Singular Value Decomposition Encoding

• Computes a truncated SVD of the document-term ma-

trix, using the singlular vectors as axes of the lower

dimensional space

• Ak is the best rank-k approximation to the term-by-

document matrix A

• Want minimum number of factors (k) that discriminates

most concepts

• In practice, k ranges between 100 and 300 but could

be much larger.

• Choosing optimal k for different collections is challeng-

ing.
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Strengths and weaknesses of LSI

• Strong formal framework. Completely automatic. No
stemming required. Allows misspellings

• Can be used for multilingual search (Flournoy & Peters
Stanford, Landauer Colorado, Littman Duke)

• ‘Conceptual IR’ recall improvement: one can retrieve
relevant documents that do not contain any search terms

• Calculation of LSI is expensive

• Continuous normal-distribution-based methods not re-
ally appropriate for count data

• Often improving precision is more important: need query
and word sense disambiguation
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Cosine, Euclidean, and Assignment 6

• Just so there are no misunderstandings. . .

• In class on Monday, I suggested that one might pre-

normalize the vectors in a vector space model

• However, for the assignment

– The data structures store integer counts and lengths,

they’re not set up for pre-normalizing

– We want you to compare the cosine measure and

Euclidean distance, and this distinction only makes

sense if you don’t pre-normalize (as we discussed)
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Similarity measures for binary vectors

• Rather than working with weighted term frequencies, a

simpler model just uses binary (0/1) vectors

• Matching coefficient (like dot product): |X ∩ Y |
• Jaccard coefficient: |X∩Y ||X∪Y |

• Jaccard is one of several coefficients that normalize the

degree of matching (others are Dice, overlap, . . . ).

• In practice it is often a good one because it penalizes

matches of a small percentage of shared entries rela-

tive to the document size more than other methods
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Bored. Anything else I might try?

• The L1 metric (absolute distance not squared)

L1(x, y) =
∑

i

∣

∣

∣

∣

∣

∣

xi
∑

j xj
− yi

∑

j yj

∣

∣

∣

∣

∣

∣

• I’m not sure how well it’d work, but might be worth a

shot. . . .
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A single-link clustering of 22 frequent English
words represented as a dendrogram

be not he I it this the his a andbut in on with for at from of to as is was
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Bottom-up hierarchical clustering

1 Given: a set X = {x1, . . . xn} of objects
2 a function sim: P(X )× P(X )→ R

3 for i := 1 to n do
4 ci := {xi}
5 end
6 C := {c1, . . . , cn}
7 j := n+ 1

8 while |C| > 1

9 (cn1, cn2) := argmax(cu,cv)∈C×C sim(cu, cv)

10 cj = cn1 ∪ cn2

11 C := C\{cn1, cn2} ∪ {cj}
12 j := j + 1
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Similarity functions used in clustering

Function Definition

single link similarity of two most similar members
complete link similarity of two least similar members
group-average average similarity between members
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A cloud of points in a plane
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Intermediate clustering of the points
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Single-link clustering of the points
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Complete-link clustering of the points
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The EM algorithm based on a presentation by Dan Klein

• A very general and well-studied algorithm

• I cover only the specific case we use in this course:

maximum-likelihood estimation for models with discrete

hidden variables

• (For continuous case, sums go to integrals; for MAP

estimation, changes to accommodate prior)

• As an easy example we estimate parameters of an n-

gram mixture model

• For all details of EM, try McLachlan and Krishnan (1996)
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Maximum-Likelihood Estimation

• We have some dataX and a probabilistic model P (X|Θ)

for that data

• X is a collection of individual data items x

• Θ is a collection of individual parameters θ.

• The maximum-likelihood estimation problem is, given a

model P (X|Θ) and some actual data X, find the Θ

which makes the data most likely:

Θ′ = argmax
Θ

P (X|Θ)

• This problem is just an optimization problem, which we

could use any imaginable tool to solve
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Maximum-Likelihood Estimation

• In practice, it’s often hard to get expressions for the

derivatives needed by gradient methods

• EM is one popular and powerful way of proceeding, but

not the only way.

• Remember, EM is doing MLE
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Finding parameters of a n-gram mixture model

• P may be a mixture of k pre-existing multinomials:

P (xi|Θ) =
k

∑

j=1
θjPj(xi)

P̂ (w3|w1, w2) = θ3P3(w3|w1, w2)+θ2P2(w3|w2)+θ1P1(w3)

• We treat the Pj as fixed . We learn by EM only the θj.

P (X|Θ) =
n
∏

i=1
P (xi|Θ)

=
n
∏

i=1

k
∑

j=1
Pj(xi|Θj)
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1

• X = [x1 . . . xn] is a sequence of n words drawn from

a vocabulary V , and Θ = [θ1 . . . θk] are the mixing

weights



EM

• EM applies when your data is incomplete in some way
• For each data item x there is some extra information y

(which we don’t know)
• The vector X is referred to as the the observed data or

incomplete data
• X along with the completions Y is referred to as the

complete data.
• There are two reasons why observed data might be

incomplete:
– It’s really incomplete: Some or all of the instances

really have missing values.
– It’s artificially incomplete: It simplifies the math to

pretend there’s extra data.
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EM and Hidden Structure

• In the first case you might be using EM to “fill in the
blanks” where you have missing measurements.
• The second case is strange but standard. In our mix-

ture model, viewed generatively, if each data point x
is assigned to a single mixture component y, then the
probability expression becomes:

P (X,Y |Θ) =
n
∏

i=1
P (xi, yi|Θ)

=
n
∏

i=1
Pyi(xi|Θ)

Where yi ∈ {1, ..., k}. P (X,Y |Θ) is called the complete-
data likelihood.
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EM and Hidden Structure

• Note:

– the sum over components is gone, since yi tells us
which single component xi came from. We just don’t
know what the yi are.

– our model for the observed data X involved the “un-
observed” structures – the component indexes – all
along. When we wanted the observed-data likeli-
hood we summed out over indexes.

– there are two likelihoods floating around: the observed-
data likelihood P (X|Θ) and the complete-data like-
lihood P (X,Y |Θ). EM is a method for maximizing
P (X|Θ).
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EM and Hidden Structure

• Looking at completions is useful because finding

Θ = argmax
Θ

P (X|Θ)

is hard (it’s our original problem – maximizing products

of sums is hard)

• On the other hand, finding

Θ = argmax
Θ

P (X,Y |Θ)

would be easy – if we knew Y .

• The general idea behind EM is to alternate between

maximizing Θ with Y fixed and “filling in” the comple-

tions Y based on our best guesses given Θ.
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The EM algorithm

• The actual algorithm is as follows:

Initialize Start with a guess at Θ – it may be a very

bad guess

Until tired

E-Step Given a current, fixed Θ′, calculate comple-

tions: P (Y |X,Θ′)
M-Step Given fixed completions P (Y |X,Θ′), max-

imize
∑

Y P (Y |X,Θ′) logP (X,Y |Θ) with respect

to Θ.
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The EM algorithm

• In the E-step we calculate the likelihood of the various

completions with our fixed Θ′.
• In the M-stem we maximize the expected log-likelihood

of the complete data. That’s not the same thing as the

likelihood of the observed data, but it’s close

• The hope is that even relatively poor guesses at Θ,

when constrained by the actual data X, will still pro-

duce decent completions

• Note that “the complete data” changes with each itera-

tion
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EM made easy

• Want: Θ which maximizes the data likelihood

L(Θ) = P (X|Θ)

=
∑

Y P (X,Y |Θ)

• The Y ranges over all possible completions ofX. Since
X and Y are vectors of independent data items,

L(Θ) =
∏

x

∑

y
P (x, y|Θ)

• We don’t want a product of sums. It’d be easy to maxi-
mize if we had a product of products.
• Each x is a data item, which is broken into a sum of

sub-possibilities, one for each completion y. We want
to make each completion be like a mini data item, all
multiplied together with other data items.
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EM made easy

• Want: a product of products

• Arithmetic-mean-geometric-mean (AMGM) inequality says

that, if
∑

iwi = 1,
∏

i
z
wi
i ≤

∑

wizi

• In other words, arithmetic means are larger than geo-

metric means (for 1 and 9, arithmetic mean is 5, geo-

metric mean is 3)

• This equality is promising, since we have a sum and

want a product

• We can use P (x, y|Θ) as the zi, but where do the wi
come from?
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EM made easy

• The answer is to bring our previous guess at Θ into the

picture.

• Let’s assume our old guess was Θ′. Then the old

likelihood was

L(Θ′) =
∏

x
P (x|Θ′)

• This is just a constant . So rather than trying to make

L(Θ) large, we could try to make the relative change

in likelihood

R(Θ|Θ′) =
L(Θ)

L(Θ′)
large.
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EM made easy

• Then, we would have

R(Θ|Θ′) =

∏

x
∑

y P (x, y|Θ)
∏

xP (x|Θ′)
=

∏

x

∑

y P (x, y|Θ)

P (x|Θ′)
=

∏

x

∑

y

P (x, y|Θ)

P (x|Θ′)

=
∏

x

∑

y

P (x, y|Θ)

P (x|Θ′)
P (y|x,Θ′)
P (y|x,Θ′)

=
∏

x

∑

y
P (y|x,Θ′)P (x, y|Θ)

P (x, y|Θ′)
• Now that’s promising: we’ve got a sum of relative likeli-

hoods P (x, y|Θ)/P (x, y|Θ′) weighted by P (y|x,Θ′).
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EM made easy

• We can use our identity to turn the sum into a product:

R(Θ|Θ′) =
∏

x

∑

y
P (y|x,Θ′)P (x, y|Θ)

P (x, y|Θ′)

≥ ∏

x

∏

y





P (x, y|Θ)

P (x, y|Θ′)





P(y|x,Θ′)

• Θ, which we’re maximizing, is a variable, but Θ′ is just

a constant. So we can just maximize

Q(Θ|Θ′) =
∏

x

∏

y
P (x, y|Θ)P(y|x,Θ′)
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EM made easy

• We started trying to maximize the likelihood L(Θ) and

saw that we could just as well maximize the relative

likelihood R(Θ|Θ′) = L(Θ)/L(Θ′). But R(Θ|Θ′)
was still a product of sums, so we used the AMGM

inequality and found a quantity Q(Θ|Θ′) which was

(proportional to) a lower bound on R. That’s useful

because Q is something that is easy to maximize, if

we know P (y|x,Θ′).
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The EM Algorithm

• So here’s EM, again:

– Start with an initial guess Θ′.
– Iteratively do

E-Step Calculate P (y|x,Θ′)
M-Step Maximize Q(Θ|Θ′) to find a new Θ′

• In practice, maximizing Q is just setting parameters as

relative frequencies in the complete data – these are

the maximum likelihood estimates of Θ
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The EM Algorithm

• The first step is called the E-Step because we calculate
the expected likelihoods of the completions.
• The second step is called the M-Step because, using

those completion likelihoods, we maximize Q, which
hopefully increases R and hence our original goal L
• The expectations give the shape of a simple Q function

for that iteration, which is a lower bound on L (because
of AMGM). At each M-Step, we maximize that lower
bound
• This procedure increases L at every iteration until Θ′

reaches a local extreme of L.
• This is because successive Q functions are better ap-

proximations, until you get to a (local) maxima
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EM algorithm

• We initalize all parameters (randomly or intelligently)

• E-step: We work out the expectation of the hidden vari-

ables, given the current parameters for the model

• M-step: (Assuming these expectations are right), we

calculate the maximum likelihood estimates for the pa-

rameters

• Repeat until convergence

(Dempster, Laird, and Rubin 1977). Guaranteed to not

diminish the likelihood of the data according to the model.

Feasible for a large range of models (where E and M step

can be computed).
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Text Categorization

FSNLP, chapter 16

Christopher Manning and
Hinrich Schütze

© 1999–2002
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Text categorization/classification

• Take a document and assign it a label representing its
topic
• Have some predefined categories for texts

– Classic example: decide if a newspaper article is
about politics, business, or sports

– Predefined categories for news items on newswires
– Reuters categories

– ACM keywords
– Yahoo! or Open Directory classes (extra complexity:

hierarchical)
– UMLS (Unified Medical Language System) MeSH

codes
• Generally approached using a bag of words model
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Text categorization/classification

• There are many other uses for the same technology:

– Is this page a laser printer product page?

– Does this company accept overseas orders?

– What kind of job does this job posting describe?

– What kind of position does this list of responsibilities

describe?

– What position does this this list of skills best fit?

– Word sense disambiguation can actually be thought

of as text (here, context) categorization:

∗ Is this the “computer” or “harbor” sense of port?
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Text categorization/classification

• This can be thought of as working out the “meaning”

of documents in a very primitive sense: for instance, a

news article “means” Europe and politics

• Most of the companies that claim to be understanding

your document, doing eCRM processing of your users

complaining emails, etc., are essentially offering text

categorization at the moment:

– Kana

– Autonomy

– Bhasha

– Banter
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NLP as a classification problem

• Central to recent advances in NLP has been recon-

ceptualizing NLP as a machine learning classification

problem

• We – preferably someone else – hand-annotate data,

and then learn using standard ML methods

• Annotated data items are feature vectors ~xi with a clas-

sification ci.

• Our job is to assign an unannotated data item ~x to one

of the classes ck (or possibly to the doubt D or outlier

O categories – though in practice rarely used).
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Training procedure

Annotated
Training

Data

Learner
(Training
Mode)

Learned
Knowledge
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Testing = deployed procedure

Unannotated
Test Data

Learner
(Test

Mode)

Annotated
Data

Learned
Knowledge
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Statistical decision theory

• The proportion of items in each class ck has a prior

probability πk.

• Feature vectors ~x have distribution Pk(~x) for class ck
• Assume (falsely) that these are known

• Bayes optimal classifier / Bayes (decision) rule :

– Simple version: For an item ~x, assign class

c = arg maxck
P (ck|~x)

– More complex versions put in explicit loss functions

for making different kinds of mistakes, and decide D
if no class is likely.
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Bayesian classification in WSD

• Vectors ~x are some representation of the context of use

of a word

• Problem: We usually don’t know P (ck|~x)
• Partial solution: we break it up by Bayes’ rule

A ∩B

Ω
A B

P (B|A) = P (A ∩B)/P (A)

P (A ∩B) = P (B)P (A|B)
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Bayes’ theorem

P (B|A) =
P (A,B)

P (A)
=
P (A|B)P (B)

P (A)

If A ⊆ ∪iBi and the Bi are disjoint, then (sum rule):

P (A) =
∑

iP (A,Bi) =
∑

iP (A|Bi)P (Bi)

Bayes’ theorem: If A ⊆ ∪ni=1Bi, P (A) > 0, and Bi ∩
Bj = ∅ for i 6= j: Likelihood Prior

P (Bj|A) =
P (A|Bj)P (Bj)

P (A)
=

P (A|Bj)× P (Bj)
∑n
i=1P (A|Bi)P (Bi)

Posterior Normalizing term
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A simple but OK approach: Naive Bayes WSD

• ~x is our context (something like a 100 word window)

• ck is a sense of the word

Choose c′ = argmax
ck

P (ck|~x)

= argmax
ck

P (~x|ck)
P (~x)

P (ck)

= argmax
ck

P (~x|ck)P (ck)

= argmax
ck

[logP (~x|ck) + logP (ck)]

= argmax
ck









∑

vj in ~x

logP (vj|ck) + logP (ck)








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Naive Bayes Text Categorization

• ~x is our document, a list of words

• ck is the hidden class

c′ = argmax
ck

P (ck|~x)

= argmax
ck

P (~x|ck)
P (~x)

P (ck)

= argmax
ck

P (~x|ck)P (ck)

= argmax
ck

[logP (~x|ck) + logP (ck)]
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Naive Bayes models

• The Naive Bayes assumption is that the attributes used

for description are all conditionally independent:

Naive Bayes assumption

P (~x|ck) = P ({vj|vj in ~x}|ck) =
∏

vj in ~x
P (vj|ck)

• This is commonly referred to as the bag of words as-

sumption

• Decision rule for Naive Bayes

Decide c′ if c′ = argmaxck[logP (ck)+
∑

vj in ~x
logP (vj|ck)]

• Note that there are two Naive Bayes models (McCallum

and Nigam 1998)
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Two Naive Bayes models: Multinomial

• vj is word j of the context

C

v1 v2 v3 v4 · · · vn

• Model of Gale et al. (1992) (for WSD). Usual in StatNLP.

• The CPT for each multinomial is identical (tied param-

eters)

• The multinomial is estimated over the whole vocabu-

lary.
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Two Naive Bayes models: Bernoulli

• wj is word (type) j of the vocabulary of features

C

w1 w2 w3 w4 · · · wV

• Each feature is binary yes/no (though could be count/range)

• Model normally presented in the graphical models liter-

ature

• Generally (but not always) performs worse

• Requires careful and aggressive feature selection
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Naive Bayes models

• Feature selection: commonly count, χ2 or mutual infor-
mation, but there are methods to find non-overlapping
features (Koller and Sahami 1996). Only important/relevant
in Bernoulli model.

• Naive Bayes is simple, but often about as good as there
is (Friedman 1997; Domingos and Pazzani 1997)

• There are successful more complex probabilistic clas-
sifiers, particularly TAN – Tree Augmented Naive Bayes
(van Rijsbergen 1979; Friedman and Goldszmidt 1996)

• One can get value from varying context size according
to type of word being disambiguated (commonly: noun
is big context, verb is small context)
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‘Typical’ McCallum and Nigam (1998) result:
Reuters Money-FX category
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Text classification results

• You’ve got to be careful that you’re comparing apples

and apples

• One source of careful recent comparative studies is

Yang (1999a Information Retrieval, 1999b SIGIR)

• Results on Reuters for which several versions have been

prepared commonly differed by as great a percentage

between versions as between methods.

• Many comparisons were invalidated by data differences.

• (Should do statistical significance tests, confidence in-

tervals, . . . .)
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Averaging

• Two ways of computing an average give very different
results!
• Micro-averaging make a single contingency table for

all the data by summing the scores in each cell for all
categories, and evaluate it
– Gives equal weight to each object in the collection
– Score is dominated by large categories

• Macro-averaging: compute measure for each category
contingency table separately and then average the eval-
uation measure over categories
– Gives equal weight to each category
– Gives a better sense of the quality of classification

across all categories.
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Yang SIGIR results

• Micro-averaging (dominated by performance on large

categories):

– SVM > kNN ≫ {LLSF,NNet} ≫ NB

– F: 0.860, 0.857, 0.850, 0.829, 0.80

• Macro-averaging

– {SVM, kNN,LLSF} ≫ {NNet,NB}
– F: 0.525, 0.524, 0.501, 0.377, 0.389

• Yang doesn’t test MaxEnt (loglinear) models, but other

results (Nigam et al. 1999) show it doing much better

than NB, so it appears to belong in the top group.
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Memory-Based Learning (MBL)/kNN

• Case-based, exemplar-based or instance-based learn-
ing
• A non-parametric method: no abstract model is created
• Training: just store the data (indexed!)
• Generalization: target function is estimated locally.
• The method is not aware of the global shape of the

data, but does not make any assumptions about its
shape
• Non-linear classifier
• “The cost for computation is decreasing roughly by a

factor of two every year, whereas the price paid for in-
correct assumptions is remaining the same.” (Breiman
and Friedman 1988)
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MBL training and testing

• “We should never underestimate the power of simply

remembering some or all of the examples and com-

paring test examples with our memory” (Ripley 1996)

Pattern Recognition and Neural Networks ← a good

book!

• Asymptotically, under various reasonable assumptions,

risk converges to twice the Bayes risk as sample grows

– independent of distance metric (Duda and Hart 1973;

Ripley 1996)

– Bayes risk = optimal error rate, assuming that prob-

ability distribution is known
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MBL: similarity function

• Need distance function to calculate similarity

• In practice the metric is important

• Usually use Euclidean metric (alternatives Mahalanobis

distance, L1 distance = features different, etc.)

• Appropriate scaling of the variables first is important:

normalize values, sometimes log-scale etc. Can put

knowledge into metric.
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MBL

• For 1NN decision surface is Voronoi diagram.

• Commonly distance-weight the classes of the neigh-

bors in reaching a decision

– e.g., information gain weighting used in TiMBL (Tilburg

Memory-based Learner http://ilk.kub.nl/software.html)

• Asymptotically this doesn’t help, but can allow use of

larger k for fixed size training set

• k > 1 increases resistance to noise (decreases vari-

ance)
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Feature selection for MBL

• Excluding features which have little or no relevance is

very important

• Wrapper methods generate candidate features by test-

ing performance of the classifier with those features

• Filter methods decide features independently of algo-

rithm that will use them

• Can use decision tree techniques to select features (Cardie

1993)
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MBL

• Naive storage and search for neighbors can be expen-

sive

• But there are efficient algorithms for indexing and hence

finding neighbors (k-d trees)

• The stored data set size can be reduced by data editing

so as to only store examples near decision surfaces.
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Example: Part-of-Speech Tagging (Daelemans
et al. 1996). Accuracy: 96.4%

• Similarity: Hamming distance (1 − %matching) = L1

norm = overlap

• Feature weighting: Information gain

• Known and unknown word models

• If known case, base features for training are:

– disambiguated ti−2, disambiguated ti−1

– ambiguity class for wi
– ambiguity class for wi+1
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A decision tree for Reuters

node 1
7681 articles

P (c|n1) = 0.300
split: cts
value: 2node 2

5977 articles
P (c|n2) = 0.116

split: net
value: 1

cts<2

node 3
5436 articles

P (c|n3) = 0.050

net<1
node 4

541 articles
P (c|n4) = 0.649

net≥1

node 5
1704 articles

P (c|n5) = 0.943
split: vs
value: 2

cts≥2

node 6
301 articles

P (c|n6) = 0.694

vs<2
node 7

1403 articles
P (c|n7) = 0.996

vs≥1
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(Statistical) Decision Tree Models

• Relatively unused in statistics and pattern recognition

but introduced by Breiman et al. (1984)

• Widely used in AI machine learning (Quinlan 1986)

• Mainly because they are extremely easy to compre-

hend

• Not very efficient in combining independent information

sources

• Idea is to successively test an attribute, and then branch

based on its value
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A text classification decision tree (for Reuters data)

node 1
7681 articles

P (c|n1) = 0.300
split: cts
value: 2

node 2
5977 articles

P (c|n2) = 0.116
split: net
value: 1

cts<2

node 3
5436 articles

P (c|n3) = 0.050

net<1

node 4
541 articles

P (c|n4) = 0.649

net≥1

node 5
1704 articles

P (c|n5) = 0.943
split: vs
value: 2

cts≥2

node 6
301 articles

P (c|n6) = 0.694

vs<2

node 7
1403 articles

P (c|n7) = 0.996

vs≥1
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Splitting criteria

• By splitting, one hopes to maximize the ‘purity’ of each

daughter node

• Common criteria:

– Information gain: an informatin theoretic measure:

G(a, y) = H(t)−H(t|a) = H(t)−(pLH(tL)+pRH(tR))

– Gini index i(p) =
∑

i 6=j pipj

• Either need to only allow binary splits or to penalize

n-way splits, or else they are falsely favored
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Statistical decision trees

• Conserve data by only asking relevant questions

• However, since each split in the tree lessens the amount

of data, one needs a pruning strategy to prevent over

training

• A decision tree’s questions pick out boxed shaped re-

gions of the feature hyperspace

• Practically decision trees work well, though there aren’t

a lot of deep theorems to justify their performance
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Combining information without interaction

Intuition:

P (c|x1, . . . , xn) =
P (x1, . . . , xn|c)P (c)

P (x1, . . . , xn)

≈ P (c)
n
∏

i=1

P (xi|c)
P (xi)

= P (c)
n
∏

i=1

P (c|xi)
P (c)

We’re updating the prior, but not necessarily in a good way
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Maximum entropy/minimum divergence mod-
els

• P (c|xi) specifies a marginal constraint. We would like

it to be true of the resulting model. This ain’t what we

get with Naive Bayes

• We will require P (c|x1, . . . , xn) to satisfy certain con-

straints

• Elsewhere P (c|x1, . . . , xn) should reflect our ignorance

of what we have not specified
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The idea of constraints: as a joint model

We want P (x1, x2, c) chosen to be constrained by some

marginals we know, P (x1, c), P (x2, c).
∑

x1,x2,c
P (x1, x2, c)f1ik(x1, x2, c) = P (xi, ck)

∑

x1,x2,c
P (x1, x2, c)f2jk(x1, x2, c) = P (yj, ck)

where

f1ik(x1, x2, c) = 1 if x1 = xi and c = ck, 0 otherwise

f2jk(x1, x2, c) = 1 if x2 = xj and c = ck, 0 otherwise
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Maximum entropy/minimum divergence (Jaynes)

• Ignorance: if we know nothing but what is specified
in the constraints, of all the models that satisfies the
constraints, we should chose the one with maximum
entropy

• It adds no information not given by the constraints

• But alternatively we can choose P to diverge as little
as possible from some other probability distribution Q
in terms of KL-divergence:

D(P‖Q) =
∑

~x∈X
P (~x) log

P (~x)

Q(~x)

• Maximum entropy results from makingQ uniform, which
minimizes divergence.
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Restated as expectations

• The problem can then be restated as: determine P (~x)

so that:

– For given constraints fi, it satisfies
EP(fi) =

∑

~x P (~x)fi(~x) = di
– D(P‖Q) is minimal for specifiedQ (usually uniform)

• We assume the constraints must be consistent.

• This is certainly the case if we estimate the di from
training data (as ML estimates)

• Ensure probability distribution: f0(~x) = 1 ∀~x
• The fi(·) are often all indicator functions – for com-

putational efficiency, and because they can then all be
interpreted as marginals – but they need not be
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Math

• We have a constrained optimization problem and find

the solution using undetermined Lagrange multipliers.

For all ~x we set to 0 the partial derivatives wrt P (~x) of:

D(P‖Q)−∑

i
λi[

∑

~x′
P (~x′)fi(~x′)− d(i)]

The result is

log
P (~x)

Q(~x)
+ 1 =

m
∑

i=1
λifi(~x) + λ0

So,

P (~x) = Q(~x)eλ0e
∑

i λifi(x)

Where the λi have to be chosen to satisfy the con-

straints
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Back to the intuitions

Intuition:

P (c|x1, . . . , xn) ≈ P (c)
n
∏

i=1

P (c|xi)
P (c)

=
1

Z(~x)

∏

i active
eλi

logP (c|x1, . . . , xn) =
∑

i active
λi − Z(~x)
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Maximum entropy methods

• A unified framework for resolving ambiguities

• Can flexibly integrate heterogeneous sources of infor-

mation

• Quite high performance tools can be built fairly quickly

and automatically

• Basic algorithm is reusable; main need is annotated

training data
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Advantages

• If features don’t overlap, exponential models can imi-

tate other models

• If features do overlap, exponential models can perform

better

– They discount weights for overlap

– But they don’t automatically model complex feature

interactions
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Maximum entropy features

• ‘Features’ include the class assignment

• For classification, a feature f has the form fi(~x, c)

• ~x is what we observe (e.g., words)

• c is what we are predicting (e.g., tags)

• Each feature is a constraint on the model

• E.g., we might have fHAVE,VBN = 1 iff the word’s cur-

rent tag is classified as VBN, and the previous verb’s

features says it’s a perfective have auxiliary
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How do we choose the constraints?

• The constraints can be anything, and overlap in any
way. This is very good news, because it allows us to
put interesting linguistics into the constraints
• However, we do need to choose consistent constraint

targets
• This is easy if the targets are the empirical expectations
• But then we can easily have a problem with data sparse-

ness: e.g., if we said unseen bigrams had an expecta-
tion of 0.
• Commonly just use constraints on “common” things
• But smoothing is a problem with MaxEnt models, and

other approaches, such as using gaussian regulariza-
tion terms on the lambdas have been explored.
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Maximum entropy model

• We compute expectation of each feature based on train-

ing set (if feature is binary this is just relative frequency)

• Say that this empirical expectation must be met in re-

sulting model→ the constraints

• We then compute model with maximum entropy subject

to the constraints

• I.e., we don’t go beyond the data by adding information

not justified by the constraints.
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Loglinear/exponential models

• Maximum entropy models are always exponential mod-

els. (Theorem. Proof omitted.)

• For discrete distributions – common in NLP! – we can

build a contingency table model of the joint distribution

of the data.

• Most common choice for modeling this is a loglinear

model:

logP (X1 = x1, . . . ,Xp = xp) =
∑

C
λC(xC)

where C ⊂ {1, . . . , p}.
• Subsets with more than one member are ‘interaction

terms’
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Example contingency table: predicting POS
JJ

f1
+hyphen −hyphen

f2 + -al Y: 8 N: 2 Y: 18 N: 27 Y: 26 N: 29
− -al Y: 10 N: 20 Y: 3 N: 62 Y: 13 N: 82

Y: 18 N: 22 Y: 21 N: 89 Y: 39 N: 111
N = 150
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Loglinear/exponential models

• Most extreme restriction is no interaction terms:

P (X1 = x1, . . . , Xp = xp) = eλ0
∏

i
eλi(xi)

• This is what is currently used in maxent models

• See Franz (1997) for loglinear modeling with interaction

terms

– Models with quite limited numbers of features

– Fit by iterative proportional fitting (related to GIS)

• Really all the main generative probability models in StatNLP

are loglinear, because they’re done as a product of prob-

abilities (HMMs, PCFGs, . . . )
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Maxent Loglinear models

• p(~x, c) =
1

Z

K
∏

i=1
α
fi(~x,c)
i

where K is the number of features, αi is the weight

for feature fi and Z is a normalizing constant, used to

ensure that a probability distribution results (partition

function)

• If we take logs on both sides, then log p is a linear

combination of the logs of the weights:

log p(~x, c) = − logZ +
K
∑

i=1
fi(~x, c) logαi
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Maximum entropy solution

• Want maximum entropy distribution p∗ exponential model

that obeys the feature constraints:

Ep∗ fi = Ep̃ fi

• In other words, the expected value of fi for p∗ is the

same as the expected value for the empirical distribu-

tion (the training set).

• System is solved by an iterative algorithm that adjusts

the αi weights
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How do we find the λi?

• Iteratively from an initial guess

• Hill climbing (conjugate gradient descent)

• Generalized iterative scaling

– A generalization of the iterative proportional fitting

methods used for generalized linear models in statis-

tics
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Generalized Iterative Scaling

• Algorithm requires constant sum of features for each

(~x, c):

∀~x, c ∑

i
fi(~x, c) = C

• Define C as the greatest possible feature sum:

C
def
= max

~x,c

K
∑

i=1
fi(~x, c)

• Add a feature fK+1 that is defined as follows:

fK+1(~x, c) = C −
K
∑

i=1
fi(~x, c)
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Generalized Iterative Scaling

• Expected value in model Ep fi is defined as follows:

Ep fi =
∑

~x,c

p(~x, c)fi(~x, c)

sum is over the event space – all possible vectors ~x and

class labels c

• Empirical expectation is easy to compute:

Ep̃ fi =
∑

~x,c

p̃(~x, c)fi(~x, c) =
1

N

N
∑

j=1
fi(~xj, c)

where N is the number of elements in the training set

and probability of unseen event is 0.
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Conditional maxent framework

In general, the maximum entropy distribution Ep fi can-

not be computed efficiently since it would involve summing

over all possible combinations of ~x and c, a potentially

infinite set. Instead, we use the following approximation

(Lau 1994: 25):

Ep fi ≈
∑

~x,c

p̃(~x) p(c|~x)fi(~x, c) =
1

N

N
∑

j=1

∑

c
p(c|~xj)fi(~xj, c)

where c ranges over all possible classes, in our case c ∈
{0,1}. We just sum over seen stuff.
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Generalized iterative scaling algorithm

1. Initialize {α(1)
i }. E.g., α(1)

i = 1,∀1 ≤ j ≤
K + 1. Compute Ep̃ fi as shown above. Set

n = 1.

2. Compute p(n)(~x, c) for the distribution p(n)

given by the {α(n)
i } for each element (~x, c) in

the training set:

p(n)(~x, c) =
1

Z

K+1
∏

i=1
(α

(n)
i )fi(x,c)
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3. Compute E
p(n) fi for all 1 ≤ i ≤ K + 1

according to equation (13).

4. Update the parameters αi:

α
(n+1)
i = α

(n)
i











Ep̃ fi
E

p(n) fi











1
C

(8)

5. If the parameters of the procedure have con-

verged, stop, otherwise increment n and go

to 2.
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Example system: Ratnaparkhi (1997a)

• Roughly a probabilistic shift-reduce parser

• History-based approach

• Features are parser configurations and classifications

are actions

• Observed run-time is linear

• Labeled precision/recall are 87.5%/86.3%

• (Slightly behind the state of the art now, fairly competi-

tive when it was done)
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Advantages of maxent

• Diverse forms of evidence

• No data fragmentation – contrast with decision trees

• Features are allowed to overlap

• Feature weights are determined automatically

Disadvantages of maxent
• It’s difficult – but not impossible – to do smoothing and

adjustment of models.

• Normally have to stick to empirical distribution, so peo-

ple generally smooth that to give pseudo-empirical dis-

tribution

• Training is slow
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Text classification

For text categorization, we define features as follows:

fi(~xj, c) =







1 if sij > 0 and c = 1
0 otherwise
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Maximum Entropy text classification

• Nigam, Lafferty, and McCallum (1999 IJCAI WS)

• Features are scaled word occurrence counts in docu-

ments

• Simple model suffered from overfitting; use Gaussian

prior, and do MAP estimation

• One can easily add bigrams, phrases (but they didn’t)

• For WebKB data, they give an error rate of 8.1%, as

against 13.7% for Naive Bayes.

• But NB was able to beat MaxEnt (by 0.7%) on a set of

newsgroup data
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