
An Agent-based Approach to Assist
Collaborations in A Framework for Mobile P2P

Applications

Mengqiu Wang, Heiko Wolf, Martin Purvis, and Maryam Purvis

University of Otago, Dunedin, New Zealand,
[mwang, hwolf1, mpurvis, tehrany]@infoscience.otago.ac.nz

Abstract. The design of ad-hoc, wireless, P2P applications for small
mobile devices raises a number of challenges for the developer, with ob-
ject synchronisation, network failure and device limitations being the
most significant. In this paper, we introduce the FRAGme2004 frame-
work for mobile P2P application development. To address data availabil-
ity and stability problems, we devised an agent-based fostering mecha-
nism to protect applications against data losses in cases of peer dropping
out. In contrast to most current literature, we focus on small scale P2P
applications, especially gaming applications.

1 Introduction

P2P architecture is the next-generation network paradigm to replace the tra-
ditional client-server architecture. Typical P2P systems are characterized by
the decentralized control, scalability and robustness. Despite the popularity of
internet-based large scale P2P systems, small scale P2P applications that run
on small, mobile devices are becoming increasingly popular as well. The absence
of centralized control and thus no single failure-point, extreme dynamism in
structure, full mobility and flexibility are all desired features in many applica-
tion domains, which can be achieved via mutual exchange of information and
services over ad-hoc, wireless, P2P networks. Challenging problems arise in the
development of such applications. Firstly, wireless, ad-hoc networks face prob-
lems such as stability, data integrity, routing, notification of joining and leaving
peers, and in case of peer failure, fault tolerance. In such networks, the connec-
tions of the devices may be highly variable as devices may hop from online to
offline unpredictably, and thus not reliable. Secondly, since the peers exist in a
collaborative environment without central control, synchronisation of peers and
distribution of resources become big issues. Thirdly, for the applications to run
smoothly on the small devices we are aiming for, efficient management of local
computing resources is a necessity. Those problems have been addressed in other
research works, but mostly in an ad-hoc fashion [5], [12], [13].

When developing new applications, these issues have to be treated repeatedly
as there exists no generic infrastructure which addresses all aforementioned prob-
lems. In this paper, we present an agent-based mechanism which addresses col-



laboration issues among peers, together with a framework called “FRAGme2004”
which is designed for mobile P2P application development.

The rest of the paper is structured as follows: In Section 2 we will review
related literature, followed by an introduction to the FRAGme2004 framework
in Section 3. In Section 4 we will present an agent-based fostering-mechanism for
assisting collaborative relationship building among peers. Finally, we will show
some mobile gaming applications developed using FRAGme2004 in Section 5,
and evaluate the effectiveness of the fostering-mechanism.

2 Literature Review

With the take-off of vast mobile communication networks and technology, Peer-
to-peer (P2P) computing has established itself as the next-generation distributed
computing. A good introduction on P2P systems is provided by Milojicic et al.
[14], which comprehensively reviews the field of P2P computing and applications.
Besides giving a general overview, case studies of prominent P2P systems such
as Groove, Gnutella and Freenet outline the major challenges in networks. This
review also shows the distinct differences between large-scale P2P applications
such as file-sharing and instant messaging, which have been the main research
interest in many papers, and smaller scale P2P applications such as P2P gam-
ing. FRAGme2004 is designed to facilitate the development of small-scale P2P
applications that are typically hosted in a wireless ad-hoc network environment.

A topic discussed often is data availability. Cooper et al. [5] argue that “a
complete system must ensure that important data remain preserved even if the
creator or publisher leaves the system” (p.2). They developed a reliable preser-
vation service built on a P2P architecture, on top of which digital library ap-
plications could be built. Another strategy, the “dissemination tree”, is used
by Chen et al. [4] to reduce the number of replicas and the bandwidth needed
for updates. Finally, Lin et al. [12] introduce a protocol to handle the loss and
rebuilt of replicas. All those approaches are aimed at applications such as file
sharing, where data loss and node failure harm the performance, but not the
overall functioning of the system. Data availability and reliability is one of the
design goals of FRAGme2004. In particular, we aim at small-scale P2P networks
where every node failure can be a fatal threat to the functioning of the system.
Our approach to this problem will be presented in more detail in Section 4.

FRAGme2004 is not the first effort to develop a framework for P2P applica-
tions. There have been different approaches in developing frameworks to allow
the easy construction of P2P applications. Akehurst et al. [1] proposed a frame-
work which includes group management and multicasting support to assist the
design of complex applicactions. Another architecture incorporating a variety
of devices that communicate in a P2P network is introduced by Kato et al.
[11]. While most P2P applications to date can be narrowed to either the file
sharing or instant messaging categories, Gerke et al. [8] introduce a framework
that supports P2P services of any kind. Different from all these frameworks,
FRAGme2004 aims at highly interactive small-scale P2P applications like gam-



ing over wireless ad-hoc networks. Therefore, we tackle some challenges related
specifically to small-scale systems, which we found not well covered in previous
research.

Recently, researchers have been taking various approaches in exploring the
use of agent technology in P2P systems. Dasgupta [6], [7] proposed an P2P archi-
tecture in which mobile agents are used as peer mediators, replacing traditional
message-based protocols to achieve higher efficiency, robustness and scalability.
Babaoglu et al. [2] designed and implemented the Anthill framework, which sup-
ports the design, implementation and evaluation of P2P applications based on
agent concepts. Similar to Dasgupta’s approach, Anthill uses mobile agents to
accomplish distributed tasks such as resource discovery and file downloading. In
the P2P architecture proposed by Homayounfar et al. [9], peers are modelled as
agents with some intelligence (e.g., calculating the success probability of data
search to perform faster searching) to enhance the capability and autonomy of
peers. The agent-based fostering mechanism in FRAGme2004 is similar to the
concepts in Homayounfar et al.’s work. Peers in a FRAGme2004 application are
equipped with on-host service agents which are autonomous and have the intel-
ligence to organize and reconstruct the collaboration relationship among peers.
These collaboration relationships are crucial for data availability purpose, and
will be explained in more detail in Section 4. The agents are also in charge of
other collaboration tasks such as data exchange and synchronization.

3 The FRAGme2004 System

The FRAGme2004 framework is written in Java, and has a three-layer architec-
ture. The layers communicate to each other via interfaces in order to achieve
clear separation. The bottom layer is the Infrastructure Layer. This layer con-
sists of the basic building blocks that address the communication requirements.
A layer higher is the Object Layer. Object is the smallest entity that is distrib-
uted among the peers. The information and data that needs to be shared in the
applications is encapsulated into objects, and the agents associated with each
peer take care of the delivery, synchronization and life-cycle management of ob-
jects. The top layer is the Application Layer. A clearly defined API is provided
to the developers for easy application development.

The FRAGme2004 framework frees application developers from networking
and resource management. This includes the establishment of the underlying
network infrastructure, notification of joining and leaving peers, communication
and object exchange. Rather, they can focus on the higher layers of the appli-
cation. To make applications run reliably at all times, the agents that take care
of object synchronization and distribution also use a novel fostering mechanism
that makes use of data redundancy to achieve the overall integrity and robust-
ness even in cases of node failure. We will describe the three layers in detail in
the next subsections.



3.1 Communication Layer

A basic requirement for an effective communication layer is to provide reli-
able networking services. Currently, the communication layer of FRAGme2004
is based on a middleware called JGroups [10], which is also being used in many
other P2P projects to provide reliable multicasting. There are several reasons
why we chose to use JGroups. First of all, JGroups provides reliable unicas-
ting and multicasting, which frees us from having to worry about those low
level details. Almost all P2P applications require efficient communication. This
is especially true with complex applications like games, which FRAGme2004 is
targeted at. Unicasting (point to point communication), although used in many
places like file sharing applications, does not suffice here. In circumstances where
peers in a group share the same resource or need to be notified at the same time
for synchronization purposes, multicasting is called in.

Originally, we tested two approaches for FRAGme2004. One based on simple
Remote Method Invocation (RMI) unicasting and one based on Multicasting, to
determine the more efficient way of communication. It was shown that multicas-
ting communication is more efficient than RMI calls in group communications,
an effect that is aggrevated with an increasing number of peers. It is to be no-
ticed that RMI and JGroups are not totally comparable due to their different
marshalling mechanisms. However, the differences found can still be partially
attributed to the fact that in the case of RMI, a sender has to contact every
other peer one by one to share information with his group; while in multicasting
he only needs to send one message for the information to be disseminated to all
peers of his group.

The second reason for using JGroups is that JGroups gives us all the group
management functions that we need. For example, creation and deletion of
groups, notification of change of membership (joined/left/crashed peers) and so
on. The importance of group management is obvious. While group management
appears as a simple task, it conceals a lot more low level details, for example
the establishment of the network structure and communication channels and the
identification for groups.

Finally, we use JGroups because it provides support, albeit limited, for guar-
anteed delivery. In wireless communication, virtually no routing protocols can
guarantee one hundred percent success of delivery. But with some failure detec-
tion and retransmission mechanisms as included in JGroups, we can assume the
guarantee of delivery to a certain degree. Such a guarantee is very important
in terms of object-level protocol design. It allowed us to implement high level
protocols (for example the interaction protocols used by agents in Object Layer)
with less overhead and therefore higher efficiency. One of the tradeoffs of having
such guarantee of delivery is that the scalability of the P2P system is greatly
restricted. In order to maintain reasonable efficiency under this guaranteed de-
livery policy, the network is constrained to be tightly-coupled. But since the
target applications of FRAGme2004 are small-scale gaming applications, such a
tradeoff is acceptable.



3.2 Object Layer

The Object Layer comprises functionalities for object sharing, exchange and
synchronization of change. In case of peer failure, protection mechanisms are
put in place to avoid data loss and the malfunctioning of other peers. To achieve
this, several on-host service agents are created for each peer. Currently there are
3 kinds of agents that provide simple services in the framework. They are the
object managing agent, synchronizing agent and fostering agent.

The object managing agent is in charge of the life-cycle management of any
shared objects. When a new object(resource) is requested from the application
layer, the object managing agent will locate the appropriate factory for creating
instances of this object. It will gather all the required information for creating
such an object, issue commands to the factory for creating the object, and return
the object to the application layer. Upon receiving signals from the application
layer indicating that an object is not used anymore, the object managing agent
is responsible for checking the memory status. Depending on the amount of free
memory available, it makes decisions of whether to cache the object for future
use (by returning it to the factory) or to garbage collect it.

Once objects are created and handed back to the application layer, changes
may be invoked on these objects both locally and remotely. In FRAGme2004,
objects are assigned ownership, and by default objects are always owned by the
peer that created them. To avoid cases where multiple peers invoke changes to
the same object at the same time, we rely on synchronizing agents to synchronize
the events. The change request is treated as a service request and is handled by
the local synchronizing agent. The agent will first try to identify the ownership
of the objects. If the object is owned locally, then it will simply invoke the change
on the object, and then locate synchronizing agents residing on other peers and
inform them. If the object is not owned by the current peer, the synchronizing
agent will locate the owner of the object and request for a object-changing service
on the synchronizing agent of the owning peer. The synchronizing agents talk in
a specific protocol. A typical packet format used by this protocol looks like this:

Performative Sender Agent ID Receiving Agent ID Message Type Content

The fostering agents are agents that serve for a special purpose, namely “Peer
Fostering”. Due to the high volatility of wireless ad-hoc networks, special care
needs to be taken to prevent applications from information loss and potential
problems that evolve from it. Therefore, we have devised a “Peer Fostering”
mechanism to increase the fault-tolerance of applications in case of peer failure,
by introducing dependence relationship among peers. When a peer leaves the
group intentionally or accidentally, the peer fostering mechanism comes into ef-
fect. As every peer’s objects are fostered by another peer’s fostering agent, they
will not be lost. If the dropping out peer was holding any objects that are impor-
tant to other peers, for example, the ball in a sports game, the fostering agents
will negotiate ownership transfer and delegate the ownership of such objects to
a new peer. In the case where the previously dropped out peer rejoins, fostering



agents will negotiate for the ownership to be transferred back to the rejoining
agent. When a new peer joins, the existing fostering agents will negotiate among
themselves to elect the agent with the lightest workload, and assign the new
peer to be the chosen agent’s fosteree. We will describe this in more detail in
Section 4.

3.3 Application Layer

Because the bottom two layers take care of all communication and resource
management, application programmers can focus solely on the domain-specific
aspects of the application without worrying about generic problems that come
with P2P networks. A clearly defined API is provided to the programmers at this
layer to interact with the framework. The interaction mainly goes through an
access point called “Control Center”. Factory design patterns are used to connect
applications to the framework. Programmers are responsible for implementing
appropriate factories for resources (objects) that are going to be shared across
the network.

4 Agent-Based Peer Fostering

Wireless communication poses some additional challenges compared to cable-
bound communications. Reliability and packet loss are the major issues. At the
low level, we rely on JGroups to provide us with reliable uni- and multicasting,
but it doesn’t save us from the higher level problem that applications can suffer
from a high degree of peer failure. Temporary disconnection of devices frequently
occurs, especially in dynamic real-world environments.

This problem has serious impact on the basic usability of applications. In
games, for instance, it is generally not tolerable if a player is not able to continue
the game just because of some temporary loss of connection (e.g., he walks into
a lift). The problem would become more serious if not only that player suffered
from the temporary disconnection, but also other peers were affected. Therefore,
it is important that some mechanisms are in place to ensure the integrity of data
and continuity of the execution in case of peer failure. Furthermore, it is also
desirable to have the disconnected peer able to rejoin the application without
loss of his previous data.

4.1 Introduction to “Peer Fostering” mechanism

To address the problems as per discussed above, we introduced a so-called
“Agent-Based Peer Fostering” mechanism into FRAGme2004. Similar to the
schemes used in some well-known P2P applications (Gnutella, Napster), peer
fostering is built on the basic idea that there exists some degree of data redun-
dancy in all P2P systems. Most of the other systems don’t have any special
scheme that optimizes the degree of redundancy, but rather leave the highly
redundant data in the system. This works for systems where peers are highly



capable terminals like PCs. But in our case, all devices are very limited in terms
of available memory. Therefore, leaving such a high degree of redundency could
significantly constrain the performance of applications. As the number of peer
failure instances increases, the accretion of redundant data could bring the sys-
tem to crash.

In order to enable all peers to make sensible decisions about what to do in case
of other peers’ failure, we need to have all peers collaborate. This process is easily
modelled with agents. Each fostering agent is autonomously acting on behalf
of its owner peer. Through negotiation and collaboration with other fostering
agents, this agent could balance the workload (the number of fosterees) with
other agents to make better overall decisions.

4.2 Peer fostering relationship

We define the set of existing peers in a system P = {p1, p2, . . . , pn}. ai is the
fostering agent of pi, and A = {a1, a2, . . . , an} is the set of vertices in a graph.
If n > 1, the Peer Fostering State (PFS ) is defined as:

Definition 1 the peer fostering state of a system is a simple directed circle Cpfs

Cpfs = {〈ai1 , ai2〉, . . . , 〈ain−1 , ain
〉, 〈ain

, ai1〉}

where each occurrence of 〈aia , aib
〉 is a directed edge in the circle from vertex aia

to vertex aib
. For any particular Cpfs , the set {ai1 , ai2 , . . . , ain} is a permutation

of the set {a1, a2, . . . , an}.

Each edge 〈aia
, aib

〉 also denotes a “fostering” relationship between the fostering
agent of peer pia

and the agent of peer pib
. In such a relationship, we say aia

is
“fostering” aib

, with aia
being the “Fosterer” and aib

being the “Fosteree”.
When a peer drops out and the objects that he owns are not needed by

the others, these objects still have to be sustained to allow him to rejoin. In our
system, instead of having these objects taking up memory storage on every peer,
only the fosterer of the dropped out peer needs to store them. The “Fosterer”-
“Fosteree” relationship is illustrated in Figure 1.

Fig. 1. Illustration of Fosterer-Fosteree Relationship



In the “Peer Fostering” scheme, each participating fostering agent not only
knows who its “Fosteree” is, but also knows whom its “Fosteree” is fostering.
The local knowledge of a fostering agent can be expressed as:

Definition 2 the knowledge of peer ai is

K(ai) = 〈F (ai, aj), F (aj , ak), Adopt({ax1 , . . . , axm
})〉

where the set {ax1 , ax2 , . . . , axm
} contains the agents that ai has temporarily

“adopted”, and where F denotes a fostering relationship.

The reason for storing this extra information will be clear when we explain the
drop-out scenario in Section 4.3.

It is to be noticed that such relationships among fostering agents are updated
every time a new peer joins, or an existing peer drops out. In the case of a new
peer joining, the existing fostering agents will negotiate among themselves to
determine which agent gets to foster the new agent. The fostering agents follow
a set of interaction protocols that allow the agents to make conversations to build
the relationships. These conversations are initiated by the “active” agent — the
“Fosterers”. Although the reader will notice that every single fostering agent is
a “Fosterer” in some relationship, the agents don’t have such global knowledge,
and such knowledge is not needed either. Each agent only makes sure that the
relationship in which it is the “active” party is properly pursued. It is not hard
to see that when all agents finish building their own relationships, each agent
will be fostered by some other agent. In order to correctly build the fostering
relationships, we make the assumption that new peers are joining the network
one at a time.

Each agent has its own thread of execution to secure its autonomy, thus
the acquision of information and negotiation among agents happens behind the
scene of the main gaming thread, and thread-safety measures are taken in our
implementation. This relationship building phase is essential, but it generates a
very small amount of traffic in the network and therefore its impact is negligible.

4.3 Peer drop-out handling

In this section, we will explain the sequence of actions that fostering agents take
in case of other peer’s drop-out. We will use Figure 2 as illustration. In the initial
configuration, the local knowledge of apurple is:

K(apurple) = 〈F (apurple , ablue),
F (ablue , agreen), Adopt(Ø)〉

and the local knowledge of agreen is:

K(agreen) = 〈F (agreen , apurple),
F (apurple , ablue), Adopt(Ø)〉



(a) Initial configuration (b) Blue drops out

(c) Blue rejoins

Fig. 2. Peer dropping out and rejoining

When a peer (pblue) drops out, all other peers will be notified of the peer
dropping out event. apurple will notice that ablue matches the fosteree in one of
the relationships (F (apurple , ablue)) that it knows it’s engaged in. And because
the fosterer in that relationship is apurple itself, apurple will first store all ablue ’s
objects, updating the adopting set to be Adopt({ablue}), then notify other fos-
tering agents that the ownership of ablue ’s objects has been changed to apurple .
Knowing that ablue was fostering agreen , apurple will then take the initiative of
reconstructing relationships by sending agreen a fostering request. Upon receiv-
ing such a request, agreen will send information about its own fosteree, which in
this case is apurple . The local knowledge of apurple will now be updated to be:

K(apurple) = 〈F (apurple , agreen),
F (agreen , apurple), Adopt({ablue})〉

On the other hand, when agreen was notified that ablue dropped out, it will no-
tice that ablue matches the fosteree in one of the relationships (F (apurple , ablue))
that it knows locally. And because apurple is its current fosteree, it foresees that



apurple will be fostering some other peer after the relationship has been recon-
structed, and therefore it sends a request to apurple to get the updated fosteree
of apurple . After apurple sends back the reply, the local knowledge of agreen will
be updated to be:

K(agreen) = 〈F (agreen , apurple),
F (apurple , agreen), Adopt(Ø)〉

When ablue rejoins, all peers will be notified of the joining event, and apurple

will notice that it is adopting ablue ’s previous objects. If ablue requests to have
its previous data back (it has the alternative option to rejoin as a completely
new peer), apurple will send ablue ’s objects back, and transfer the ownership of
these objects back to ablue . This scheme can be scaled up to an arbitrary number
of peers.

5 The Games

As a proof-of-concept, three networked games that run on the Zaurus were de-
veloped based on FRAGme2004: a space shooter game called “SpaceBattle”, a
strategic tank game “BOOM!” and the Bomberman-like arcade game “Robo-
Joust”. A screenshot of RoboJoust can be seen in Figure 3. They show that
memory and communication bandwidth constraints are handled well enough by
FRAGme2004 to allow fast action games on a limited device such as the Sharp
Zaurus. Also, minimal knowledge of the framework was required, which allowed
novice developers to focus on the gameplay design. “BOOM” and “RoboJoust”
were developed from scratch by a group of eight fourth year students in under
50 hours.

Fig. 3. Screenshot of RoboJoust

6 Evaluation of Agent-Based Fostering Mechanism

Based on the three games, we performed two experiments for the purpose of
evaluating the fostering mechanism. Both experiments were performed on both



PC with LAN connections and Zauruses with WiFi connections. In the first
experiment setup, we had a game in with five players are participating. Then
we let randomly chosen players drop out one after another until there was only
one player left. It was shown that each time after a player droped out, the re-
maining player could continue without any problem or noticeable lag. All the
game-critical objects were kept intact by the framework, without the applica-
tion programmer having to write any additional code. Then we let the formerly
dropped out players join the game. It was shown that players could rejoin with-
out experiencing problems, and each time when a player rejoined, the gameplay
flow was not affected. In the second experiment, we took the first experiment
one step further. Before all the peers who dropped out in the first round re-
join, we chose some random peers to drop out. Again, there wasn not a sign of
performance impact on the game. In both experiments, the workload (number
of fostees) of fostering agents were balanced nicely overtime. Since quantitative
experiments are not really representing in this evaluation, we conclude through
our qualitative experiments that the fostering mechanism works in the case of
one peer dropping out at a time. Our solution will not work as nice if two peers
are dropping at the same time. The circle will not be closed and will result in a
path. The two peers at the ends of the path are not protected by the fostering
mechanism, but fostering will still function for the peers on the rest of the path.

7 Conclusion

As we showed in this paper, the development of mobile P2P applications poses
a number of obstacles, with object synchronisation, network failure and device
limitations being the most significant. With FRAGme2004, we developed a sys-
tem that tackles those problems using agent technologies and offers a reliable
framework for P2P application development. By separating the application layer
strictly from the framework infrastructure, FRAGme2004 allows developers to
implement applications with minimal knowledge of the framework in a relatively
short development period. The impact of network failure and peer dropout is
now efficiently reduced by our agent-based peer fostering mechanism.

For future development, the range of FRAGme2004 enabled devices can be
further expanded. The development took place on the Sharp Zaurus SL-C700,
which runs Java Personal Profile. However, not too many mobile devices support
Java Personal Profile. To make FRAGme2004 more widely useable, it needs to
be ported to the Java Mobile Information Device Profile (MIDP). Also, Zau-
rus devices communicate via WiFi. But since the network traffic generated by
most FRAGme2004 applications is not unmanageable, it is possible to make
FRAGme2004 incorporate other types of less-capable wireless connections. The
agent-based fostering mechanism can be improved to handle cases like two peers
dropping out at the same time. The agents can also be enhanced to have more ca-
pabilities, for example, to take security and trust measures when communicating
with other agents.



References

1. Akehurst, D.H., Waters, A.G., and Derrick, J. (2004). “A Viewpoints Approach
to Designing Group Based Applications”, In Herwig Unger, editor, Design, Analy-
sis and Simulation of Distributed Systems 2004, Advanced Simulation Technologies
Conference, pp. 83-93, Arlington, Virginia, April 2004.

2. Babaoglu, O., Meling, H., and Montresor, A. (2002). “Anthill: A Framework for
the Development of Agent-Based Peer-to-Peer Systems”, Proceedings of the 22nd
International Conference on Distributed Computing Systems(ICDCS), pp. 15-22,
Vienna, Austria, 2002.

3. Bruegge, B., and Dutoit, A.H. (2004). Object-oriented software engineering: using
UML, patterns, and Java. Upper Saddle River, NJ, USA: Prentice Hall.

4. Chen, Y., Katz, R. H., and Kubiatowicz, J. (2002). “Dynamic Replica Placement for
Scalable Content Delivery”, IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, Springer-Verlag, pp. 306 - 318, March 2002.

5. Cooper, B., Bawa, M., Daswani, N., Marti, S., and Garcia-Molina, H. (2003). “Au-
thenticity and Availability in PIPE Networks”, Future Generation of Computer
Systems.

6. P. Dasgupta (2003). “A Peer-to-Peer System Architecture for Multi-agent Collabo-
ration”, Advances in Soft Computing, (Proceedings of the 3rd International Confer-
ence on Intelligent Systems and Design Automation, Tulsa, OK), Springer-Verlag,
pp. 483-492, August 2003.

7. P. Dasgupta (2003). “Improving Peer-to-Peer Resource Discovery Using Mobile
Agent Based Referrals”, Proceedings of the 2nd Workshop on Agent Enabled P2P
Computing (co-located with AAMAS), pp. 41-54, Melbourne, Australia, July 2003,

8. Gerke, J., Hausheer, D., Mischke, J., and Stiller, B. (2003). “An Architecture for
a Service Oriented Peer-to-Peer System (SOPPS)”, Praxis der Informationsverar-
beitung und Kommunikation (PIK), 2/03, pp. 90-95, April 2003

9. H. Homayounfar, F. Wang, S. Areibi (2002). “ Advanced P2P Architecture Using
Autonomous Agents”, CAINE, San Diego California, pp. 115-118, Nov 2002.

10. JGroups Project, http://www.jgroups.org
11. Kato, T. et al. (2003) “A platform and applications for mobile peer-to-peer com-

munications”,
http://www.research.att.com/ rjana/Takeshi Kato.pdf.

12. Lin, S.-D., Lian, Q., Chen, M., and Zhang, Z. (2004). “A Practical Distributed
Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems”, IPTPS04, Springer-
Verlag.

13. Margaritis, M., Fidas, C., Avouris, N., and Komis, V. (2003). “A Peer-To-Peer
Architecture for Synchronous Collaboration over Low-Bandwidth Networks”, in K.
Margaritis, I Pitas (ed.) Proc 9th PCI 2003, Thessaloniki.

14. Milojicic, D. S. et al.(2002). “Peer-to-peer computing”, Technical Report HPL-
2002-57, HP Lab, 2002.

15. Pang, X., Catania, B. and Tan K. (2003). “Securing Your Data in Agent-Based
P2P Systems”, Eighth International Conference on Database Systems for Advanced
Applications (DASFAA ’03), Kyoto, Japan, p. 55, March 26 - 28, 2003.


