
An Internal Agent Architecture Incorporating Standard Reasoning Components
and Standards-based Agent Communication

Mengqiu Wang, Martin Purvis, and Mariusz Nowostawski
Department of Information Science

University of Otago
Dunedin, New Zealand

{mwang, mpurvis, mnowostawski}@infoscience.otago.ac.nz

Abstract

This paper discusses a general architecture for intelli-
gent software agents. It can be used to construct agents that
engage in high-level reasoning by employing standard rea-
soning engines as plug-in components, while communicat-
ing with other agents by means of the standard FIPA-based
communication protocols. The approach discussed uses in-
ternal micro-agents and declarative goals to form a hierar-
chical internal agent architecture. It has been implemented
and tested with three high-level formal reasoning system
components that are used in conjunction with an existing
agent platform, OPAL, which supports the FIPA (Founda-
tion for Intelligent Physical Agents) communication stan-
dards.

1. Introduction

Multi-agent systems presuppose an open dynamic envi-
ronment in which new agents can come and go. Standardis-
ation efforts in the agent area have so far focused on provid-
ing standard inter-agent communication protocols and facil-
ities, such as FIPA[3] and JAS[9], which enable agents to
communicate without requiring them to gain inside know-
ledge of each other. The internal architecture of an agent has
not been standardised. There are however a few declarative
reasoning methods that are frequently used. It is widely be-
lieved that by using declarative programming facilities, the
semantics gap between an agent specification and its im-
plementation in a programming language can be reduced
[1, 14].

While the number of agent platforms and reasoning com-
ponents grows, the goal of achieving open agent-based en-
vironment remains in the distance. All the commonly used
“standard” agent platforms provide only the basic services,
such as agent management, directory services, and naming

services [4]. The actual agents on such platforms are devel-
oped primarily in some arbitrary imperative programming
language, such as Java, thereby leaving the semantic gap as
before.

One of the few platforms that do attempt to treat this
problem and provide declarative support is the 3APL Plat-
form developed at the University of Utrecht [7], by the same
group that invented the 3APL language. But the 3APL Plat-
form has a few limitations. In particular, it has a closed
architecture as opposed to an open architecture: only 3APL
agents can be hosted on the platform. Consequently, the
platform is subject to whatever drawbacks the language it-
self may have.

This paper explores the bonding between high-level rea-
soning engines and low-level agent platforms in the prac-
tical setting of using the 3APL language, the OPAL
platform[11], the ROK system and the ROK scripting
language[10] and the JPRS reasoning engines[10]. We fo-
cus our interest in this paper on our approach to provide
declarative agent programming support in the OPAL plat-
form, and show how declarative goals can be used to glue
the internal micro agents in OPAL to form the hierarchi-
cal architecture of the platform.

The theoretical extension discussed in this paper is ac-
companied by a practical implementation. The extended
OPAL platform is now equipped with three powerful high-
level declarative agent language and reasoning engines, as
well as with a graphical IDE for constructing complex
agents with a hierarchical structure.

2. The 3APL Language

3APL1 is a programming language for implementing
cognitive agents that was developed at the University of

1 3APL stands for An Abstract Agent Programming Language, and is
pronounced “triple A P L”.



Utrecht, the Netherlands. It incorporates the classical ele-
ments of BDI logic and also includes first-order logic fea-
tures. It provides programming constructs for implement-
ing agent beliefs, declarative goals, basic capabilities, such
as belief updates or motor actions, and practical reasoning
rules through which an agent’s goals can be updated or re-
vised [1].

An agent’s beliefs are represented in 3APL as Prolog-
like well-formed-formula (wff).

The most primitive action that an agent is capable of per-
forming is called a basic action, which is also referred to as
a capability. In general, an agent uses basic actions to ma-
nipulate its mental state and the environment. Before per-
forming a basic action, certain beliefs should hold and af-
ter the execution of the action the beliefs of the agent will
be updated. Basic actions are the only constructs in 3APL
that can be used to update the beliefs of an agent.

A 3APL agent has two types of goals: basic goals and
composite goals. There are three different types of basic
goals: basic action, test goal, and the predicate goal. A test
goal allows the agent to evaluate its beliefs, i.e. a test goal
checks whether a belief formula is true of false.

This type of goal is also used to bind values to vari-
ables, like variable assignment in ordinary programming
languages. When a test goal is used with a variable as a
parameter, the variable is instantiated with a value from a
belief formula in the belief-base. The third type of goal is
a predicate goal. It can be used as a label for a procedure
call. The procedure itself is defined by a practical reason-
ing rule. Practical reasoning rules can be used to generate
reactive behavior, to optimize the agent’s goals, or to re-
vise the agent’s goals to get rid of unreachable goals or
blocked basic-actions. They can also be used to define pred-
icate goals (i.e. procedure calls).

From these three types of basic goals, we can construct
composite goals by means of various operators. A special
type of goal that has been recently added is JavaGoal. This
type of goal enables the programmer to load an external
Java class and invoke method calls on it.

3. Rule-driven Object-oriented Knowledge-
base System

ROK, Rule-driven Object-oriented Knowledge base sys-
tem, is a forward chaining production rule system derived
from JEOPS. JEOPS was developed by Carlos Figueira
Filho and Carlos Cordeiro [2]. ROK provides a library and
API written in Java, with a mechanism for embedding first-
order, forward-chaining production rules into Java applica-
tions. It was created to provide the declarative expressive-
ness of production rules, which is useful for the develop-
ment of large or complex systems [10]. ROK production
rules can be described as condition-action patterns. Any

Java object can be matched in a ROK rule, and any Java ex-
pression can be used in the condition and action part of ROK
rules. There are two major modes of operation for a ROK
system: native and interpreted. In the native mode the pro-
grammer declares the rules using the provided Java API. In
the interpreted mode, users prepare the rules as a text script
file to be parsed and interpreted by the ROK interpreter. In
the interpreted mode, the programmer is freed from writ-
ing Java code and only has to write declarative pseudo-Java
scripts. But there is a performance trade-off: native mode is
faster in execution and is the most efficient method of oper-
ation.

3.1. Internal Structure of ROK

The heart of the ROK system is composed of three main
building blocks: the object-base, the rule-base and the con-
flict set. The object-base is the working memory, where the
facts that the agent knows are stored. The rules written by
the programmer or compiled from rule scripts are placed
(installed) inside the rule-base. The rule-base is the place
where all the information about the rules is stored, such
as their declarations, conditions, actions, and several other
items of control information. The RETE network [6]is used
to store the partial matches between rules and objects, and
to increase the performance of the matching process. Fi-
nally, the conflict set is the component in which the rules
that can be fired at a certain moment are stored, as well as
the objects that have been matched to the rule declarations.

4. The Java Procedural Reasoning System

JPRS, Java Procedural Reasoning System, is a Java li-
brary and API written for performing goal-driven procedu-
ral reasoning. Its ancestors can be traced back to the archi-
tecture of the PRS system proposed by Georgeff [5], as well
as UMPRS and JAM [8]. The notion of procedural reason-
ing is derived from the idea that some of human know-
ledge can be best represented as a set of procedure/steps
performed in order to achieve a particular goal. A simple
example of procedural reasoning can be the planning of a
trip from Dunedin to Beijing. The goal is to start off from
an apartment in Dunedin, and end up in Beijing Interna-
tional Airport. One of the possible plans is: make a book-
ing, then pay for a economic class ticket from Dunedin to
Beijing, take a shuttle to the Dunedin Airport, transit at Syd-
ney Airport, and finally get off the plane at Beijing Airport.
An alternative plan would be to take a taxi to Dunedin Air-
port, pay for a first class direct flight, and then get off at Bei-
jing Airport. We may decide to choose a plan based on how
much money or time we have, or the level of service we are
seeking. Those represent part of our knowledge about the
external world, in other words, our beliefs. Each JPRS agent



is composed of four primary components: a world model, a
plan library, a plan executor, and a set of goals. The world
model is an object-base that represents the beliefs of the
agent. In the previous example, the agent may store infor-
mation, such as a bank balance, travel departure date, etc.
The plan library is a collection of plans that the agent can
use to achieve its goals. The plan executor is the agent’s
“brain” that reasons about what the agent should do and
when it should do it. An agent finishes its tasks when there
are no more goals to be achieved. JPRS is implemented as
a framework-like library for declaring the plans and goals,
which provides the specific conventions for declaring goals
and plans. The formal syntax and semantics of JPRS are
available at [10].

5. Hierarchical Agent Architecture Using
Micro-Agents

Before we discuss how the reasoning engines are incor-
porated into OPAL, it is necessary to describe the system
architecture. The notion of agency on OPAL is used at all
levels of abstraction. At the lowest abstraction level mi-
cro agents, which are the closest agent entities to the ma-
chine platform, are used. In order to be efficient at this fine-
grained level, they do not have all of the qualities often at-
tributed to typical, more coarsely-grained agents. In contrast
to higher abstraction level agents, such as those based on
FIPA specifications [3], micro agents are more concerned
with efficiency and thus do not have all of the qualities
and flexibility of FIPA-compliant agents. For instance, mi-
cro agents employ a simpler form of agent communication
(they communicate via method calls) and are implemented
by extending predefined Java classes and interfaces [12].

There are two kinds of micro-agent: primitive and non-
primitive. Primitive agents use native services, in particu-
lar native micro-kernel libraries, and directly interact with
the underlying virtual machine (in our case the Java Virtual
Machine). Non-primitive micro-agents, which are typically
more sophisticated and exist at a higher abstraction level,
are composed only of micro-agents and do not use any na-
tive services directly (only via micro-agents).

Because the smallest building block in OPAL is an agent,
the system designer can apply agent-oriented modeling
methodology throughout the development process. There
are two basic constructs in the micro agent system, namely
agents and roles. Agents represent actors in a system that
can play one or more roles. A role represents a cohesive set
of services that may be provided by some agent. Agents that
perform the same role are not restricted in the way that they
provide the services as prescribed by the role.

There is a special type of role called a group role. When
an agent performs a group role, it acts as the group owner
and creates a group environment in which other agents

could register as group members. By registering with a
group, an agent is associated with the group owner and can
collaborate with the owner agent. For example, upon receiv-
ing a task to solve or a goal to achieve, the group owner can
choose to disseminate the goal to its group members and re-
quest the members to achieve the goal. And alternatively,
if a group member performs a role that the owner, itself,
doesn’t perform, the owner may still advertise itself as an
actor of that role. When the set of services of the role are
subsequently requested, it can request its group members to
provide the necessary services. The group membership can
be dynamically modified according to the needs of individ-
ual agents. For example, if an agent is managing a group
with too many members, and the action for searching for
the right member becomes a lengthy operation, it may de-
cide to dispose some not frequently used group members.
Also, an agent may decide to unregister itself from a group
because it is more often needed in another agent group.

Although the group concept can be effectively used for
organizing agents into hierarchies, one is still faced with the
problem of providing ways for the agents to exchange infor-
mation and cooperate at semantic levels. One way for mi-
cro agents to talk to each other and share their capability
is to use role-matching. When an agent needs other agents
to perform certain services, it will need to know what type
of role provides such services and then will need to re-
cursively search through other agents and their groups for
that role. If roles and services could be specified declar-
atively, this approach would suffice for systems in which
agents would be requesting new services dynamically. But
because roles and services are such generic concepts, diffi-
culties arise in defining formal semantics specifying the ser-
vices. And also, since OPAL is written in Java, a complete
high level language built on top of Java is needed to support
specifying services declaratively at runtime. In the current
OPAL implementation, roles and services are not declara-
tive constructs. The role-matching approach would only be
suitable for systems in which all services are known before
runtime. This poses potential restrictions on the dynamism
and robustness of the systems.

A second approach, which is the one we are currently
taking, relies on declarative goals to aid in the cooperation
among micro agents. The meaning of a goal in OPAL is
similar to the meaning of a goal in 3APL. It typically spec-
ifies some post-conditions that represent the states after the
goal has been achieved, but doesn’t enforce how these post-
conditions are to be realised. In other words, a goal car-
ries some declarative information of some state, but not the
procedural information on how to reach that state. Agents
collaborate through goal exchange. For example, an agent
may decide according to its own internal state, what its next
goal to be achieved is. And if the agent, itself, is not capa-
ble of achieving the goal, or if it wants other agents to pro-



vide alternative solutions to achieve the goal, it can send the
goal to other agents. Goals in OPAL are self-descriptive,
other agents can evaluate the goals and try their own way
of achieving the goal. At the end it will inform the initiat-
ing agent whether it succeeded in achieving the goal or not.
Similar to the role-matching approach, the goals can be re-
cursively passed down through the agent hierarchy.

To better illustrate the goal passing concept, we will
elaborate on a simple scenario as in Figure 1.

Figure 1. Goal Passing

In this scenario, we have three micro-agents: a
dish-washing agent, a vacuum-cleaning agent and a
house-keeping agent. Each of them is capable of han-
dling one type of goal: dish-washing, vacuum-cleaning
and baby-sitting, respectively. Unlike the other two, the
house-keeping agent is also managing a group, with
the other two agents as the group members. There-
fore, when it declares the types of goal that it is capable
of handling, it includes the goals of its group mem-
bers. When the house-keeping agent is passed a goal of
vacuum-cleaning, it will delegate the goal to its group mem-
ber — the vacuum-cleaning agent. The advantage of using
goals instead of roles becomes evident when the sys-
tem designer can only describe the states of the system
declaratively but does not know exactly how the transi-
tions between states take place. In contrast to a service,
a goal is a simpler concept and can be formally speci-
fied as pre-condition and post-condition clauses, which
makes the implementation easier, and facilitate more dy-
namic interactions among agents. For example, if in a par-
ticular application domain, the semantics of the pre and
post-conditions of the declared goals are commonly un-

derstood among agents, an agent can create new goals
on-the-fly at runtime. One can also have rules specify-
ing how to recompose or combine goals.

This hierarchical structure of agents allows us to con-
struct more complex agents. And since the agents, even at
the lowest level, are completely autonomous, not only sys-
tems that operate in dynamic environments can be mod-
eled using this architecture, but we can also model intrin-
sically dynamic systems that are changing or evolving over
time. Currently, we are investigating a system architecture
in which we combine the flexibility of our micro-agent
architecture and the power of evolutionary computing tech-
niques, to simulate the evolving process of complex sys-
tems. In the proposed system, a large number of micro-
agents that are capable of performing very primitive tasks
form the initial population. During the evolutionary process,
micro-agents can autonomously develop through acquiring
other micro-agents, and natural selection criteria are applied
to guide the evolutionary search process.

The implication of such an approach is not just a tech-
nology blend. There are two main potential advantages of
having such a system.

Firstly, most existing multi-agent systems are restricted
to a preconceived application domain. Multi-agent systems
are most commonly found in modeling simple messaging-
oriented tasks, or online auctions. There are no existing
easy and convenient ways of embedding complex compu-
tational techniques, such as evolutionary techniques, into
multi-agent solutions.

Secondly, there exists a natural relationship between
agents, evolutionary computing and the biological world.
In the biological world, each autonomous organism can be
viewed as an agent, and larger biological systems, such as a
complex organism, can be viewed as the co-functioning of
a large number of those smaller agents. Evolutionary com-
puting techniques, which originally stemmed from the in-
spiration taken from biological evolution, can be naturally
applied to operate on the basis of agents, in a way similar
to natural biological evolution. A common problem that oc-
curs when applying evolutionary techniques on real-world
problems is finding ways to represent the domain-specific
information in appropriate forms accessible to algorithmic
computation. The mapping process in traditional evolution-
ary computing can be unintuitive and convoluted. However,
if we are able to model the domain information in agent
terms and still be able to apply evolutionary techniques, it
would not only ease the design and development of evolu-
tionary systems, but also widen the range of agent-oriented
applications.

To illustrate this concept, consider a typical scheduling
problem of arranging an itinerary for overseas trips. In the
problem specification, a starting point and a destination are
given. The goal is to find the best solution in terms of the to-



tal cost of the flights, flight dates available, number of hours
on the plane, number of hours waiting at the airport, number
of overnight stays required, number of stops, aircraft rating,
and the service level of the operating airline. These criteria
may receive different weights according to the user’s pri-
orities and requirements. Assuming the flight information
and requirements are static and fixed, solving such a prob-
lem using traditional evolutionary techniques, such as a ge-
netic algorithm, is possible but challenging. One of the main
problems is what data structure to use to store all the infor-
mation, and in what way the selection criteria are going to
be used to guide the selection process. Coding up a genetic
algorithm solution becomes extremely difficult when the
flight information is obtained through travel agencies and
thus is changing in real-time. Because whenever the flight
information is updated, we have to examine the current pop-
ulation of our solutions and delete all obsolete flights and
insert all the new ones. The operation of genetic algorithms
and some other similar techniques requires a fixed scope for
the functioning of the search mechanism.

The modeling would appear to be more straightforward
if we were to use agents. At the base level, each flight is
modeled as a micro-agent. The agent keeps track of the
availability of the flight, and declares the goal that it is capa-
ble of handling, for example, flying from Auckland to Bei-
jing on May 1st 2005. The agent will fail to achieve the goal
if the flight is already full. The agent also keeps other re-
lated information of the flight, for example, aircraft rating,
service level, number of stops, etc. If a higher level agent is
formed by acquiring two base-level flight agents, for exam-
ple, Singapore Airline flight from Auckland to Sydney and
Thai Airline flight from Sydney to Hongkong, then it can
declare itself as capable of achieving goals of flying from
Auckland to Sydney, Sydney to Hongkong, and Auckland
to Hongkong. Each agent in the population will be rewarded
based on both its own traits (number of stops, price, etc.)
and the number of times it has been used by other agents.
This rewarding mechanism can be adapted to be more so-
phisticated if required. Unfit agents (except those base-level
ones) are removed over time and fitter ones are promoted.
The evolving process continues until the convergence of the
population reaches a threshold value or optimal solutions
are found, just as in traditional evolutionary systems. Be-
cause the smallest unit in the population is an agent, which
principally retains full autonomy, it can autonomously up-
date itself, and therefore can be used to model real-time air-
line agencies and other types of real-time agents.

The hierarchical agent architecture is also highly mod-
ular and open. Since micro agents communicate with each
other through declarative goals, their internal structure or
state is hidden from each other. This important feature al-
lows us to introduce new components into the platform eas-
ily. In the next section we describe how we integrate the

high level reasoning engines and programming languages
into OPAL.

6. Integrating 3APL, ROK and JPRS into
OPAL

To integrate the three high level reasoning engines into
OPAL, our idea is to introduce them as special micro agent
components. It means that apart from having the original
Java primitive micro agents, we also have three special
kinds of micro agents — 3APL micro agent, ROK micro
agent, and JPRS micro agent. The integrating process for
the three components are the same in principle, and only
differ slightly in implementation.

The 3APL micro agent class has a 3APL interpreter and
a 3APL engine as its core. It inherits the role playing and
group behavior from the primitive micro agent class. The
3APL micro agent loads its source from a prepared 3APL
program script and processes the source using the inter-
preter.

When the OPAL platform receives an incoming message
of the appropriate form, it is inserted into the 3APL system
as a belief. By inserting the OPAL goal as a belief, we leave
the handling of the goal to the programmer. The program-
mer can write rules coping with the belief change caused by
receiving goals.

We take almost identical approaches for integrating ROK
and JPRS micro agents. Upon receiving messages or goals,
the information is wrapped up as an item of belief and in-
serted into the knowledge-base of ROK and JPRS agents,
respectively.

Also worth noting is the knowledge sharing among
micro-agents. Because the hierarchical grouping of
agents is purely logical, when several micro-agents form
a higher-level agent, there will be no global know-
ledge pool created for the higher-level agent. But rather,
the low-level micro-agents manage their own local know-
ledge, and share it through communication, which appears
to higher level of abstraction as if there is a common know-
ledge storage.

7. Performance Comparison of the Three
Reasoning Engines

The absolute speeds (performance) of these reasoning
engines are difficult to measure, because implementation
bias in the test programs is inevitable. And also in a multi-
agent environment, agents that are powered with these rea-
soning engines spend their processing time not just on local
computation, but also on communication. Although precise
quantitative figures are difficult to obtain, we believe some
computationally intensive test could still give us suggestive
evidences on the relative speed of the reasoning engines. We



Size 3APL ROK Script ROK Native JPRS
50 12078 361 110 40

100 28632 661 141 80
200 83040 801 200 350
300 178797 841 360 841
400 318919 1072 341 1773
500 519127 1312 390 3265
600 761235 1472 441 6319

1000 ... 3565 1402 3004
2000 ... 6920 2924 20250
3000 ... 10836 4737 68318
4000 ... 16854 9374 168853
5000 ... 21892 10495 314111

Table 1. Mergesort Time (in ms.)

choose to implement mergesort tests using all three engines,
because mergesort is a standardized algorithm, which helps
to minimize the amount of implementation error or bias in-
troduced.

The tests were run on an Acer machine with a Celeron
2.4 GHz processor and 240MB RAM. We wrote a 3APL
program, a ROK program running in native mode, a ROK
program running in scripting mode, and a JPRS program, all
running mergesort on integer arrays containing random in-
tegers.

The average times each program took to sort the arrays
are given in Table 1. We can see that ROK in native mode
is the fastest. It is about twice as fast as ROK in scripting
mode, and many times faster than JPRS, especially when
the array size becomes greater than 1000. We also observed
that both ROK and JPRS are much faster than 3APL. This
result is not surprising, because JPRS and ROK are built
closely to primitive Java, and the goal-plan matching algo-
rithm is not computationally expensive. On the other hand,
3APL has a more complex internal structure. It uses a JIPro-
log engine internally to process prolog-like wffs, and its first
order logic features (variables) makes the reification process
much more complicated than in ROK or JPRS. The slower
speed of 3APL is a trade-off against its declarative expres-
siveness, and its first order logic features.

8. The Master MindTMGames

We have developed a system for benchmarking, the Mas-
ter MindTMGame[13], to verify the integration of the high
level reasoning engines, and also to demonstrate the two dif-
ferent approaches of agent development in OPAL – declar-
ative and procedural. In the game, the master mind holds a
key of 4 pegs, each has one of six colors. The code breaker
tries to deduce the answer by making guesses at it. master
mind will mark each guess with a black or a white marker. A

black marker means one of your pegs is the correct colour
and in the correct position. A white marker tells you that
one of the pegs in the guess is of a colour which is in the so-
lution, but not in the correct position. A full description of
the Master Mind game can be found in Nelson [13]. In our
implementation, three high level OPAL agents were devel-
oped. Each high level agent is composed of two lower-level
micro agents. One of them is in charge of FIPA-compliant
messaging services, and the other micro agent is the reason-
ing agent that implements the game logic. The three reason-
ing micro agents were a 3APL micro agent, a ROK micro
agent, and a JPRS micro agent. The high level agents repre-
sent code breakers and have a common goal of winning the
game using as few guesses as possible. They share infor-
mation and cooperate through the exchange of FIPA mes-
sages. The real-world Master Mind game is not a multi-
player game and therefore not well suited for multi-agent
system applications. But our purpose is to demonstrate the
usability of the extended OPAL platform by showing an ex-
ample of how one could use all the high-level components
in OPAL. The reasoning power of the high-level engines,
albeit under-utilized, are still well-demonstrated in this ex-
ample system. Future work is expected to involve the de-
velopment of more sophisticated and complex multi-agent
applications in OPAL, using the reasoning engines and the
declarative programming feature.

9. OPAL IDE

Recently, a graphical IDE has been added to OPAL. The
IDE facilitates the design, development and testing phases
of agent software development, without having to reboot the
platform. Based on the concepts of micro agents and agent-
oriented software development, the IDE provides support
for:

• creation of new micro-agents by simply dragging
icons and plugging them into the existing hierar-
chy (currently we support the graphical instantia-
tion of 3APL agents, ROK agents, primitive Java
agents, OPAL agents and primitive Java roles);

• grouping and regrouping of agents (we currently sup-
port moving, regrouping, copying and deleting micro-
agents in a drag-n-drop fashion).

The intuitive graphical operations on agents in the IDE are
enabled by the underlying more complex interactions with
the platform. For example, when a new micro-agent is cre-
ated, we first determine the agent type and its creator in the
agent hierarchy, then we make an instance of the agent, and
handle all the necessary registration and associations with
other agents. Also, we show such associations to the devel-
oper in the GUI. A full scripting interface is implemented
for 3APL micro-agents. The user can load a source file,



Figure 2. OPAL Agent Composition Panel
Screenshot

modify and compile the source file, or create the source file
on-the-fly in the text area provided. The IDE is still in the
prototyping phase and not yet released. To allow the IDE
to support dynamic scripting of general Java agents, we are
currently evaluating different approaches of either using our
own scripting engine, or relying on customized Java class-
loaders. This is the next phase of OPAL development. The
screen-shots of the IDE are shown in Figure 2.

10. Conclusion

We argue in this article that declarative agent program-
ming languages and techniques can bridge the semantic
gap that exists between agent specification and practical
multi-agent system implementations. We have presented
our approach of incorporating declarative agent program-
ming support into the OPAL multi-agent platform. In par-
ticular, we have described in detail how the agent-oriented
hierarchical architecture of OPAL can facilitate and ease
the integration of high-level agent programming languages
such as 3APL and ROK. The extended OPAL platform al-
lows developers to use the powerful features of declara-
tive languages in developing complex agent systems, while
maintaining agent-oriented methodology on all abstraction
levels of the systems.

References

[1] Dastani, M., Riemsdijk, B.V., Dignum, F. and Meyer, J.-J. C.
(2004). “A Programming Language for Cognitive Agents Goal
Directed 3APL”, In Proceedings of the First Workshop on Pro-
gramming Multiagent Systems: Languages, frameworks, tech-
niques, and tools (ProMAS03), Springer, Berlin, 2004.

[2] Figueira, C. and Ramalho, G. (2000). “JEOPS - The Java Em-
bedded Object Production System”, In M. Monard, J. Sich-
man (eds.). Proc. of 7th Ibero-American Conference on AI (At-
ibaia, November 19–22, 2000). Lecture Notes in Artificial In-
telligence, pp.53-62, Vol. 1952. Springer-Verlag, Berlin, 2000.

[3] FIPA Organization,
<http://www.fipa.org>

[4] FIPA. “FIPA Agent Management Specification”,
<http://www.fipa.org/specs/fipa00023/
sc00023j.html>

[5] Georgeff, M.P. and Lansky, A.L. (1986). “Procedural Know-
ledge”, Proceedings of the IEEE Special Issue on Knowledge
Representation, 74(10):1383-1398, October 1986.

[6] Forgy., C. (1982). “ Rete: a Fast Algorithm for the Many Pat-
tern/Many Objects Pattern Match Problem”, Artificial Intelli-
gence, 19:1737, 1982.

[7] Hoeve, E.C.ten (2003). “3APL Platform”, Master’s Thesis,
University of Utrecht, The Netherlands, Oct 2003.

[8] Huber, M.J. (2001). “JAM agents in a nutshell”, Nov 2001.
[9] Java Agent Service,

<http://www.java-agent.org>
[10] Nowostawski, M. (2001). “Kea Enterprise Agents Documen-

tation”, Aug, 2001.
[11] Nowostawski, M. (2004). “Otago Agent Platform Devel-

oper’s Guide”, Feb 2004.
[12] Nowostawski, M., Purvis, M., and Cranefield, S. (2001).

“KEA - Multi-level Agent Infrastructure”, In Proceedings of
the Second International Workshop of Central and Eastern
Europe on Multi-Agent Systems (CEEMAS 2001), pp.355-362,
Department of Computer Science, University of Mining and
Metallurgy, Krakow, Poland 2001.

[13] Nelson, T. (1999). “Investigations into the Master
MindTMBoard Game”,
<http://www.tnelson.demon.co.uk/
mastermind/>, 1999.

[14] Wooldridge, M.J., and Jennings, N.R. (1995). “Intelligent
agents: Theory and practice”, Knowledge Engineering Re-
view, 10(2), 1995.


