A Framework with Peer Fostering Mechanism for
Mobile P2P Application Development

Heiko Wolf* and Menggiu Wanl
Information Science Department
University of Otago
Dunedin, New Zealand
[*hwolf1, fmwang]@infoscience.otago.ac.nz

Abstract—The design of ad-hoc, wireless, peer-to-peer appli- layer takes care of the delivery, synchronization and life-cycle
cations for small mobile devices raises a number of challenges management of objects. The top layer is the Application Layer.

for the developer, with object synchronisation, network failure o cjaarly defined API is provided to the developers for easy
and device limitations being the most significant. In this paper, S
application development.

we introduce a framework for peer-to-peer application develop-
ment that deals with those problems. Other than most current

literature, we focus on small peer-to-peer networks for gaming : :
applications. Application Layer
. INTRODUCTION Object Layer
With small, mobile devices becoming more powerful, peer-
to-peer applications on such devices are becoming increasingly Infrastructure Layer
popular. Full scalability, mobility and flexibility are desired
features in many application domains, which can be achieved Fig. 1. Layers of FRAGMe2004

via mutual exchange of information and services over ad-hoc,
wireless, peer-to-peer networks. Challenging problems ariseThe FRAGme2004 framework frees application developers
in the development of such applications. Firstly, wireless, affom networking and resource management. This includes
hoc networks face problems such as stability, data integritiie establishment of the underlying network infrastructure,
routing, notification of joining and leaving peers, and, imotification of joining and leaving peers, communication and
case of peer failure, fault tolerance. In such networks, tlject exchange. Rather, they can focus on the higher layers of
connections of the devices may be highly variable as devigee application. To make applications run reliably at all times,
may hop from online to offline unpredictably, and thus nate build a “Peer Fostering” mechanism in the object layer,
reliable. Secondly, since the peers exist in a collaborativthich makes use of data redundancy to achieve the overall
environment without central control, synchronisation of peefstegrity and robustness even in cases of node failure. The
and distribution of resources become big issues. Thirdly, fgeneral framework and the “Peer Fostering” mechanism are
the applications to run smoothly on small devices that we agie main contributions of this paper.
aiming for, efficient management of local computing resourcesThe paper is structured as follows: In Section Il we will
is a necessity. Those problems have been addressed in otbgiew related literature, followed by an introduction to the
research works, but mostly in an ad-hoc fashion [5], [12], [13$ystem architecture in Section Ill. Specific problems that
When developing new applications, these issues havea®se and their solutions are introduced in Section IV, while
be treated repeatedly as there exists no generic infrastruct8eztion V shows some mobile gaming applications developed
which addresses all aforementioned problems. In this papg&ith FRAGmMe2004.
we present a framework called “FRAGmMe2004” which we
designed for developing collaborative mobile applications that Il. LITERATURE REVIEW
achieve the features mentioned above by using a flexible peerwith the take-off of vast mobile communication networks
to-peer architecture. and technology, Peer-to-peer (P2P) computing has established
The FRAGmMe2004 framework has a three-layer architeitself as the next-generation distributed computing. A good
ture. The layers inter-communicate via interfaces thus iotroduction on P2P systems can be found in [14], which
achieve clear separation. The bottom layer is the Infrastructw@mprehensively reviews the field of P2P computing and
Layer. This layer consists of the basic building blocks thaipplications. Besides giving a general overview, case studies
address the communication requirements. A layer higher is theprominent peer-to-peer systems such as Groove, Gnutella
Object Layer. Object is the smallest entity that is distributeahd Freenet outline the major challenges in peer-to-peer
among the peers. The information and data that needs tortsworks. This review also shows the distinct differences
shared in the applications is encapsulated into objects, and thetween large-scale P2P applications such as file-sharing and

instant messaging, which have been the main research inteeggilications up to date can be narrowed to either file sharing
in many papers, and smaller scale P2P applications suahinstant messaging categories, [7] introduces a framework
as P2P gaming. FRAGmMe2004 is designed to facilitate tHeat supports P2P services of any kind. Different from all
development of small-scale P2P applications that are typicathese framworks, FRAGmMe2004 aims at small-scale P2P ap-
hosted in a wireless ad-hoc network environment. Anothplications over wireless ad-hoc network. Therefore, we tackle
good reference for an overlook of P2P computing is [15]. Thsome challenges related specifically to small-scale systems,
book gives a step-by-step introduction from the backgrounchich we found not well covered in previous researches.
knowledge to the technical innovations of P2P computing. It
also explores some technical issues associated with current HI. THE FRAGME2004 S(STEM
P2P implementations. Particularly to our interest, the book FRAGmMe2004 is a framework for the development of dis-
mentions “remembering important information” as “a true sigtributed, peer-to-peer applications. It offers a range of fea-
of P2P intelligence’[15](p.145). tures that enable the easy development of reliable distributed
A topic discussed often is the one of data availability. [Sdpplications. These features are introduced in the following
argues that “a complete system must ensure that important dsgations.
remain preserved even if the creator or publisher leaves the) o
system”(p.2). They developed a reliable preservation service Strict seperation of framework and application layer
built on a P2P architecture, on top of which digital library FRAGmMe2004 takes care of all communication and resource
applications could be built. Another strategy, the “disseminaanagement for application programmers. This allows the pro-
tion tree”, is used in [4] to reduce the number of replicas argtammers to focus solely on their domain-specific problems.
the bandwidth needed for updates. Finally, [12] introducesBy providing an easy-to-use, stable and well-tested platform,
protocol to handle the loss and rebuilt of replicas. All thosSERAGmMe2004 helps to speed up the development of collab-
approaches are aimed at applications such as file sharioggtive peer-to-peer applications. All framework functions are
where data loss and node failure harm the performance, bidden from the application programmer and can be accessed
not the overall functioning of the system. Data availabilitthrough a clearly defined interface.
and reliability is one of the design goals of FRAGmMe2004. In .)
particular, we aim at small scale P2P networks where evepy Reliable networking
node failure can be a fatal threat to the functioning of the Reliable networking is an important prerequisite for the
system. Our approach to this problem will be presented ursability of our framework. Several key points are identified to
more detall in Section IV-B. be crucial and briefly explained in the following paragraphs.
Addressing a similar issue, [3] gave an interesting discuSince we focused more on the construction of the higher layers
sion on replicating mobile databases in peer-to-peer systemisthe framework in this project, we used a middleware called
In the collaborative applications that FRAGme2004 is targetGroups [10]. JGroups is a successful open source project for
ing at, every individual peer will converge to a state wheneliable group communication. It is very easy to use, offers all
it contains the complete information in the system as shardw key features and functionalities that we need and could be
among others, in order to collaborate. The concept that evevell integrated with the higher layers of FRAGmMe2004.
peer has a copy of all objects is used in FRAGmMe2004 asl) Group ManagementThe notion group is referred to as a
intrinsic data replication to guard the overall data integritjumber of peers engaged in a common activity or application.
and availability. A group consists of one or more peers that can mutually
Many other important problems exist in P2P systems. [16hare and exchange information; they can be addressed with
and [18] look at the problems caused by ineffective routing unique group identity while keeping their individual peer
in ad-hoc P2P networks and how it can be improved. Geneidéntity. Group management involves the creation and deletion
problems of peer-to-peer collaboration such as collaboratioha group, joining and leaving a group as well as notification
over low bandwidth are discussed in [13]. They propossout joined/left/crashed members. Group members can be
to mirror objects and translate changes to other peers irsread across LANs or WANs. The importance of group
network, an approach similar to the synchronisation protocomlanagement is obvious. While group management appears
used in FRAGmMe2004. These problems are beyond the scagea simple concept, it conceals more low level details,
of FRAGmMe2004 and thus will not be covered in much detdibr example the establishment of the network structure and
in this paper. communication channels.
FRAGmMe2004 is not the first effort to develope a framework 2) Efficient Multicasting and UnicastingAlmost all peer-
for P2P applications. There have been different approactiegpeer applications require efficient communication. This is
in developing frameworks to allow the easy construction @specially true with complex applications like games. Unicas-
peer-to-peer applications. [1] proposed a framework whiding - the point to point communication, albeit used in many
includes group management and multicasting support to asgisices like file sharing applications, does not suffice here. In
the design of complex applicactions. Another architectugdrcumstances where peers in a group share the same resource
that incorporates a variety of devices that communicate inoa need to be notified at the same time for synchronization
peer-to-peer network is introduced in [11]. While most P2purposes, multicasting is called in.

For the FRAGmMe2004 framework we tested two approachésto interact with the framework without the need to worry
one based on Remote Method Invocation (RMI) unicasting aatiout any underlying code in the framework.
one based on Multicasting, to determine the more efficientThere is a number of steps that have to be pursued when
way of communication. It could be shown, that multicastingeveloping a FRAGme application. First, we need to setup
communication is significantly more efficient than RMI callshe connection, which is done by one simple method call.
in group communications, an effect that aggrevates with dime underlying code in the object layer makes calls to the
increasing number of peers. We attribute this to the fact thafrastructure layer to create the network connection and to
in case of RMI, a sender has to contact every other peer angtify other peers that a new peer has joined.
by one in attempt to share information with his group; while After the connection is setup, we need to receive all the
in multicasting he only needs to make one sending for tHeRAGme objects currently in the application, which is also
information to be disseminated to all peers of his group. done by invoking one method. The object layer takes care of

3) Guarantee of deliveryReliability is a big problem faced gathering all objects from the other peers. After getting other
by wireless communication. Virtually no routing protocols canbjects, the new peer is setup and can now create its own
guarantee hundred percent success of delivery. But with sooigects.
failure detection and retransmission mechanisms as include®bjects must be managed by the object layer in a unified
in JGroups, we can assume the guarantee of delivery tdaghion, hence it is important that objects are only created
certain degree. Such a guarantee is very important in termstfough the object layer manager. This is because the FRAGme
object-level protocol design. It allowed us to implement a higilamework uses the Factory Pattern in order to have absolute
level protocol with less overhead and thus higher efficiencycontrol over instantiating of relevant objects and to encapsulate
object creation in one place. This design decision is made
to allow full black-box development, no inside knowledge of

Having in mind that the applications need to run smoothiyie framework is required for application development. This
on memory-constrained small devices, we started addressiigp allows for sophisticated memory management, as the user
memory usage issues right from the beginning of the develnnot simply build instances of these objects, but must use
opment of FRAGme2004. Software development patterns likge factory class.
Factory Pattern and Singleton Pattern [2] are used throughoufvhen a so created object needs to be changed, the other
the framework to ensure effective management of availagers must be notified. This is done in the FRAGme framework
memory. by invoking a simple change method on the object itself. When
this method is called, it serializes the current object in the
object layer and calls a method in the infrastructure layer to

The object synchronization process is taken care of by tBend it to the other peers. There the sent object is deserialized
framework internally and thus hidden from the applicatiognd updates the corresponding object on the remote side.
developer. All a programmer needs to do is to make a simplejf 5 peer leaves the group intentionally or accidentally, the
method invokation on the object that needs to be synchronizﬁger dropout mechanism comes into effect. As any peer’s
at the appropriate time point. objects are fostered by another peer in the group, they are
not lost. If the peer was holding any objects that all peers are
using, such as the ball in a sports game, the ownership of these
Peer failure, either transient or lasting, could cause seriod,gjects is transfered to the fostering peer. Any peer specific
problems in an application. This applies especially to gamggjects are just stored, but ownership is not transferred. In case
as usually the interaction of all players is needed to continygs dropped out peer rejoins, these objects can be redistributed
playing. to him.

In the FRAGmMe2004 architecture, it is the application devel-
oper’s task to implement the game logic after a peer dropout. IV. THE SPECIFICTOPICS
However, the framework takes over the detection of leaving)
or failed peers and sends a notification to the application sgPUring the development of FRAGMe2004, a number of

C. Efficient memory management

D. Object synchronisation

E. Recovery from peer failure

this can be handled appropriately. difficulties arose. They mainly come from one of the three
areas: FRAGme2004 being a peer-to-peer system, challenges
F. Usage Scenario that come with wireless communication, and limitations of

In this section, we will explain the main steps to deveIoBO”able d_ewces. We WI|| describe how we cope with these
FRAGme-based applications. We will also point out the inteProblems in the following paragraphs.
actions between the layers of our framework.

The FRAGme framework has a clear interface to devel
FRAGme applications. The methods required by an appli-In a small peer-to-peer system, the main challenge is to
cation to interact with the framework and other peers aexhieve efficient object distribution and synchronisation. Espe-
all included in one class called “ControlCenter”. Applicatiortially in games, all peers have to be notified of object-changing
developers therefore import the ControlCenter class and wseents immediately to avoid stagnant gameplay.

o“p Peer-to-peer related challenges

In FRAGmMe2004, objects are assigned ownership, and byDefinition 1: the peer fostering state of a system is a simple
default objects are always owned by the peer that created thelinected circleC,
To avoid cases where multiple peers invoking changes on the
same object at the same time and cause possible race-condition €rfs = {Epivpia)s - F @iy i), F(pis i)}

or deadlock, only the owner of an object has the right tghere each occurance #f(p;, , p;,) is a directed edge in the

change the object. Every time a player interacts with an objggfcle from vertexp;, to vertexp;,. For any particulac,;.,

that is not owned by him, the object's owner is requested {Rere exists a bijection function that maps elements in the set

make the change. After the change has been made, the ownger ,,. ;. 1 to the set{p;, ps, ..., pn}.

will then initiate a multicasting message to inform all otheggch edgel(p;, , p;,) also denotes a “fostering” relationship

peers of the change. between peep;, and peerp;,. In such a relationship, we say

pi, is “fostering” p;, , with p;, being the “Foster” ang,, being

. o N the “Fostee”. Since there is a one-to-one and onto function
Wireless communication poses some additional challenggs: makes the mapping between vertice<jp, and nodes

as compared to cable-bound communications. Reliability aWP, each vertexp;, in C,;, has an in-degrée of 1 and an

packet loss are the major issues. At the low level, we rely Yut-degree of 1. Intother words, each peer is acting as a

JGroups to provide us with reliable uni- and multicasting, bugqster” in one relationship and acting as a “Fostee” in another

it doesn't save us from the problem at the higher level thf"élationship.

applications suffer from a high degree of peer failure. Tempo-\yhen a peer drops out and the objects that he owns are not

rary disconnection of devices frequently occurs, especially jaeded by the others, these objects still have to be sustained to

dynamic real-world environments. _ _allow rejoining. In our system, instead of having these objects
This problem has serious impact on the basic usablllggking up memory storage on every peer, only the foster of

of applications. In games for instance, it is generally N@fe drop out peer needs to store them. The “Foster’-“Fostee”
tolerable if a player is not able to continue the game j”?élationship is illustrated in Figure 2.

because of some temporary loss of connection (e.g., he walks
into a lift). The problem becomes more serious if not only @

B. Wireless communication related challenges

would that player suffer from the temporary disconnection, but Foster for

also had other peers been affected. Therefore, it is important Green

that some mechanisms are in place to ensure the integrity of Blue
data and continuity of the execution in case of peer failure.

Furthurmore, it is also desired to have the disconncted peer

being able to rejoin the application without loss of his previous

data. Fostee of Foster for
1) Introduction to “Peer Fostering” mechanisnio address V Blue Blue

the problems as per discussed above, we introduced a so-called
“Peer Fostering” mechanism into FRAGmMe2004. Similar to the Foster for Fostee of @
schemes used in some well-known peer-to-peer applications Purple Groen ¥

(Gnutella, Napster [15]), Peer Fostering is built on the basic Green Purple

idea that there exists some degree of data redundancy in all

peer-to-peer systems. Most of the other systems don't have Fig. 2. lllustration of Foster-Fostee Relationship

any special scheme that optimizes the degree of redundancy,

but rather leave the highly redundant data in the system. Thign the “Peer Fostering” scheme, each participating peer not
works for systems where peers are highly capable termin@RYy knows who its “Fostee” is, but also knows whom its
like PCs. But in our case, all devices are very limited in term§0stee” is fostering. The local knowledge of a peer can be
of available memory. Therefore leaving such a high degree ®fPressed as:

redundancy could significantly constrain the performance of Definition 2: the knowledge of peep; is

applications. As the number of peer failure instances increases;.-,. \ _ o A

the accretion of redundant data could bring the system to crash.Km) = (F @i pg), F(ps pe), Adopt({pas - P, })

We recognized that only a very small portion of the rewhere the set{p,,,p.,,...,pz, } IS the peers thap; has
dundant data is required for the reliability of the systenfadopted”, temporarily holding the objects of other peers.
Hence, we deviced a peer-fostering mechanism which buillke reason for storing this extra information will be clear when
dependancy relationships between peers. we explain the drop-out scenario in Section IV-B.3.

2) Peer Fostering relationship Having a set of existing It is to be noticed that such relationships among peers are
peers in a syste® = {p1, p2, ..., pn} as the set of vertices in updated every time a new peer joins, or an existing peer
a graph, we use the symb6k.rd(P) to denote the cardinality drops out. We have a set of interaction protocols that allow
of setP. If Card(P) > 1, the Peer Fostering StatBRS is the peers to make conversation and build the relationships.
defined as: These conversations are initiated by the “active” peers - the

< Fostee of
Purple

“Fosters”. Although the reader will notice that every singl@revious objects. And i requests to have its previous
peer is a “Foster” in some relationship, the peers don't hadata back (it has the alternative option to rejoin as a completely
such global knowledge, and such knowledge is not needeew peer)p,,rpie Will send py,e's objects back, and transfer
Each peer only makes sure that the relationship in which ittise ownership of these objects backpp, .. This scheme can
the “active” party is properly built. It is not hard to envisionbe scaled up to arbitrary number of peers. The peer fostering
that when all peers finish building their own relationships, eaghotocol is mentioned in greater detail in an internal technical
peer will be fostered by some other peer. report [17].

This update of relationships happens in a separate thread
behind the scene of the main gaming thread, and thread-sa]‘éty
measures are taken in our implementation. This relastionshifFRAGmMe2004 is aimed at easy and fast application devel-
building phase is essential, but it generates a very smajfiment for small devices, such as PDAs or smart phones.
amount of traffic to the network and therefore its impact ilthough the devices are becoming more powerful, memory
neglectable. and CPU constraints is still an important issue, especially

3) Peer drop-out handlingin this section, we will explain when real time applications such as games are to be deployed
the sequence of actions that peers take in case of peer drop-ontthose devices. The device we used during the development
We will use Figure 3 as illustration. In the initial configurationpf FRAGmMe2004 was the Linux-powered Sharp Zaurus SL-

Device limitation related challenges

the local knowledge 0py,pic iS: C700 [6], [19].
This PDA has a relatively powerful 400 MHz CPU which
K (ppurpte) = (F(Ppurples Poiue) allows the display of complex graphics. The more important
F(Pblue; Pgreen), Adopt(D)) limitation was found to be the small memory available. After

the Zaurus operating system was loaded, there were only 7
MB available for applications. This limitation called for a
K(pgreen) = (F(Pgreens Ppurpie)s careful and memory efficient implementation of the object
management. Also, the garbage collector of the Java Virtual
F(ppurpie: Potue), Adopt(D)) Machine on the Zaurus did not work efficient enough which
When a peer g,;..) drops out, all other peers will behad to be considered as well.
notified of the peer dropping evenpp, . Wil notice Our memory management approach is based mainly on
that py,. matches the fostee in one of the relationshipsbject reuse. As the garbage collection does not work efficient
(F (ppurple; Poive)) that it knows locally. And because theenough, the claimed memory of the application could grow
foster in that relationship i®,urpre itself, ppurpie Will first very fast and crash the system if needed objects are created
store all py..'s Objects, updating the adopting set to baewly each time. Therefore, we have various mechanisms
Adopt({pwiwe}), then notify other peers that the ownershin place to reuse objects and thus keep the memory usage
of puiwe’s Objects has been changedpg,, ... Knowing that level low. Firstly, the Factory design pattern is used to control
Poiue Was fosteringpgreen, Ppurpie Will then take the initia- the creation of FRAGme objects. Once such an object is not
tive to reconstruct relationship by sendipg..., a fostering needed anymore and disposed, it is stored and can be reused
request. Upon receiving such a requesy,.., Will send next time when a new object of the same type is demanded.
information about its own fostee, which in this casejs,,... Secondly, we employed Singleton design pattern so that all
The local knowledge 0py..»i. Will now be updated to be: data stores that are used repeatedly, such as vectors that store
peers or peer objects, are made static and global, making sure
K(ppu'rple) = <F(ppurple;pg’r€€n)7 that they will Only be Cl'eated once.
F(pgreen, Ppurple); Adopt({pyruc})) Although aimed for optimisation of running on the Zaurus,
these design decisions will help to run FRAGme based appli-
cations on any Java powered devices with memory limitation.

and the local knowledge Qf;,cc, iS:

On the other hand, whepy,.., was notified thatpy,.
dropped out, it will notice thap;,. matches the fostee in one
of the relationships K (ppurpie, Poive)) that it knows locally. V. THE GAMES
And becausep,,,pi. IS its current fostee, it foresees that
Dpurple Will be fostering some other peer gfter the relationshi$ Zaurus were developed based on FRAGMe2004 (a space
has been reconstructed, and therefore it sends a request, to “ , ;
shooter game called “SpaceBattle”, a strategic tank game
“BOOM!” and the Bomberman-like arcade game “Robo-
Joust”). A screenshot of RoboJoust can be seen in Figure 4.
They show that memory and communication bandwidth con-
K (pgreen) = (F(Dgreens Ppurpie)s straints are handled well enough by FRAGmMe2004 to allow

fast action games on a limited device such as the Shar
F(ppurpic; Pgreen), Adopt(D)) Zaurus. Alsg, minimal knowledge of the framework Wasp

Whenpy,.. rejoins, all peers will be notified of the joining required, which allowed novice developers to focus on the

event, andpp.-p. Will notice that it is adoptingps..’s gameplay design. “BOOM” and “RoboJoust” were developed

As a proof-of-concept, three networking-games that run

Ppurple 10 get the updated fostee Bf.,pic. After ppurpie SENAS
back the reply, the local knowledge 0§, ..., will be updated
to be:

Purple knows Blue is
fostering Green (J

Green knows Purple
is fostering Blue

Q
Blue

L

Green Blue knows Green is fostering Purple Purple

(a) Initial configuration

Blue lost connection

Green knows Purple is fostering Green
L]

-

SCe Purple knows Green is fostering Purple Purple

(b) Blue drops out

Purple knows Greeq is Green knows Blue is
l_ fostering Blue fostering Purple
L]
YT
|
'
|
u
|
I
!
I A\ A

X

h -
Green Blue knows Purple is fostering Green Purple

(c) Blue rejoins

Fig. 3. Peer dropping out and rejoining

from scratch by a group of 8 fourth year students in under 50
hours.

= RoboJoust 0.4

Fig. 4. Screenshot of RoboJoust

VI. CONCLUSION

As we showed in this paper, the development of mobile
peer-to-peer applications poses a number of obstacles, with
object synchronisation, network failure and device limita-
tions being the most significant. With FRAGmMe2004, we
developed a system that tackles those problems and offers a
reliable framework for peer-to-peer application development.
By seperating the application layer strictly from the framework
infrastructure, FRAGmMe2004 allows developers to implement
applications with minimal knowledge of the framework.

The impact of network failure and peer dropout is now
efficiently reduced by our peer fostering mechanism.

For future development, the range of FRAGmMe2004 enabled
devices can be further expanded. The development took place
on the Sharp Zaurus SL-C700, which runs Java Personal
Profile [9]. But not too many mobile devices support Java
Personal Profile. To make FRAGmMe2004 more widely use-
able, it needs to be ported to the Java Mobile Information
Device Profile (MIDP, [8]). Also, Zaurus devices communicate
via WIFI. But since the network traffic generated by most
FRAGmMe2004 applications is not unmanageable, it is possible
to make FRAGmMe2004 incorporate other type of lower-capable
wireless connections.

REFERENCES

[1] Akehurst, D.H., Waters, A.G., and Derrick, J. (2004). “A Viewpoints
Approach to Designing Group Based Applications”, In Herwig Unger,
editor, Design, Analysis and Simulation of Distributed Systems 2004
Advanced Simulation Technologies Conference, pages 83-93, Arlington,
Virginia, April 2004.

[2] Bruegge, B., and Dutoit, A.H. (2004)0bject-oriented software engi-
neering: using UML, patterns, and Javdpper Saddle River, NJ, USA:
Prentice Hall.

[3] Budiarto, Nishio, S., Tsukamoto, M. (2002). “Data management issues in
mobile and peer-to-peer environmentSata & Knowledge Engineering
Volume 41, Issue 2-3, pp. 183 - 204.

[4] Chen, Y., Katz, R. H., and Kubiatowicz, J. (2002). “Dynamic Replica
Placement for Scalable Content Delivery”, Iimernational Workshop on
Peer-to-Peer Systemblarch 2002.

[5] Cooper, B., Bawa, M., Daswani, N., Marti, S., and Garcia-Molina,
H. (2003). “Authenticity and Availability in PIPE NetworksT-uture
Generation of Computer Systems

[6] Device preview: Sharp Zaurus SL-C700 VGA resolution PDA,
http://linuxdevices.com/articles/AT5295837592.html

[7] Gerke, J., Hausheer, D., Mischke, J., and Stiller, B. (2003). “An Archi-
tecture for a Service Oriented Peer-to-Peer System (SOPP&)is der
Informationsverarbeitung und Kommunikation (PIR}J03, p.90-95, April
2003

[8] Java MIDP, http://java.sun.com/products/midp/

[9] Java Personal Profile, http://java.sun.com/products/personalprofile/index.jsp

[10] JGroups, http://www.jgroups.org

[11] Kato, T. et al. (2003) “A platftorm and appli-
cations for mobile peer-to-peer communications”,
http://www.research.att.com/ rjana/Takegto.pdf.

[12] Lin, S.-D., Lian, Q., Chen, M., and Zhang, Z. (2004). “A Practical Dis-
tributed Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems”,
IPTPS04

[13] Margaritis, M., Fidas, C., Avouris, N., and Komis, V. (2003). “A Peer-
To-Peer Architecture for Synchronous Collaboration over Low-Bandwidth
Networks”, in K. Margaritis, | Pitas (ed.Proc 9th PCI 2003 Thessa-
loniki.

[14] Milojicic, D. S. et al.(2002). “Peer-to-peer computing&échnical Report
HPL-2002-57 HP Lab, 2002.

[15] Moore, D., and Hebeler, J. (2002)Peer-to-Peer: Building Se-
cure, Scalable and Manageable NetworlBerkeley, CA, USA: Mc-
GrawHill/Osborne.

[16] Naor, M., and Wieder, U. (2004). “Know thy Neighbor's Neighbor:
Better Routing for Skip-Graphs and Small Worlds”, Tie Third In-
ternational Workshop on Peer-to-Peer Systems (IPTRS)4.

[17] Wang, M., and Wolf, H. (2005). “A Simple Peer Fostering Scheme
for Reliable Peer-to-Peer Communicatiom&chnical Reportinformation
Science Department, University of Otago, Dunedin.

[18] Ye, Z., Krishnamurthy, S.V., Tripathi, S.K. (2004). “A routing framework
for providing robustness to node failures in mobile ad hoc networkd”,
Hoc Networks 2 (2004), pp. 87 - 107.

[19] Zaurus SL-C700 Frequently Asked Questions,
http://www.dynamism.com/zaurus/fag.html

