
A Framework with Peer Fostering Mechanism for
Mobile P2P Application Development

Heiko Wolf∗ and Mengqiu Wang†

Information Science Department
University of Otago

Dunedin, New Zealand
[∗hwolf1, †mwang]@infoscience.otago.ac.nz

Abstract— The design of ad-hoc, wireless, peer-to-peer appli-
cations for small mobile devices raises a number of challenges
for the developer, with object synchronisation, network failure
and device limitations being the most significant. In this paper,
we introduce a framework for peer-to-peer application develop-
ment that deals with those problems. Other than most current
literature, we focus on small peer-to-peer networks for gaming
applications.

I. I NTRODUCTION

With small, mobile devices becoming more powerful, peer-
to-peer applications on such devices are becoming increasingly
popular. Full scalability, mobility and flexibility are desired
features in many application domains, which can be achieved
via mutual exchange of information and services over ad-hoc,
wireless, peer-to-peer networks. Challenging problems arise
in the development of such applications. Firstly, wireless, ad-
hoc networks face problems such as stability, data integrity,
routing, notification of joining and leaving peers, and, in
case of peer failure, fault tolerance. In such networks, the
connections of the devices may be highly variable as device
may hop from online to offline unpredictably, and thus not
reliable. Secondly, since the peers exist in a collaborative
environment without central control, synchronisation of peers
and distribution of resources become big issues. Thirdly, for
the applications to run smoothly on small devices that we are
aiming for, efficient management of local computing resources
is a necessity. Those problems have been addressed in other
research works, but mostly in an ad-hoc fashion [5], [12], [13].

When developing new applications, these issues have to
be treated repeatedly as there exists no generic infrastructure
which addresses all aforementioned problems. In this paper,
we present a framework called “FRAGme2004” which we
designed for developing collaborative mobile applications that
achieve the features mentioned above by using a flexible peer-
to-peer architecture.

The FRAGme2004 framework has a three-layer architec-
ture. The layers inter-communicate via interfaces thus to
achieve clear separation. The bottom layer is the Infrastructure
Layer. This layer consists of the basic building blocks that
address the communication requirements. A layer higher is the
Object Layer. Object is the smallest entity that is distributed
among the peers. The information and data that needs to be
shared in the applications is encapsulated into objects, and this

layer takes care of the delivery, synchronization and life-cycle
management of objects. The top layer is the Application Layer.
A clearly defined API is provided to the developers for easy
application development.

Fig. 1. Layers of FRAGme2004

The FRAGme2004 framework frees application developers
from networking and resource management. This includes
the establishment of the underlying network infrastructure,
notification of joining and leaving peers, communication and
object exchange. Rather, they can focus on the higher layers of
the application. To make applications run reliably at all times,
we build a “Peer Fostering” mechanism in the object layer,
which makes use of data redundancy to achieve the overall
integrity and robustness even in cases of node failure. The
general framework and the “Peer Fostering” mechanism are
the main contributions of this paper.

The paper is structured as follows: In Section II we will
review related literature, followed by an introduction to the
system architecture in Section III. Specific problems that
arose and their solutions are introduced in Section IV, while
Section V shows some mobile gaming applications developed
with FRAGme2004.

II. L ITERATURE REVIEW

With the take-off of vast mobile communication networks
and technology, Peer-to-peer (P2P) computing has established
itself as the next-generation distributed computing. A good
introduction on P2P systems can be found in [14], which
comprehensively reviews the field of P2P computing and
applications. Besides giving a general overview, case studies
of prominent peer-to-peer systems such as Groove, Gnutella
and Freenet outline the major challenges in peer-to-peer
networks. This review also shows the distinct differences
between large-scale P2P applications such as file-sharing and



instant messaging, which have been the main research interest
in many papers, and smaller scale P2P applications such
as P2P gaming. FRAGme2004 is designed to facilitate the
development of small-scale P2P applications that are typically
hosted in a wireless ad-hoc network environment. Another
good reference for an overlook of P2P computing is [15]. This
book gives a step-by-step introduction from the background
knowledge to the technical innovations of P2P computing. It
also explores some technical issues associated with current
P2P implementations. Particularly to our interest, the book
mentions “remembering important information” as “a true sign
of P2P intelligence”[15](p.145).

A topic discussed often is the one of data availability. [5]
argues that “a complete system must ensure that important data
remain preserved even if the creator or publisher leaves the
system”(p.2). They developed a reliable preservation service
built on a P2P architecture, on top of which digital library
applications could be built. Another strategy, the “dissemina-
tion tree”, is used in [4] to reduce the number of replicas and
the bandwidth needed for updates. Finally, [12] introduces a
protocol to handle the loss and rebuilt of replicas. All those
approaches are aimed at applications such as file sharing,
where data loss and node failure harm the performance, but
not the overall functioning of the system. Data availability
and reliability is one of the design goals of FRAGme2004. In
particular, we aim at small scale P2P networks where every
node failure can be a fatal threat to the functioning of the
system. Our approach to this problem will be presented in
more detail in Section IV-B.

Addressing a similar issue, [3] gave an interesting discus-
sion on replicating mobile databases in peer-to-peer systems.
In the collaborative applications that FRAGme2004 is target-
ing at, every individual peer will converge to a state where
it contains the complete information in the system as shared
among others, in order to collaborate. The concept that every
peer has a copy of all objects is used in FRAGme2004 as
intrinsic data replication to guard the overall data integrity
and availability.

Many other important problems exist in P2P systems. [16]
and [18] look at the problems caused by ineffective routing
in ad-hoc P2P networks and how it can be improved. General
problems of peer-to-peer collaboration such as collaboration
over low bandwidth are discussed in [13]. They propose
to mirror objects and translate changes to other peers in a
network, an approach similar to the synchronisation protocol
used in FRAGme2004. These problems are beyond the scope
of FRAGme2004 and thus will not be covered in much detail
in this paper.

FRAGme2004 is not the first effort to develope a framework
for P2P applications. There have been different approaches
in developing frameworks to allow the easy construction of
peer-to-peer applications. [1] proposed a framework which
includes group management and multicasting support to assist
the design of complex applicactions. Another architecture
that incorporates a variety of devices that communicate in a
peer-to-peer network is introduced in [11]. While most P2P

applications up to date can be narrowed to either file sharing
or instant messaging categories, [7] introduces a framework
that supports P2P services of any kind. Different from all
these framworks, FRAGme2004 aims at small-scale P2P ap-
plications over wireless ad-hoc network. Therefore, we tackle
some challenges related specifically to small-scale systems,
which we found not well covered in previous researches.

III. T HE FRAGME2004 SYSTEM

FRAGme2004 is a framework for the development of dis-
tributed, peer-to-peer applications. It offers a range of fea-
tures that enable the easy development of reliable distributed
applications. These features are introduced in the following
sections.

A. Strict seperation of framework and application layer

FRAGme2004 takes care of all communication and resource
management for application programmers. This allows the pro-
grammers to focus solely on their domain-specific problems.
By providing an easy-to-use, stable and well-tested platform,
FRAGme2004 helps to speed up the development of collab-
orative peer-to-peer applications. All framework functions are
hidden from the application programmer and can be accessed
through a clearly defined interface.

B. Reliable networking

Reliable networking is an important prerequisite for the
usability of our framework. Several key points are identified to
be crucial and briefly explained in the following paragraphs.
Since we focused more on the construction of the higher layers
of the framework in this project, we used a middleware called
JGroups [10]. JGroups is a successful open source project for
reliable group communication. It is very easy to use, offers all
the key features and functionalities that we need and could be
well integrated with the higher layers of FRAGme2004.

1) Group Management:The notion group is referred to as a
number of peers engaged in a common activity or application.
A group consists of one or more peers that can mutually
share and exchange information; they can be addressed with
a unique group identity while keeping their individual peer
identity. Group management involves the creation and deletion
of a group, joining and leaving a group as well as notification
about joined/left/crashed members. Group members can be
spread across LANs or WANs. The importance of group
management is obvious. While group management appears
as a simple concept, it conceals more low level details,
for example the establishment of the network structure and
communication channels.

2) Efficient Multicasting and Unicasting:Almost all peer-
to-peer applications require efficient communication. This is
especially true with complex applications like games. Unicas-
ting - the point to point communication, albeit used in many
places like file sharing applications, does not suffice here. In
circumstances where peers in a group share the same resource
or need to be notified at the same time for synchronization
purposes, multicasting is called in.



For the FRAGme2004 framework we tested two approaches,
one based on Remote Method Invocation (RMI) unicasting and
one based on Multicasting, to determine the more efficient
way of communication. It could be shown, that multicasting
communication is significantly more efficient than RMI calls
in group communications, an effect that aggrevates with an
increasing number of peers. We attribute this to the fact that
in case of RMI, a sender has to contact every other peer one
by one in attempt to share information with his group; while
in multicasting he only needs to make one sending for the
information to be disseminated to all peers of his group.

3) Guarantee of delivery:Reliability is a big problem faced
by wireless communication. Virtually no routing protocols can
guarantee hundred percent success of delivery. But with some
failure detection and retransmission mechanisms as included
in JGroups, we can assume the guarantee of delivery to a
certain degree. Such a guarantee is very important in terms of
object-level protocol design. It allowed us to implement a high
level protocol with less overhead and thus higher efficiency.

C. Efficient memory management

Having in mind that the applications need to run smoothly
on memory-constrained small devices, we started addressing
memory usage issues right from the beginning of the devel-
opment of FRAGme2004. Software development patterns like
Factory Pattern and Singleton Pattern [2] are used throughout
the framework to ensure effective management of available
memory.

D. Object synchronisation

The object synchronization process is taken care of by the
framework internally and thus hidden from the application
developer. All a programmer needs to do is to make a simple
method invokation on the object that needs to be synchronized
at the appropriate time point.

E. Recovery from peer failure

Peer failure, either transient or lasting, could cause serious
problems in an application. This applies especially to games
as usually the interaction of all players is needed to continue
playing.

In the FRAGme2004 architecture, it is the application devel-
oper’s task to implement the game logic after a peer dropout.
However, the framework takes over the detection of leaving
or failed peers and sends a notification to the application so
this can be handled appropriately.

F. Usage Scenario

In this section, we will explain the main steps to develop
FRAGme-based applications. We will also point out the inter-
actions between the layers of our framework.

The FRAGme framework has a clear interface to develop
FRAGme applications. The methods required by an appli-
cation to interact with the framework and other peers are
all included in one class called “ControlCenter”. Application
developers therefore import the ControlCenter class and use

it to interact with the framework without the need to worry
about any underlying code in the framework.

There is a number of steps that have to be pursued when
developing a FRAGme application. First, we need to setup
the connection, which is done by one simple method call.
The underlying code in the object layer makes calls to the
infrastructure layer to create the network connection and to
notify other peers that a new peer has joined.

After the connection is setup, we need to receive all the
FRAGme objects currently in the application, which is also
done by invoking one method. The object layer takes care of
gathering all objects from the other peers. After getting other
objects, the new peer is setup and can now create its own
objects.

Objects must be managed by the object layer in a unified
fashion, hence it is important that objects are only created
through the object layer manager. This is because the FRAGme
framework uses the Factory Pattern in order to have absolute
control over instantiating of relevant objects and to encapsulate
object creation in one place. This design decision is made
to allow full black-box development, no inside knowledge of
the framework is required for application development. This
also allows for sophisticated memory management, as the user
cannot simply build instances of these objects, but must use
the factory class.

When a so created object needs to be changed, the other
peers must be notified. This is done in the FRAGme framework
by invoking a simple change method on the object itself. When
this method is called, it serializes the current object in the
object layer and calls a method in the infrastructure layer to
send it to the other peers. There the sent object is deserialized
and updates the corresponding object on the remote side.

If a peer leaves the group intentionally or accidentally, the
peer dropout mechanism comes into effect. As any peer’s
objects are fostered by another peer in the group, they are
not lost. If the peer was holding any objects that all peers are
using, such as the ball in a sports game, the ownership of these
objects is transfered to the fostering peer. Any peer specific
objects are just stored, but ownership is not transferred. In case
the dropped out peer rejoins, these objects can be redistributed
to him.

IV. T HE SPECIFICTOPICS

During the development of FRAGme2004, a number of
difficulties arose. They mainly come from one of the three
areas: FRAGme2004 being a peer-to-peer system, challenges
that come with wireless communication, and limitations of
portable devices. We will describe how we cope with these
problems in the following paragraphs.

A. Peer-to-peer related challenges

In a small peer-to-peer system, the main challenge is to
achieve efficient object distribution and synchronisation. Espe-
cially in games, all peers have to be notified of object-changing
events immediately to avoid stagnant gameplay.



In FRAGme2004, objects are assigned ownership, and by
default objects are always owned by the peer that created them.
To avoid cases where multiple peers invoking changes on the
same object at the same time and cause possible race-condition
or deadlock, only the owner of an object has the right to
change the object. Every time a player interacts with an object
that is not owned by him, the object’s owner is requested to
make the change. After the change has been made, the owner
will then initiate a multicasting message to inform all other
peers of the change.

B. Wireless communication related challenges

Wireless communication poses some additional challenges
as compared to cable-bound communications. Reliability and
packet loss are the major issues. At the low level, we rely on
JGroups to provide us with reliable uni- and multicasting, but
it doesn’t save us from the problem at the higher level that
applications suffer from a high degree of peer failure. Tempo-
rary disconnection of devices frequently occurs, especially in
dynamic real-world environments.

This problem has serious impact on the basic usability
of applications. In games for instance, it is generally not
tolerable if a player is not able to continue the game just
because of some temporary loss of connection (e.g., he walks
into a lift). The problem becomes more serious if not only
would that player suffer from the temporary disconnection, but
also had other peers been affected. Therefore, it is important
that some mechanisms are in place to ensure the integrity of
data and continuity of the execution in case of peer failure.
Furthurmore, it is also desired to have the disconncted peer
being able to rejoin the application without loss of his previous
data.

1) Introduction to “Peer Fostering” mechanism:To address
the problems as per discussed above, we introduced a so-called
“Peer Fostering” mechanism into FRAGme2004. Similar to the
schemes used in some well-known peer-to-peer applications
(Gnutella, Napster [15]), Peer Fostering is built on the basic
idea that there exists some degree of data redundancy in all
peer-to-peer systems. Most of the other systems don’t have
any special scheme that optimizes the degree of redundancy,
but rather leave the highly redundant data in the system. This
works for systems where peers are highly capable terminals
like PCs. But in our case, all devices are very limited in terms
of available memory. Therefore leaving such a high degree of
redundancy could significantly constrain the performance of
applications. As the number of peer failure instances increases,
the accretion of redundant data could bring the system to crash.

We recognized that only a very small portion of the re-
dundant data is required for the reliability of the system,
Hence, we deviced a peer-fostering mechanism which builds
dependancy relationships between peers.

2) Peer Fostering relationship :Having a set of existing
peers in a systemP = {p1, p2, . . . , pn} as the set of vertices in
a graph, we use the symbolCard(P) to denote the cardinality
of setP. If Card(P) > 1, the Peer Fostering State (PFS) is
defined as:

Definition 1: the peer fostering state of a system is a simple
directed circleCpfs

Cpfs = {F (pi1 , pi2), . . . , F (pin−1 , pin
), F (pin

, pi1)}

where each occurance ofF (pia
, pib

) is a directed edge in the
circle from vertexpia

to vertexpib
. For any particularCpfs,

there exists a bijection function that maps elements in the set
{pi1 , pi2 , . . . , pin} to the set{p1, p2, . . . , pn}.
Each edgeF (pia

, pib
) also denotes a “fostering” relationship

between peerpia
and peerpib

. In such a relationship, we say
pia

is “fostering”pib
, with pia

being the “Foster” andpib
being

the “Fostee”. Since there is a one-to-one and onto function
that makes the mapping between vertices inCpfs and nodes
in P, each vertexpix

in Cpfs has an in-degree of 1 and an
out-degree of 1. In other words, each peerpix

is acting as a
“Foster” in one relationship and acting as a “Fostee” in another
relationship.

When a peer drops out and the objects that he owns are not
needed by the others, these objects still have to be sustained to
allow rejoining. In our system, instead of having these objects
taking up memory storage on every peer, only the foster of
the drop out peer needs to store them. The “Foster”-“Fostee”
relationship is illustrated in Figure 2.

Fig. 2. Illustration of Foster-Fostee Relationship

In the “Peer Fostering” scheme, each participating peer not
only knows who its “Fostee” is, but also knows whom its
“Fostee” is fostering. The local knowledge of a peer can be
expressed as:

Definition 2: the knowledge of peerpi is

K(pi) = 〈F (pi, pj), F (pj , pk), Adopt({px1 , . . . , pxm
})〉

where the set{px1 , px2 , . . . , pxm} is the peers thatpi has
“adopted”, temporarily holding the objects of other peers.
The reason for storing this extra information will be clear when
we explain the drop-out scenario in Section IV-B.3.

It is to be noticed that such relationships among peers are
updated every time a new peer joins, or an existing peer
drops out. We have a set of interaction protocols that allow
the peers to make conversation and build the relationships.
These conversations are initiated by the “active” peers - the



“Fosters”. Although the reader will notice that every single
peer is a “Foster” in some relationship, the peers don’t have
such global knowledge, and such knowledge is not needed.
Each peer only makes sure that the relationship in which it is
the “active” party is properly built. It is not hard to envision
that when all peers finish building their own relationships, each
peer will be fostered by some other peer.

This update of relationships happens in a separate thread
behind the scene of the main gaming thread, and thread-safety
measures are taken in our implementation. This relastionship
building phase is essential, but it generates a very small
amount of traffic to the network and therefore its impact is
neglectable.

3) Peer drop-out handling:In this section, we will explain
the sequence of actions that peers take in case of peer drop-out.
We will use Figure 3 as illustration. In the initial configuration,
the local knowledge ofppurple is:

K(ppurple) = 〈F (ppurple, pblue),
F (pblue, pgreen), Adopt(Ø)〉

and the local knowledge ofpgreen is:

K(pgreen) = 〈F (pgreen, ppurple),
F (ppurple, pblue), Adopt(Ø)〉

When a peer (pblue) drops out, all other peers will be
notified of the peer dropping event.ppurple will notice
that pblue matches the fostee in one of the relationships
(F (ppurple, pblue)) that it knows locally. And because the
foster in that relationship isppurple itself, ppurple will first
store all pblue’s objects, updating the adopting set to be
Adopt({pblue}), then notify other peers that the ownership
of pblue’s objects has been changed toppurple. Knowing that
pblue was fosteringpgreen, ppurple will then take the initia-
tive to reconstruct relationship by sendingpgreen a fostering
request. Upon receiving such a request,pgreen will send
information about its own fostee, which in this case isppurple.
The local knowledge ofppurple will now be updated to be:

K(ppurple) = 〈F (ppurple, pgreen),
F (pgreen, ppurple), Adopt({pblue})〉

On the other hand, whenpgreen was notified thatpblue

dropped out, it will notice thatpblue matches the fostee in one
of the relationships (F (ppurple, pblue)) that it knows locally.
And becauseppurple is its current fostee, it foresees that
ppurple will be fostering some other peer after the relationship
has been reconstructed, and therefore it sends a request to
ppurple to get the updated fostee ofppurple. After ppurple sends
back the reply, the local knowledge ofpgreen will be updated
to be:

K(pgreen) = 〈F (pgreen, ppurple),
F (ppurple, pgreen), Adopt(Ø)〉

Whenpblue rejoins, all peers will be notified of the joining
event, andppurple will notice that it is adoptingpblue’s

previous objects. And ifpblue requests to have its previous
data back (it has the alternative option to rejoin as a completely
new peer),ppurple will sendpblue’s objects back, and transfer
the ownership of these objects back topblue. This scheme can
be scaled up to arbitrary number of peers. The peer fostering
protocol is mentioned in greater detail in an internal technical
report [17].

C. Device limitation related challenges

FRAGme2004 is aimed at easy and fast application devel-
opment for small devices, such as PDAs or smart phones.
Although the devices are becoming more powerful, memory
and CPU constraints is still an important issue, especially
when real time applications such as games are to be deployed
on those devices. The device we used during the development
of FRAGme2004 was the Linux-powered Sharp Zaurus SL-
C700 [6], [19].

This PDA has a relatively powerful 400 MHz CPU which
allows the display of complex graphics. The more important
limitation was found to be the small memory available. After
the Zaurus operating system was loaded, there were only 7
MB available for applications. This limitation called for a
careful and memory efficient implementation of the object
management. Also, the garbage collector of the Java Virtual
Machine on the Zaurus did not work efficient enough which
had to be considered as well.

Our memory management approach is based mainly on
object reuse. As the garbage collection does not work efficient
enough, the claimed memory of the application could grow
very fast and crash the system if needed objects are created
newly each time. Therefore, we have various mechanisms
in place to reuse objects and thus keep the memory usage
level low. Firstly, the Factory design pattern is used to control
the creation of FRAGme objects. Once such an object is not
needed anymore and disposed, it is stored and can be reused
next time when a new object of the same type is demanded.
Secondly, we employed Singleton design pattern so that all
data stores that are used repeatedly, such as vectors that store
peers or peer objects, are made static and global, making sure
that they will only be created once.

Although aimed for optimisation of running on the Zaurus,
these design decisions will help to run FRAGme based appli-
cations on any Java powered devices with memory limitation.

V. THE GAMES

As a proof-of-concept, three networking-games that run
on Zaurus were developed based on FRAGme2004 (a space
shooter game called “SpaceBattle”, a strategic tank game
“BOOM!” and the Bomberman-like arcade game “Robo-
Joust”). A screenshot of RoboJoust can be seen in Figure 4.
They show that memory and communication bandwidth con-
straints are handled well enough by FRAGme2004 to allow
fast action games on a limited device such as the Sharp
Zaurus. Also, minimal knowledge of the framework was
required, which allowed novice developers to focus on the
gameplay design. “BOOM” and “RoboJoust” were developed



(a) Initial configuration

(b) Blue drops out

(c) Blue rejoins

Fig. 3. Peer dropping out and rejoining

from scratch by a group of 8 fourth year students in under 50
hours.

Fig. 4. Screenshot of RoboJoust

VI. CONCLUSION

As we showed in this paper, the development of mobile
peer-to-peer applications poses a number of obstacles, with
object synchronisation, network failure and device limita-
tions being the most significant. With FRAGme2004, we
developed a system that tackles those problems and offers a
reliable framework for peer-to-peer application development.
By seperating the application layer strictly from the framework
infrastructure, FRAGme2004 allows developers to implement
applications with minimal knowledge of the framework.

The impact of network failure and peer dropout is now
efficiently reduced by our peer fostering mechanism.

For future development, the range of FRAGme2004 enabled
devices can be further expanded. The development took place
on the Sharp Zaurus SL-C700, which runs Java Personal
Profile [9]. But not too many mobile devices support Java
Personal Profile. To make FRAGme2004 more widely use-
able, it needs to be ported to the Java Mobile Information
Device Profile (MIDP, [8]). Also, Zaurus devices communicate
via WIFI. But since the network traffic generated by most
FRAGme2004 applications is not unmanageable, it is possible
to make FRAGme2004 incorporate other type of lower-capable
wireless connections.

REFERENCES

[1] Akehurst, D.H., Waters, A.G., and Derrick, J. (2004). “A Viewpoints
Approach to Designing Group Based Applications”, In Herwig Unger,
editor, Design, Analysis and Simulation of Distributed Systems 2004,
Advanced Simulation Technologies Conference, pages 83-93, Arlington,
Virginia, April 2004.

[2] Bruegge, B., and Dutoit, A.H. (2004).Object-oriented software engi-
neering: using UML, patterns, and Java. Upper Saddle River, NJ, USA:
Prentice Hall.

[3] Budiarto, Nishio, S., Tsukamoto, M. (2002). “Data management issues in
mobile and peer-to-peer environments”,Data & Knowledge Engineering,
Volume 41, Issue 2-3, pp. 183 - 204.

[4] Chen, Y., Katz, R. H., and Kubiatowicz, J. (2002). “Dynamic Replica
Placement for Scalable Content Delivery”, InInternational Workshop on
Peer-to-Peer Systems, March 2002.

[5] Cooper, B., Bawa, M., Daswani, N., Marti, S., and Garcia-Molina,
H. (2003). “Authenticity and Availability in PIPE Networks”,Future
Generation of Computer Systems.



[6] Device preview: Sharp Zaurus SL-C700 VGA resolution PDA,
http://linuxdevices.com/articles/AT5295837592.html

[7] Gerke, J., Hausheer, D., Mischke, J., and Stiller, B. (2003). “An Archi-
tecture for a Service Oriented Peer-to-Peer System (SOPPS)”,Praxis der
Informationsverarbeitung und Kommunikation (PIK), 2/03, p.90-95, April
2003

[8] Java MIDP, http://java.sun.com/products/midp/
[9] Java Personal Profile, http://java.sun.com/products/personalprofile/index.jsp
[10] JGroups, http://www.jgroups.org
[11] Kato, T. et al. (2003) “A platform and appli-

cations for mobile peer-to-peer communications”,
http://www.research.att.com/ rjana/TakeshiKato.pdf.

[12] Lin, S.-D., Lian, Q., Chen, M., and Zhang, Z. (2004). “A Practical Dis-
tributed Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems”,
IPTPS04.

[13] Margaritis, M., Fidas, C., Avouris, N., and Komis, V. (2003). “A Peer-
To-Peer Architecture for Synchronous Collaboration over Low-Bandwidth
Networks”, in K. Margaritis, I Pitas (ed.)Proc 9th PCI 2003, Thessa-
loniki.

[14] Milojicic, D. S. et al.(2002). “Peer-to-peer computing”,Technical Report
HPL-2002-57, HP Lab, 2002.

[15] Moore, D., and Hebeler, J. (2002).Peer-to-Peer: Building Se-
cure, Scalable and Manageable Networks. Berkeley, CA, USA: Mc-
GrawHill/Osborne.

[16] Naor, M., and Wieder, U. (2004). “Know thy Neighbor’s Neighbor:
Better Routing for Skip-Graphs and Small Worlds”, InThe Third In-
ternational Workshop on Peer-to-Peer Systems (IPTPS), 2004.

[17] Wang, M., and Wolf, H. (2005). “A Simple Peer Fostering Scheme
for Reliable Peer-to-Peer Communication”,Technical Report, Information
Science Department, University of Otago, Dunedin.

[18] Ye, Z., Krishnamurthy, S.V., Tripathi, S.K. (2004). “A routing framework
for providing robustness to node failures in mobile ad hoc networks”,Ad
Hoc Networks, 2 (2004), pp. 87 - 107.

[19] Zaurus SL-C700 Frequently Asked Questions,
http://www.dynamism.com/zaurus/faq.html


