
Keyword Translation Accuracy and Cross-Lingual Question
Answering in Chinese and Japanese

Teruko Mitamura

Carnegie Mellon
University

Pittsburgh, PA USA
teruko@cs.cmu.edu

 Mengqiu Wang
Carnegie Mellon

University
Pittsburgh, PA USA
mengqiu@cs.cmu.edu

Hideki Shima
Carnegie Mellon

University
Pittsburgh, PA USA
hideki@cs.cmu.edu

Frank Lin
Carnegie Mellon

University
Pittsburgh, PA USA
frank+@cs.cmu.edu

Abstract

In this paper, we describe the extension
of an existing monolingual QA system
for English-to-Chinese and English-to-
Japanese cross-lingual question answer-
ing (CLQA). We also attempt to charac-
terize the influence of translation on
CLQA performance through experimen-
tal evaluation and analysis. The paper
also describes some language-specific is-
sues for keyword translation in CLQA.

1 Introduction

The JAVELIN system is a modular, extensible
architecture for building question-answering
(QA) systems (Nyberg, et al., 2005). Since the
JAVELIN architecture is language-independent,
we extended the original English version of
JAVELIN for cross-language question answering
(CLQA) in Chinese and Japanese. The same
overall architecture was used for both systems,
allowing us to compare the performance of the
two systems. In this paper, we describe how we
extended the monolingual system for CLQA (see
Section 3). Keyword translation is a crucial ele-
ment of the system; we describe our translation
module in Section 3.2. In Section 4, we evaluate
the end-to-end CLQA systems using three differ-
ent translation methods. Language-specific
translation issues are discussed in Section 5.

2 Javelin Architecture

The JAVELIN system is composed of four main
modules: the Question Analyzer (QA), Retrieval
Strategist (RS), Information eXtractor (IX) and
Answer Generator (AG). Inputs to the system are

processed by these modules in the order listed
above. The QA module is responsible for parsing
the input question, assigning the appropriate an-
swer type to the question, and producing a set of
keywords. The RS module is responsible for
finding documents containing answers to the
question, using keywords produced by the QA
module. The IX module finds and extracts an-
swers from the documents based on the answer
type, and then produces a ranked list of answer
candidates. The AG module normalizes and clus-
ters the answer candidates to rerank and generate
a final ranked list. The overall monolingual ar-
chitecture is shown in Figure 1.

3 Extension for Cross-Lingual QA

Because of JAVELIN’s modular design, signifi-
cant changes to the monolingual architecture
were not required. We customized the system in
order to handle Unicode characters and “plug in”
cross-lingual components and resources.

For the Question Analyzer, we created the
Keyword Translator, a sub-module for translat-
ing keywords. The Retrieval Strategist was
adapted to search in multilingual corpora. The
Information Extractors use language-independent
extraction algorithms. The Answer Generator
uses language-specific sub-modules for normali-
zation, and a language-independent algorithm for
answer ranking. The overall cross-lingual archi-
tecture is shown in Figure 2. The rest of this sec-
tion explains the details of each module.

3.1 Question Analyzer

The Question Analyzer (QA) is responsible for
extracting information from the input question in
order to formulate a representation of the

Figure1: Javelin Monolingual Architecture Figure2: Javelin Architecture with Cross-Lingual
Extension

information required to answer the question.
Input questions are processed using the RASP
parser (Korhonen and Briscoe, 2004), and the
module output contains three main components:
a) selected keywords; b) the answer type (e.g.
numeric-expression, person-name, location); and
c) the answer subtype (e.g. author, river, city).
The selected keywords are words or phrases
which are expected to appear in documents with
correct answers. In order to reduce noise in the
document retrieval phase, we use stop-word lists
to eliminate high-frequency terms; for example,
the term “old” is not included as a keyword for
“how-old” questions.

We extended the QA module with a keyword
translation sub-module, so that translated key-
words can be used to retrieve documents from
multilingual corpora. This straightforward ap-
proach has been used by many other CLQA sys-
tems. An alternative approach is to first translate
the whole question sentence from English to the
target language, and then analyze the translated
question. Our reasons for favoring keyword
translation are two-fold. First, to translate the
question to the target language and analyze it, we
would have to replace the English NLP compo-
nents in the Question Analyzer with their coun-
terparts for the target language. In contrast, key-
word translation decouples the question analysis
from the translation, and requires no language
specific resources during question analysis. The
second reason is that machine translation is not
perfect, and therefore the resulting translation(s)
for the question may be incomplete or ungram-
matical, thus adding to the complexity of the
analysis task. One could argue that when trans-
lating the full sentence instead of just the key-
words, we can better utilize state-of-art machine
translation techniques because more context in-
formation is available. But for our application, an
accurate translation of functional words (such as
prepositions or conjunctions) is less important.

We focus more on words that carry more content
information, such as verbs and nouns. We will
present more detail on the use of contextual in-
formation for disambiguation in the next section.
In some recent work (Kwok, 2005, Mori and
Kawagishi, 2005), researchers have combined
these two approaches, but to date no studies have
compared their effectiveness.

3.2 Translation Module

The Translation Module (TM) is used by the QA
module to translate keywords into the language
of the target corpus. Instead of combining multi-
ple translation candidates with a disjunctive
query operator (Isozaki et al., 2005), the TM se-
lects the best combination of translated keywords
from several sources: Machine Readable Dic-
tionaries (MRDs), Machine Translation systems
(MTs) and Web-mining-Based Keyword Trans-
lators (WBMTs) (Nagata et al., 2001, Li et al.,
2003). For translation from English to Japanese,
we used two MRDs, eight MTs and one WBMT.
If none of them return a translation, the word is
transliterated into kana for Japanese (for details
on transliteration, see Section 5.2). For transla-
tion from English to Chinese, we used one MRD,
three MTs and one WBMT. After gathering all
possible translations for every keyword, the TM
uses a noisy channel model to select the best
combination of translated keywords. The TM
estimates model statistics using the World Wide
Web. Details of the translation selection method
are described in the rest of this subsection.

The Noisy Channel Model: In the noisy channel
model, an undistorted signal passes through a
noisy channel and becomes distorted. Given the
distorted signal, we are to find the original, un-
distorted signal. IBM applied the noisy channel
model idea to translation of sentences from
aligned parallel corpora, where the source lan-
guage sentence is the distorted signal, and the

target language sentence is the original signal
(Brown et al., 1990). We adopt this model for
disambiguating keyword translation, with the
source language keyword terms as the distorted
signal and the target language terms as the origi-
nal signal. The TM's job is to find the target lan-
guage terms given the source language terms, by
finding the probability of the target language
terms given the source language terms P(T|S).

Using Bayes' Rule, we can break the equation
down to several components:

)(
)|()()|(

SP
TSPTPSTP ⋅

=

Because we are comparing probabilities of dif-
ferent translations of the same source keyword
terms, we can simplify the problem to be:

)|()()|(TSPTPSTP ⋅=

We can now reduce the equation to two compo-
nents. P(T) is the language model and P(S|T) is
the translation model. If we assume independ-
ence among the translations of individual terms,
we can represent the translation probability of a
keyword by the product of the probabilities of
the individual term translations:

∏=

i
ii tsPTSP)|()|(

Estimating Probabilities using the World
Wide Web: For estimating the probabilities of
the translation model and the language model,
we chose to gather statistics from the World
Wide Web. There are three advantages in utiliz-
ing the web for gathering translation statistics: 1)
it contains documents written in many different
languages, 2) it has high coverage of virtually all
types of words and phrases, and 3) it is con-
stantly updated. However, we also note that the
web contains a lot of noisy data, and building up
web statistics is time-consuming unless one has
direct access to a web search index.

Estimating Translation Model Probabilities:
We make an assumption that terms that are trans-
lations of each other co-occur more often in
mixed-language web pages than terms that are
not translations of each other. This assumption is
analogous to Turney’s work on the co-
occurrence of synonyms (Turney, 2001). We
then define the translation probability of each
keyword translation as:

∑
=

j
jii

jii
jii tsco

tsco
tsP

)),(log(
)),(log(

)|(
,

,
,

Where si is the i-th term in the source language
and ti,j is the j-th translation candidate for si. Let
hits be a number of web pages retrieved from a
certain search engine. co(si, t i,j) is the hits given
a query si and ti,j., where log is applied to adjust
the count so that translation probabilities can still
be comparable at higher counts.

Estimating Language Model Probabilities: In
estimating the language model, we simply obtain
hits given a conjunction of all the candidate
terms in the target language, and divide that
count by the sum of the occurrences of the indi-
vidual terms:

∑
=

i
i

n

to
tttco

TP
)(

),...,(
)(21

The final score of a translation candidate for a
query is the product of the translation model
score P(S|T) and the language model score P(T).

Smoothing and Pruning: As with most statisti-
cal calculations in language technologies, there is
a data sparseness problem when calculating the
language model score. Also, because statistics
are gathered real-time by accessing a remote
search engine via internet, it can take a long time
to process a single query when there is a large
number of translation candidates. We describe
methods for smoothing the language model and
pruning the set of translation candidates below.

The data sparseness problem occurs when
there are many terms in the query, and the terms
are relatively rare keywords. When calculating
the language model score, it is possible that none
of the translation candidates appear on any web
page. To address this issue, we propose a "mov-
ing-window smoothing" algorithm:

• When the target keyword co-occurrence

count with n keywords is below a set
threshold for all of the translation candi-
dates, we use a moving window of size
n-1 that "moves" through the keywords
in sequence, splitting the set of keywords
into two sets, each with n-1 keywords.

• If the co-occurrence count of all of these

sets of keywords is above the threshold,
return the product of the language model

score of these two sets as the language
model score.

• If not, decrease the window and repeat

until either all of the split sets are above
the threshold or n = 1.

The moving window smoothing technique

gradually relaxes the search constraint without
losing the "connectivity" of keywords (there is
always overlap in the split parts) before finally
backing off to just the individual keywords.
However, there are two issues worth noting with
this approach:

1. "Moving-window smoothing" assumes

that keywords that are next to each other
are also more semantically related,
which may not always be the case.

2. "Moving-window smoothing" tends to

give the keywords near the middle of the
question more weight, which may not be
desirable.

A better smoothing technique may be used

with trying all possible "splits" at each stage, but
this would greatly increase the time cost. There-
fore, we chose the moving-window smoothing as
a trade-off between a more robust smoothing
technique that tries all possible split combina-
tions and no smoothing at all.

The set of possible translation candidates is
produced by creating all possible combinations
of the translations of individual keywords. For a
question with n keywords and an average of m
possible translations per keyword, the number of
possible combinations is mn. This quickly be-
comes intractable as we have to access a search
engine at least mn times just for the language
model score. Therefore, pruning is needed to cut
down the number of translation candidates. We
prune possible translation candidates twice dur-
ing each run, using early and late pruning:

1. Early Pruning: We prune possible trans-

lations of the individual keywords before
combining them to make all possible
translations of a query. We use a very
simple pruning heuristic based on target
word frequency using a word frequency
list. Very rare translations produced by a
resource are not considered.

2. Late Pruning: We prune possible transla-
tion candidates of the entire set of key-
words after calculating translation prob-
abilities. Since the calculation of the
translation probabilities requires little
access to the web, we can calculate only
the language model score for the top N
candidates with the highest translation
score and prune the rest.

An Example of English to Chinese Keyword
Translation Selection: Suppose we translate the
following question from English to Chinese.

"What if Bush leaves Iraq?"

Three keywords are extracted: “Bush”,
“leaves”, and “Iraq.” Using two MT systems and
an MRD, we obtain the following translations:

 i=1 i=2 i=3
Source Bush leaves Iraq

Target j=1 灌木 离去 伊拉克
Target j=2 布什 叶子

Table 1. E-C Keyword Translation

"Bush" and "leaves" both have two transla-
tions because they are ambiguous keywords,
while "Iraq" is unambiguous. Translation (1,1)
means bush as in a shrub, and translation (1,2)
refers to the person named Bush. Translation
(2,1) is the verb "to go away", and translation
(2,2) is the noun for leaf. Note that we would like
translation (1,2) and translation (2,1) because
they match the sense of the word intended by the
user. Now we can create all possible combina-
tions of the keywords in the target language:

"灌木 离去 伊拉克"
"灌木 叶子 伊拉克"
"布什 离去 伊拉克"
"布什 叶子 伊拉克"

Query "Bush"

"灌木"
"Bush"
"布什"

"leaves"
"离去"

"leaves"
"叶子"

"Iraq"
"伊拉克"

hits 3790 41100 5780 7240 24500
Table 2. Translation Pair Page Counts

Candidate Translation Score
"灌木 离去 伊拉克" 0.215615
"灌木 叶子 伊拉克" 0.221219
"布什 离去 伊拉克" 0.277970
"布什 叶子 伊拉克" 0.285195

Table 3. Translation Scores

By calculating hits, we obtain the statistics and
the translation scores shown in Table 2 and 3.
Now we can proceed to use the search engine to
obtain language model statistics, which we use to
obtain the language model. Then, together with
the translation model score, we calculate the
overall score1.

Query 灌木 布什 离去 叶子 伊拉克

hits 428K 459K 1490K 1100K 9590K

Table 4. Individual Term Page Counts

Query hits
"灌木 离去 伊拉克" 1200
"灌木 叶子 伊拉克" 455
"布什 离去 伊拉克" 17300
"布什 叶子 伊拉克" 2410

Table 5. Target Language Query Page Counts

Cand Translation Language Overall
灌木
离去
伊拉克

2.1562E-1 1.0428E-4 2.2483E-5

灌木
叶子
伊拉克

2.2122E-1 4.0925E-5 9.0533E-6

布什
离去
伊拉克

2.7797E-1 1.4993E-3 4.1675E-4

布什
叶子
伊拉克

2.8520E-1 2.1616E-4 6.1649E-5

Table 6. Translation Score, Language Model

Score, and Overall Score

As shown in Table 6, we select the most prob-

able combination of translated keywords with the
highest overall score (the third candidate), which
is the correct translation of the English keywords.

3.3 Retrieval Strategies

The Retrieval Strategist (RS) module retrieves
documents from a corpus in response to a query.
For document retrieval, the RS uses the Lemur
3.0 toolkit (Ogilvie and Callan, 2001). Lemur
supports structured queries using operators such
as Boolean AND, Synonym, Ordered/Un-
Ordered Window and NOT. An example of a
structured query is shown below:

1 For simplicity, we don’t apply smoothing

and pruning.

#BAND(#OD4(邪馬台国 王朝)

女王

#SYN(*organization *person))

In formulating a structured query, the RS uses an
incremental relaxation technique, starting from
an initial query that is highly constrained; the
algorithm searches for all the keywords and data
types in close proximity to each other. The prior-
ity is based on a function of the likely answer
type, keyword type (word, proper name, or
phrase) and the inverse document frequency of
each keyword. The query is gradually relaxed
until the desired number of relevant documents is
retrieved.

3.4 Information Extraction

In the JAVELIN system, the Information Ex-
tractor (IX) is not a single module that uses one
extraction algorithm; rather, it is an abstract in-
terface which allows different information ex-
tractor implementations to be plugged into
JAVELIN. These different extractors can be used
to produce different results for comparison, or
the results of running them all in parallel can be
merged. Here we will describe just one of the
extractors, the one which is currently the best
algorithm in our CLQA experiment: the Light IX.

The Light IX module uses simple, distance-
based algorithms to find a named entity that
matches the expected answer type and is “clos-
est” to all the keywords according to some dis-
tance measure. The algorithm considers as an-
swer candidates only those terms that are tagged
as named entities which match the desired an-
swer type. The score for an answer candidate a
is calculated as follows:

)()()(aDistScoreaOccScoreaScore ⋅+⋅= βα

where α + β = 1, OccScore is the occurrence
score and DistScore is the distance score. Both
OccScore and DistScore return a number be-
tween zero and one, and likewise Score returns a
number between zero and one. Usually, α is
much smaller than β. The occurrence score for-
mula is:

n
kExist

aOccScore
n

i i∑ == 1
)(

)(

where a is the answer candidate and ki is the i-th
keyword, and n is the number of keywords. Exist
returns 1 if the i-th keyword exists in the docu-
ment, and 0 otherwise. The distance score for

each answer candidate is calculated according to
the following formula:

n
kaDistaDistScore

n

i
i

∑ =

=
1),(

1

)(

This formula produces a score between zero
and one. If the i-th keyword does not exist in a
document, the equation inside the summation
will return zero. If the i-th keyword appears more
than once in the document, the one closest to the
answer candidate is considered. An additional
restriction is that the answer candidate cannot be
one of the keywords. The Dist function is the
distance measure, which has two definitions:

1.),(),(batTokensAparbaDist =
2.)),(log(),(batTokensAparbaDist =

The first definition simply counts the number

of tokens between two terms. The second defini-
tion is a logarithmic measure. The function re-
turns the number of tokens from a to b; if a and b
are adjacent, the count is 1; if a and b are sepa-
rated by one token, the count is 2, and so on. A
token can either be a character or a word; for the
E-C, we used character-based tokenization,
whereas for the E-J, we use word-based tokeni-
zation. By heuristics obtained from training re-
sults, we used the linear Dist measure for E-C
and logarithmic Dist measure for E-J in the
evaluation.

This algorithm is a simple statistical approach
which requires no language-specific external
tools beyond word segmentation and a named-
entity tagger. It is not as sophisticated as other
approaches which perform deep linguistic analy-
sis, but one advantage is faster adaptation to mul-
tiple languages. In our experiments, this simple
algorithm performs at the same level as a FST-
based approach (Nyberg, et al. 2005).

3.5 Answer Generator

The task of the Answer Generator (AG) module
is to produce a ranked list of answer candidates
from the IX output. The AG is designed to nor-
malize answer candidates by resolving represen-
tational differences (e.g. in how numbers, dates,
etc. are expressed in text). This canonicalization
makes it possible to combine answer candidates
that differ only in surface form.

Even though the AG module plays an impor-
tant role in JAVELIN, we did not use its full po-
tential in our E-C and E-J systems, since we

lacked some language-specific resources re-
quired for multilingual answer merging.

4 Evaluation and Effect of Translation
Accuracy

To evaluate the effect of translation accuracy on
the overall performance of the CLQA system, we
conducted several experiments using different
translation methods. Three different runs were
carried out for both the E-C and E-J systems,
using the same 200-question test set and the
document corpora provided by the NTCIR
CLQA task. The first run was a fully automatic
run using the original translation module in the
CLQA system; the result is exactly same as the
one we submitted to NTCIR5 CLQA. For the
second run, we manually translated the keywords
that were selected by the Question Analyzer
module. This translation was done by looking at
only the selected keywords, but not the original
question. For both E-C and E-J tasks, the NTCIR
organizers provided the translations for the Eng-
lish questions, which we assume are the gold-
standard translations. Taking advantage of this
resource, in the third run we simply looked up
the corresponding term for each English keyword
from the gold-standard translation of the ques-
tion. The results for these runs are shown in Ta-
ble 7 and 8 below.

Translation

Accuracy

Top1

Top1+U

Run 1 69.3% 15 (7.5%) 23 (11.5%)

Run 2 85.5% 16 (8.0%) 31 (15.5%)

Run 3 100% 18 (9.0%) 38 (19.0%)

Table 7. Effect of Translation (E-C)

Translation

Accuracy

Top1

Top1+U

Run 1 54.2% 20 (10.0%) 25 (12.5%)

Run 2 81.2% 19 (9.5%) 30 (15.0%)

Run 3 100% 18 (9.0%) 31 (15.5%)

Table 8. Effect of Translation (E-J)

We found that in the NTCIR task, the sup-
ported/correct document set was not complete.
Some answers judged as unsupported were in-
deed well supported, but the supporting docu-
ment did not appear in NTCIR's correct docu-
ment set. Therefore, we think the Top1+U col-
umn is more informative for this evaluation.
From Table 7 and 8, it is obvious that the overall
performance increases as translation accuracy

increases. From Run1 to Run2, we eliminated all
the overt translation errors produced by the sys-
tem, and also corrected word-sense errors. Then
from Run2 to Run3, we made different lexical
choices among the seemingly all correct transla-
tions of a word. This type of inappropriateness
cannot be classified as an error, but it makes a
difference in QA systems, especially at the docu-
ment retrieval stage. For example, the phrase
"Kyoto Protocol" can have two valid transla-
tions: 京都協議 or 京都議定書. Both translations
would be understandable to a human, but the sec-
ond translation will appear much more frequently
than the first one in the document set. This type
of lexical choice is hard to make, because we
would need either subtle domain-specific knowl-
edge, or knowledge about the target corpus; nei-
ther is easily obtainable.

 Comparing Run 1 and 3 in Table 8, we see
that improving keyword translation had less
overall impact on the E-J system. Information
extraction (including named entity identification)
did not perform as well in E-J. We also com-
pared the translation effect on cross-lingual
document retrieval (Figure 3). As we can see,
Run 3 retrieved supporting documents more fre-
quently in rank 1 than in Run 1 or 2. From these
preliminary investigations, it would seem that
information extraction and/or answer generation
must be improved for English-Japanese CLQA.

Figure3: Comparison of three runs: Cross-lingual
document retrieval performance in E-J

5 Translation Issues

In this section, we discuss language specific key-
word translation issues for Chinese and Japanese
CLQA.

5.1 Chinese

One prominent problem in Chinese keyword
translation is word sense disambiguation. In

question answering systems, the translation re-
sults are used directly in information retrieval,
which exhibits a high dependency on the lexical
form of a word but not so much on the meaning.
In other words, having a different lexical form
from the corresponding term in corpora is the
same as having a wrong translation. For exam-
ple, to translate the word “bury” into Chinese,
our system gives a translation of 埋 , which
means “bury” as the action of digging a hole,
hiding some items in the hole and then covering
it with earth. But the desired translation, as it
appears in the document is 葬 , which means
“bury” too, but specifically for burial in funerals.

Even more challenging are regional language
differences. In our system, for example, the cor-
pora are newswire articles written in Traditional
Chinese from Taiwan, and if we use an MT sys-
tem that produces translations in Simplified Chi-
nese followed by conversion to Traditional Chi-
nese, we may run into problems. The MT system
generates Simplified Chinese translations first,
which may suggest that the translation resources
it uses were written in Simplified Chinese and
originate from mainland China. In mainland
China and in Taiwan, people commonly use dif-
ferent words for describing the same thing, espe-
cially for proper nouns like foreign names. Table
9 lists some examples. Therefore if the MT sys-
tem generates its output using text from
mainland China, it may produce a different word
than the one used in Taiwan, which may not ap-
pear in the corpora. This could lead to failure in
document retrieval.

English Mainland China Taiwan

Band 樂隊 樂團

Computer Game 電腦遊戲 電玩

World Guinness

Record

吉尼斯世界紀錄 金氏世界紀錄

The Catcher in

the Rye

稻田裏的守望者 麥田捕手

Nelson 奈爾森 納爾遜

Salinger 塞林格 沙林傑

Creutzfeldt

Jakob Disease

人類狂牛症 賈庫氏症

Luc Besson 呂克 貝松 盧貝松

Pavarotti 帕瓦洛蒂 帕華洛帝

Table 9. Different Translation in Chinese

5.2 Japanese

Representational Gaps: One of the advantages
of using structured queries and automatic query
formulation in the RS is that the system is able to
handle slight representational gaps between a

translated query and corresponding target words
in the corpus.

For example, Werner Spies appears as ヴェル

ナー ・ シュピース in our Japanese preproc-
essed corpus and therefore ヴェルナー シュピー
ス, which is missing a dot between last and first
name, is a wrong translation if our retrieval
module only allows exact match. Lemur supports
an Ordered Distance Operator where the terms
within a #ODN operator must be found within N
words of each other in the text in order to con-
tribute to the document's belief value. This en-
ables us to bridge the representational gaps; such
as when #OD1(ヴェルナー シュピース) does not
match any words in the corpus, #OD2(ヴェルナー

シュピース) is formulated in the next step in or-
der to capture ヴェルナー ・ シュピース.

Transliteration in WBMT: After detecting
Japanese nouns written in romaji (e.g. Funaba-
shi), we transliterated them into hiragana for a
better result in WBMT. This is because we are
assuming higher positive co-occurrence between
kana and kanji (i.e. ふなばし and 船橋) than be-
tween romaji and kanji (i.e. funabashi and 船橋).
When there are multiple transliteration candi-
dates, we iterate through each candidate.

Document Retrieval in Kana: Suppose we are
going to transliterate Yusuke. This romaji can be
mapped to kana characters with relatively less
ambiguity (i.e. ゆすけ , ゆうすけ), when com-
pared to their subsequent transliteration to kanji
(i.e. 雄介, 祐介, 佑介, 勇介, 雄輔 etc.). Therefore,
indexing kana readings in the corpus and query-
ing in kana is sometimes a useful technique for
CLQA, given the difficulty in converting romaji
to kana and romaji to kanji.

To implement this approach, the Japanese cor-
pus was first preprocessed by annotating named
entities and by chunking morphemes. Then, we
annotated a kana reading for each named entity.
At query time, if there is no translation found
from other resources, the TM transliterates ro-
maji to kana as a back-off strategy.

6 Conclusion

We described how we extended an existing
monolingual (English) system for CLQA (Eng-
lish to Chinese and English to Japanese), includ-
ing a translation disambiguation technique
which uses a noisy channel model with probabil-
ity estimations using web as corpora. We dis-

cussed the influence of translation accuracy on
CLQA by presenting experimental results and
analysis. We concluded by introducing some
language-specific issues for keyword translation
from English to Chinese and Japanese which we
hope to address in ongoing research.

Acknowledgements
This work is supported by the Advanced Re-
search and Development Activity (ARDA)’s
Advanced Question Answering for Intelligent
(AQUAINT) Program.

References
Brown, P., J. Cocke, S.D. Pietra, V.D. Pietra, F.

Jelinek., J. Lafferty, R. Mercer, and P. Roossin.
1990. A Statistical Approach to Machine Transla-
tion. Computational Linguistics, 16(2):38—45.

Isozaki, H., K. Sudoh and H. Tsukada. 2005. NTT’s
Japanese-English Cross-Language Question An-
swering System. In Proceedings of the NTCIR
Workshop 5 Meeting, pages 186-193.

Korhonen, A. and E. Briscoe. 2004. Extended Lexi-
cal-Semantic Classification of English Verbs. Pro-
ceedings of the HLT/NAACL '04 Workshop on
Computational Lexical Semantics, pages 38-45.

Kwok, K., P. Deng, N. Dinstl and S. Choi. 2005.
NTCIR-5 English-Chinese Cross Language Ques-
tion-Answering Experiments using PIRCS. In Pro-
ceedings of the NTCIR Workshop 5 Meeting.

Li, Hang, Yunbo Cao, and Cong Li. 2003. Using Bi-
lingual Web Data To Mine and Rank Translations,
IEEE Intelligent Systems 18(4), pages 54-59.

Mori, T. and M. Kawagishi. 2005. A Method of Cross
Language Question-Answering Based on Machine
Translation and Transliteration. In Proceedings of
the NTCIR Workshop 5 Meeting.

Nagata, N., T. Saito, and K. Suzuki. 2001. Using the
Web as a Bilingual Dictionary, In Proceedings of
ACL 2001 Workshop Data-Driven Methods in Ma-
chine Translation, pages 95-102

Nyberg, E., R. Frederking, T. Mitamura, J. M. Bilotti,
K. Hannan, L. Hiyakumoto, J. Ko, F. Lin, L. Lita,
V. Pedro, A. Schlaikjer. 2005. JAVELIN I and II in
TREC2005. In Proceedings of TREC 2005.

Ogilvie, P. and J. Callan. 2001. Experiments Using
the Lemur Toolkit. In Proceedings of the 2001 Text
REtrieval Conference (TREC 2001), pages 103-
108.

Turney, P.D. 2001, Mining the Web for synonyms:
PMI-IR versus LSA on TOEFL, Proceedings of the
Twelfth European Conference on Machine Learn-
ing, pages 491-502.

