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Abstract 

In this paper, we describe the extension 
of an existing monolingual QA system 
for English-to-Chinese and English-to-
Japanese cross-lingual question answer-
ing (CLQA). We also attempt to charac-
terize the influence of translation on 
CLQA performance through experimen-
tal evaluation and analysis. The paper 
also describes some language-specific is-
sues for keyword translation in CLQA. 

1 Introduction 

The JAVELIN system is a modular, extensible 
architecture for building question-answering 
(QA) systems (Nyberg, et al., 2005).  Since the 
JAVELIN architecture is language-independent, 
we extended the original English version of 
JAVELIN for cross-language question answering 
(CLQA) in Chinese and Japanese.  The same 
overall architecture was used for both systems, 
allowing us to compare the performance of the 
two systems. In this paper, we describe how we 
extended the monolingual system for CLQA (see 
Section 3).  Keyword translation is a crucial ele-
ment of the system; we describe our translation 
module in Section 3.2.  In Section 4, we evaluate 
the end-to-end CLQA systems using three differ-
ent translation methods.  Language-specific 
translation issues are discussed in Section 5. 

2 Javelin Architecture 

The JAVELIN system is composed of four main 
modules: the Question Analyzer (QA), Retrieval 
Strategist (RS), Information eXtractor (IX) and 
Answer Generator (AG). Inputs to the system are 

processed by these modules in the order listed 
above. The QA module is responsible for parsing 
the input question, assigning the appropriate an-
swer type to the question, and producing a set of 
keywords. The RS module is responsible for 
finding documents containing answers to the 
question, using keywords produced by the QA 
module. The IX module finds and extracts an-
swers from the documents based on the answer 
type, and then produces a ranked list of answer 
candidates. The AG module normalizes and clus-
ters the answer candidates to rerank and generate 
a final ranked list. The overall monolingual ar-
chitecture is shown in Figure 1. 

3 Extension for Cross-Lingual QA 

Because of JAVELIN’s modular design, signifi-
cant changes to the monolingual architecture 
were not required. We customized the system in 
order to handle Unicode characters and “plug in” 
cross-lingual components and resources. 

For the Question Analyzer, we created the 
Keyword Translator, a sub-module for translat-
ing keywords. The Retrieval Strategist was 
adapted to search in multilingual corpora. The 
Information Extractors use language-independent 
extraction algorithms. The Answer Generator 
uses language-specific sub-modules for normali-
zation, and a language-independent algorithm for 
answer ranking. The overall cross-lingual archi-
tecture is shown in Figure 2.  The rest of this sec-
tion explains the details of each module. 

3.1 Question Analyzer 

The Question Analyzer (QA) is responsible for 
extracting information from the input question in 
order to formulate a representation of the  



 

Figure1: Javelin Monolingual Architecture Figure2: Javelin Architecture with Cross-Lingual 
Extension 
 

information required to answer the question.  
Input questions are processed using the RASP 
parser (Korhonen and Briscoe, 2004), and the 
module output contains three main components: 
a) selected keywords; b) the answer type (e.g. 
numeric-expression, person-name, location); and 
c) the answer subtype (e.g. author, river, city).  
The selected keywords are words or phrases 
which are expected to appear in documents with 
correct answers. In order to reduce noise in the 
document retrieval phase, we use stop-word lists 
to eliminate high-frequency terms; for example, 
the term “old” is not included as a keyword for 
“how-old” questions. 

We extended the QA module with a keyword 
translation sub-module, so that translated key-
words can be used to retrieve documents from 
multilingual corpora. This straightforward ap-
proach has been used by many other CLQA sys-
tems. An alternative approach is to first translate 
the whole question sentence from English to the 
target language, and then analyze the translated 
question. Our reasons for favoring keyword 
translation are two-fold. First, to translate the 
question to the target language and analyze it, we 
would have to replace the English NLP compo-
nents in the Question Analyzer with their coun-
terparts for the target language. In contrast, key-
word translation decouples the question analysis 
from the translation, and requires no language 
specific resources during question analysis. The 
second reason is that machine translation is not 
perfect, and therefore the resulting translation(s) 
for the question may be incomplete or ungram-
matical, thus adding to the complexity of the 
analysis task. One could argue that when trans-
lating the full sentence instead of just the key-
words, we can better utilize state-of-art machine 
translation techniques because more context in-
formation is available. But for our application, an 
accurate translation of functional words (such as 
prepositions or conjunctions) is less important. 

We focus more on words that carry more content 
information, such as verbs and nouns. We will 
present more detail on the use of contextual in-
formation for disambiguation in the next section. 
In some recent work (Kwok, 2005, Mori and 
Kawagishi, 2005), researchers have combined 
these two approaches, but to date no studies have 
compared their effectiveness. 

3.2 Translation Module 

The Translation Module (TM) is used by the QA 
module to translate keywords into the language 
of the target corpus. Instead of combining multi-
ple translation candidates with a disjunctive 
query operator (Isozaki et al., 2005), the TM se-
lects the best combination of translated keywords 
from several sources: Machine Readable Dic-
tionaries (MRDs), Machine Translation systems 
(MTs) and Web-mining-Based Keyword Trans-
lators (WBMTs) (Nagata et al., 2001, Li et al., 
2003). For translation from English to Japanese, 
we used two MRDs, eight MTs and one WBMT. 
If none of them return a translation, the word is 
transliterated into kana for Japanese (for details 
on transliteration, see Section 5.2). For transla-
tion from English to Chinese, we used one MRD, 
three MTs and one WBMT. After gathering all 
possible translations for every keyword, the TM 
uses a noisy channel model to select the best 
combination of translated keywords. The TM 
estimates model statistics using the World Wide 
Web. Details of the translation selection method 
are described in the rest of this subsection. 
 
The Noisy Channel Model: In the noisy channel 
model, an undistorted signal passes through a 
noisy channel and becomes distorted.  Given the 
distorted signal, we are to find the original, un-
distorted signal. IBM applied the noisy channel 
model idea to translation of sentences from 
aligned parallel corpora, where the source lan-
guage sentence is the distorted signal, and the 



target language sentence is the original signal 
(Brown et al., 1990). We adopt this model for 
disambiguating keyword translation, with the 
source language keyword terms as the distorted 
signal and the target language terms as the origi-
nal signal.  The TM's job is to find the target lan-
guage terms given the source language terms, by 
finding the probability of the target language 
terms given the source language terms  P(T|S).  
 
Using Bayes' Rule, we can break the equation 
down to several components: 
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Because we are comparing probabilities of dif-
ferent translations of the same source keyword 
terms, we can simplify the problem to be: 
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We can now reduce the equation to two compo-
nents. P(T) is the language model and P(S|T) is 
the translation model. If we assume independ-
ence among the translations of individual terms, 
we can represent the translation probability of a 
keyword by the product of the probabilities of 
the individual term translations: 
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Estimating Probabilities using the World 
Wide Web: For estimating the probabilities of 
the translation model and the language model, 
we chose to gather statistics from the World 
Wide Web. There are three advantages in utiliz-
ing the web for gathering translation statistics: 1) 
it contains documents written in many different 
languages, 2) it has high coverage of virtually all 
types of words and phrases, and 3) it is con-
stantly updated. However, we also note that the 
web contains a lot of noisy data, and building up 
web statistics is time-consuming unless one has 
direct access to a web search index. 
 
Estimating Translation Model Probabilities: 
We make an assumption that terms that are trans-
lations of each other co-occur more often in 
mixed-language web pages than terms that are 
not translations of each other. This assumption is 
analogous to Turney’s work on the co-
occurrence of synonyms (Turney, 2001). We 
then define the translation probability of each 
keyword translation as: 

∑
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Where si is the i-th term in the source language 
and ti,j is the j-th translation candidate for si. Let 
hits be a number of web pages retrieved from a 
certain search engine. co(si, t i,j) is the hits given 
a query si and ti,j., where log is applied to adjust 
the count so that translation probabilities can still 
be comparable at higher counts. 
 
Estimating Language Model Probabilities: In 
estimating the language model, we simply obtain 
hits given a conjunction of all the candidate 
terms in the target language, and divide that 
count by the sum of the occurrences of the indi-
vidual terms: 
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The final score of a translation candidate for a 
query is the product of the translation model 
score P(S|T) and the language model score P(T). 
 
Smoothing and Pruning: As with most statisti-
cal calculations in language technologies, there is 
a data sparseness problem when calculating the 
language model score. Also, because statistics 
are gathered real-time by accessing a remote 
search engine via internet, it can take a long time 
to process a single query when there is a large 
number of translation candidates. We describe 
methods for smoothing the language model and 
pruning the set of translation candidates below. 

The data sparseness problem occurs when 
there are many terms in the query, and the terms 
are relatively rare keywords. When calculating 
the language model score, it is possible that none 
of the translation candidates appear on any web 
page. To address this issue, we propose a "mov-
ing-window smoothing" algorithm: 

 
• When the target keyword co-occurrence 

count with n keywords is below a set 
threshold for all of the translation candi-
dates, we use a moving window of size 
n-1 that "moves" through the keywords 
in sequence, splitting the set of keywords 
into two sets, each with n-1 keywords. 

 
• If the co-occurrence count of all of these 

sets of keywords is above the threshold, 
return the product of the language model 



score of these two sets as the language 
model score. 

 
• If not, decrease the window and repeat 

until either all of the split sets are above 
the threshold or n = 1. 

 
The moving window smoothing technique 

gradually relaxes the search constraint without 
losing the "connectivity" of keywords (there is 
always overlap in the split parts) before finally 
backing off to just the individual keywords. 
However, there are two issues worth noting with 
this approach: 

 
1. "Moving-window smoothing" assumes 

that keywords that are next to each other 
are also more semantically related, 
which may not always be the case. 

 
2. "Moving-window smoothing" tends to 

give the keywords near the middle of the 
question more weight, which may not be 
desirable. 

 
A better smoothing technique may be used 

with trying all possible "splits" at each stage, but 
this would greatly increase the time cost. There-
fore, we chose the moving-window smoothing as 
a trade-off between a more robust smoothing 
technique that tries all possible split combina-
tions and no smoothing at all. 

The set of possible translation candidates is 
produced by creating all possible combinations 
of the translations of individual keywords. For a 
question with n keywords and an average of m 
possible translations per keyword, the number of 
possible combinations is mn. This quickly be-
comes intractable as we have to access a search 
engine at least mn times just for the language 
model score. Therefore, pruning is needed to cut 
down the number of translation candidates. We 
prune possible translation candidates twice dur-
ing each run, using early and late pruning: 

 
1. Early Pruning: We prune possible trans-

lations of the individual keywords before 
combining them to make all possible 
translations of a query. We use a very 
simple pruning heuristic based on target 
word frequency using a word frequency 
list. Very rare translations produced by a 
resource are not considered. 

 

2. Late Pruning: We prune possible transla-
tion candidates of the entire set of key-
words after calculating translation prob-
abilities. Since the calculation of the 
translation probabilities requires little 
access to the web, we can calculate only 
the language model score for the top N 
candidates with the highest translation 
score and prune the rest. 

 
An Example of English to Chinese Keyword 
Translation Selection: Suppose we translate the 
following question from English to Chinese.    
 

"What if Bush leaves Iraq?" 
 

Three keywords are extracted: “Bush”, 
“leaves”, and “Iraq.” Using two MT systems and 
an MRD, we obtain the following translations: 
 

 i=1 i=2 i=3 
Source Bush leaves Iraq 

Target j=1 灌木 离去 伊拉克 
Target j=2 布什 叶子  

Table 1. E-C Keyword Translation 
 

"Bush" and "leaves" both have two transla-
tions because they are ambiguous keywords, 
while "Iraq" is unambiguous. Translation (1,1) 
means bush as in a shrub, and translation (1,2) 
refers to the person named Bush. Translation 
(2,1) is the verb "to go away", and translation 
(2,2) is the noun for leaf. Note that we would like 
translation (1,2) and translation (2,1) because 
they match the sense of the word intended by the 
user. Now we can create all possible combina-
tions of the keywords in the target language: 

 
"灌木 离去 伊拉克" 
"灌木 叶子 伊拉克" 
"布什 离去 伊拉克" 
"布什 叶子 伊拉克" 

 
Query "Bush" 

"灌木" 
"Bush" 
"布什" 

"leaves" 
"离去" 

"leaves" 
"叶子" 

"Iraq" 
"伊拉克" 

hits 3790 41100 5780 7240 24500 
Table 2. Translation Pair Page Counts 

 
 

Candidate Translation Score 
"灌木 离去 伊拉克" 0.215615 
"灌木 叶子 伊拉克" 0.221219 
"布什 离去 伊拉克" 0.277970 
"布什 叶子 伊拉克" 0.285195 

Table 3. Translation Scores 
 



By calculating hits, we obtain the statistics and 
the translation scores shown in Table 2 and 3. 
Now we can proceed to use the search engine to 
obtain language model statistics, which we use to 
obtain the language model. Then, together with 
the translation model score, we calculate the 
overall score1. 
 
Query 灌木 布什 离去 叶子 伊拉克 

hits 428K 459K 1490K 1100K 9590K 

Table 4. Individual Term Page Counts 
 

Query hits 
"灌木 离去 伊拉克" 1200 
"灌木 叶子 伊拉克" 455 
"布什 离去 伊拉克" 17300 
"布什 叶子 伊拉克" 2410 

Table 5. Target Language Query Page Counts 
 
Cand Translation Language Overall 
灌木 
离去 
伊拉克 

2.1562E-1 1.0428E-4 2.2483E-5 

灌木 
叶子 
伊拉克 

2.2122E-1 4.0925E-5 9.0533E-6 

布什 
离去 
伊拉克 

2.7797E-1 1.4993E-3 4.1675E-4 

布什 
叶子 
伊拉克 

2.8520E-1 2.1616E-4 6.1649E-5 

 
Table 6. Translation Score, Language Model 

Score, and Overall Score 
 
As shown in Table 6, we select the most prob-

able combination of translated keywords with the 
highest overall score (the third candidate), which 
is the correct translation of the English keywords. 

3.3 Retrieval Strategies 

The Retrieval Strategist (RS) module retrieves 
documents from a corpus in response to a query.  
For document retrieval, the RS uses the Lemur 
3.0 toolkit (Ogilvie and Callan, 2001). Lemur 
supports structured queries using operators such 
as Boolean AND, Synonym, Ordered/Un-
Ordered Window and NOT. An example of a 
structured query is shown below: 
 

                                                 
1  For simplicity, we don’t apply smoothing 

and pruning. 
 

#BAND( #OD4(邪馬台国 王朝) 

女王 

#SYN(*organization *person) ) 

 
In formulating a structured query, the RS uses an 
incremental relaxation technique, starting from 
an initial query that is highly constrained; the 
algorithm searches for all the keywords and data 
types in close proximity to each other. The prior-
ity is based on a function of the likely answer 
type, keyword type (word, proper name, or 
phrase) and the inverse document frequency of 
each keyword. The query is gradually relaxed 
until the desired number of relevant documents is 
retrieved.  

3.4 Information Extraction 

In the JAVELIN system, the Information Ex-
tractor (IX) is not a single module that uses one 
extraction algorithm; rather, it is an abstract in-
terface which allows different information ex-
tractor implementations to be plugged into 
JAVELIN. These different extractors can be used 
to produce different results for comparison, or 
the results of running them all in parallel can be 
merged. Here we will describe just one of the 
extractors, the one which is currently the best 
algorithm in our CLQA experiment: the Light IX. 

The Light IX module uses simple, distance-
based algorithms to find a named entity that 
matches the expected answer type and is “clos-
est” to all the keywords according to some dis-
tance measure.  The algorithm considers as an-
swer candidates only those terms that are tagged 
as named entities which match the desired an-
swer type.  The score for an answer candidate a 
is calculated as follows: 
 

)()()( aDistScoreaOccScoreaScore ⋅+⋅= βα   
 

where α + β = 1, OccScore is the occurrence 
score and DistScore is the distance score. Both 
OccScore and DistScore return a number be-
tween zero and one, and likewise Score returns a 
number between zero and one. Usually, α is 
much smaller than β. The occurrence score for-
mula is: 

n
kExist

aOccScore
n

i i∑ == 1
)(

)(  

where a is the answer candidate and ki is the i-th 
keyword, and n is the number of keywords. Exist  
returns 1 if the i-th keyword exists in the docu-
ment, and 0 otherwise. The distance score for 



each answer candidate is calculated according to 
the following formula: 

n
kaDistaDistScore

n

i
i

∑ =

=
1 ),(

1

)(  

This formula produces a score between zero 
and one. If the i-th keyword does not exist in a 
document, the equation inside the summation 
will return zero. If the i-th keyword appears more 
than once in the document, the one closest to the 
answer candidate is considered. An additional 
restriction is that the answer candidate cannot be 
one of the keywords. The Dist function is the 
distance measure, which has two definitions: 
 

1. ),(),( batTokensAparbaDist =  
2. )),(log(),( batTokensAparbaDist =   

 
The first definition simply counts the number 

of tokens between two terms.  The second defini-
tion is a logarithmic measure. The function re-
turns the number of tokens from a to b; if a and b 
are adjacent, the count is 1; if a and b are sepa-
rated by one token, the count is 2, and so on. A 
token can either be a character or a word; for the 
E-C, we used character-based tokenization, 
whereas for the E-J, we use word-based tokeni-
zation. By heuristics obtained from training re-
sults, we used the linear Dist measure for E-C 
and logarithmic Dist measure for E-J in the 
evaluation. 

This algorithm is a simple statistical approach 
which requires no language-specific external 
tools beyond word segmentation and a named-
entity tagger. It is not as sophisticated as other 
approaches which perform deep linguistic analy-
sis, but one advantage is faster adaptation to mul-
tiple languages. In our experiments, this simple 
algorithm performs at the same level as a FST-
based approach (Nyberg, et al. 2005). 

3.5 Answer Generator 

The task of the Answer Generator (AG) module 
is to produce a ranked list of answer candidates 
from the IX output. The AG is designed to nor-
malize answer candidates by resolving represen-
tational differences (e.g. in how numbers, dates, 
etc. are expressed in text). This canonicalization 
makes it possible to combine answer candidates 
that differ only in surface form. 

Even though the AG module plays an impor-
tant role in JAVELIN, we did not use its full po-
tential in our E-C and E-J systems, since we 

lacked some language-specific resources re-
quired for multilingual answer merging. 

4 Evaluation and Effect of Translation 
Accuracy 

To evaluate the effect of translation accuracy on 
the overall performance of the CLQA system, we 
conducted several experiments using different 
translation methods. Three different runs were 
carried out for both the E-C and E-J systems, 
using the same 200-question test set and the 
document corpora provided by the NTCIR 
CLQA task. The first run was a fully automatic 
run using the original translation module in the 
CLQA system; the result is exactly same as the 
one we submitted to NTCIR5 CLQA. For the 
second run, we manually translated the keywords 
that were selected by the Question Analyzer 
module. This translation was done by looking at 
only the selected keywords, but not the original 
question. For both E-C and E-J tasks, the NTCIR 
organizers provided the translations for the Eng-
lish questions, which we assume are the gold-
standard translations. Taking advantage of this 
resource, in the third run we simply looked up 
the corresponding term for each English keyword 
from the gold-standard translation of the ques-
tion. The results for these runs are shown in Ta-
ble 7 and 8 below. 

 
  

Translation 

Accuracy 

Top1 

  

Top1+U 

  

Run 1 69.3% 15 (7.5%) 23 (11.5%) 

Run 2 85.5% 16 (8.0%) 31 (15.5%) 

Run 3 100% 18 (9.0%) 38 (19.0%) 

Table 7.  Effect of Translation (E-C) 
 
 

  
Translation 

Accuracy 

Top1 

  

Top1+U 

  

Run 1 54.2% 20 (10.0%) 25 (12.5%) 

Run 2 81.2% 19 (9.5%) 30 (15.0%) 

Run 3 100% 18 (9.0%) 31 (15.5%) 

Table 8.  Effect of Translation (E-J) 
 

We found that in the NTCIR task, the sup-
ported/correct document set was not complete. 
Some answers judged as unsupported were in-
deed well supported, but the supporting docu-
ment did not appear in NTCIR's correct docu-
ment set. Therefore, we think the Top1+U col-
umn is more informative for this evaluation. 
From Table 7 and 8, it is obvious that the overall 
performance increases as translation accuracy 



increases. From Run1 to Run2, we eliminated all 
the overt translation errors produced by the sys-
tem, and also corrected word-sense errors. Then 
from Run2 to Run3, we made different lexical 
choices among the seemingly all correct transla-
tions of a word. This type of inappropriateness 
cannot be classified as an error, but it makes a 
difference in QA systems, especially at the docu-
ment retrieval stage. For example, the phrase 
"Kyoto Protocol" can have two valid transla-
tions: 京都協議 or 京都議定書. Both translations 
would be understandable to a human, but the sec-
ond translation will appear much more frequently 
than the first one in the document set. This type 
of lexical choice is hard to make, because we 
would need either subtle domain-specific knowl-
edge, or knowledge about the target corpus; nei-
ther is easily obtainable.  

    Comparing Run 1 and 3 in Table 8, we see 
that improving keyword translation had less 
overall impact on the E-J system. Information 
extraction (including named entity identification) 
did not perform as well in E-J.  We also com-
pared the translation effect on cross-lingual 
document retrieval (Figure 3).  As we can see, 
Run 3 retrieved supporting documents more fre-
quently in rank 1 than in Run 1 or 2. From these 
preliminary investigations, it would seem that 
information extraction and/or answer generation 
must be improved for English-Japanese CLQA. 
 

Figure3: Comparison of three runs: Cross-lingual 
document retrieval performance in E-J 

5 Translation Issues 

In this section, we discuss language specific key-
word translation issues for Chinese and Japanese 
CLQA. 

5.1 Chinese 

One prominent problem in Chinese keyword 
translation is word sense disambiguation. In 

question answering systems, the translation re-
sults are used directly in information retrieval, 
which exhibits a high dependency on the lexical 
form of a word but not so much on the meaning. 
In other words, having a different lexical form 
from the corresponding term in corpora is the 
same as having a wrong translation. For exam-
ple, to translate the word “bury” into Chinese, 
our system gives a translation of 埋 , which 
means “bury” as the action of digging a hole, 
hiding some items in the hole and then covering 
it with earth. But the desired translation, as it 
appears in the document is 葬 , which means 
“bury” too, but specifically for burial in funerals. 

Even more challenging are regional language 
differences. In our system, for example, the cor-
pora are newswire articles written in Traditional 
Chinese from Taiwan, and if we use an MT sys-
tem that produces translations in Simplified Chi-
nese followed by conversion to Traditional Chi-
nese, we may run into problems. The MT system 
generates Simplified Chinese translations first, 
which may suggest that the translation resources 
it uses were written in Simplified Chinese and 
originate from mainland China. In mainland 
China and in Taiwan, people commonly use dif-
ferent words for describing the same thing, espe-
cially for proper nouns like foreign names. Table 
9 lists some examples. Therefore if the MT sys-
tem generates its output using text from 
mainland China, it may produce a different word 
than the one used in Taiwan, which may not ap-
pear in the corpora. This could lead to failure in 
document retrieval.  
 
English  Mainland China Taiwan 

Band 樂隊 樂團 

Computer Game 電腦遊戲 電玩 

World Guinness 

Record 

吉尼斯世界紀錄 金氏世界紀錄 

 

The Catcher in 

the Rye 

稻田裏的守望者 麥田捕手 

 

Nelson 奈爾森 納爾遜 

Salinger 塞林格 沙林傑 

Creutzfeldt 

Jakob Disease 

人類狂牛症 賈庫氏症 

 

Luc Besson 呂克 貝松 盧貝松 

Pavarotti 帕瓦洛蒂 帕華洛帝 

Table 9. Different Translation in Chinese 

5.2 Japanese 

Representational Gaps: One of the advantages 
of using structured queries and automatic query 
formulation in the RS is that the system is able to 
handle slight representational gaps between a 



translated query and corresponding target words 
in the corpus.  

For example, Werner Spies appears as ヴェル

ナー ・ シュピース in our Japanese preproc-
essed corpus and therefore ヴェルナー シュピー
ス, which is missing a dot between last and first 
name, is a wrong translation if our retrieval 
module only allows exact match. Lemur supports 
an Ordered Distance Operator where the terms 
within a #ODN operator must be found within N 
words of each other in the text in order to con-
tribute to the document's belief value. This en-
ables us to bridge the representational gaps; such 
as when #OD1(ヴェルナー シュピース) does not 
match any words in the corpus, #OD2(ヴェルナー 

シュピース) is formulated in the next step in or-
der to capture ヴェルナー ・ シュピース. 

 
Transliteration in WBMT: After detecting 
Japanese nouns written in romaji (e.g. Funaba-
shi), we transliterated them into hiragana for a 
better result in WBMT. This is because we are 
assuming higher positive co-occurrence between 
kana and kanji (i.e. ふなばし and 船橋) than be-
tween romaji and kanji (i.e. funabashi and 船橋). 
When there are multiple transliteration candi-
dates, we iterate through each candidate. 

 
Document Retrieval in Kana: Suppose we are 
going to transliterate Yusuke. This romaji can be 
mapped to kana characters with relatively less 
ambiguity (i.e. ゆすけ , ゆうすけ), when com-
pared to their subsequent transliteration to kanji 
(i.e. 雄介, 祐介, 佑介, 勇介, 雄輔 etc.).  Therefore, 
indexing kana readings in the corpus and query-
ing in kana is sometimes a useful technique for 
CLQA, given the difficulty in converting romaji 
to kana and romaji to kanji.  

To implement this approach, the Japanese cor-
pus was first preprocessed by annotating named 
entities and by chunking morphemes. Then, we 
annotated a kana reading for each named entity. 
At query time, if there is no translation found 
from other resources, the TM transliterates ro-
maji to kana as a back-off strategy. 

6 Conclusion 

We described how we extended an existing 
monolingual (English) system for CLQA (Eng-
lish to Chinese and English to Japanese), includ-
ing a translation disambiguation technique 
which uses a noisy channel model with probabil-
ity estimations using web as corpora. We dis-

cussed the influence of translation accuracy on 
CLQA by presenting experimental results and 
analysis. We concluded by introducing some 
language-specific issues for keyword translation 
from English to Chinese and Japanese which we 
hope to address in ongoing research. 
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