
JAVELIN III: Cross-Lingual Question Answering
from Japanese and Chinese Documents

Teruko Mitamura, Frank Lin, Hideki Shima, Mengqiu Wang, Jeongwoo Ko,
Justin Betteridge, Matthew Bilotti, Andrew Schlaikjer and Eric Nyberg

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Abstract
In this paper, we describe the JAVELIN Cross Language
Question Answering system, which includes modules for
question analysis, keyword translation, document
retrieval, information extraction and answer generation.
In the NTCIR6 CLQA2 evaluation, our system achieved
19% and 13% accuracy in the English-to-Chinese and
English-to-Japanese subtasks, respectively. An overall
analysis and a detailed module-by-module analysis are
presented.

Keywords: Multilingual Question Answering, Chinese,
Japanese, Information Retrieval .

1. Introduction

JAVELIN is a question-answering system with a
modular, extensible architecture [1]. The JAVELIN
architecture is also language-independent, and we have
extended the original English version of JAVELIN for
cross-language question answering between English and
Chinese or Japanese. JAVELIN participated in four
CLQA subtasks (J-J, E-J, C-C, E-C), for which we
submitted a total of 11 official and 6 unofficial runs. Our
best run for E-J achieved about 13% in answer accuracy
and our best E-C run achieved 19% in answer accuracy.

We present the JAVELIN architecture and processing
modules in Sections 2 through 7. Section 8 summarizes
our corpus preprocessing strategies, and Section 9
presents our results from the formal evaluation. We list
translation and language-specific research issues in
Section 10 and conclude in Section 11 by describing
future work.

2. JAVELIN-3 Architecture

The JAVELIN system is composed of five main
modules: Question Analyzer (QA), Translation Module
(TM), Retrieval Strategist (RS), Information eXtractor
(IX) and Answer Generator (AG). Inputs to the system
are processed by these modules in the order listed above.

Figure 1: The JAVELIN Architecture

The QA module is responsible for parsing the input

question, choosing the appropriate answer type, and
producing a set of keywords. The TM module translates
the keywords into task-specific languages. The RS
module is responsible for finding relevant documents
containing answers to the question using translated
keywords. The IX module extracts answers from the
relevant documents. The AG module normalizes the
answers and ranks them in order of correctness. The
overall architecture is shown in Figure 1.

3. Question Analyzer

The Question Analyzer (QA) is responsible for
creating representation of the information need posed by
the input question. Following is a description of the
different subtasks performed by the QA.

Keyterm identification: First, the question is
syntactically parsed, and named entities are tagged.
Following this preprocessing, candidate keyterms are
proposed by consulting a variety of sources. Syntactic
category (POS) labels from the syntactic parse tree are
used to select all nouns, verbs, adjectives and cardinal
numbers as candidate keyterms. Terms recognized as
named entities during preprocessing are also selected as
separate keyterm candidates. Next, common noun
phrases (as defined by a collection of multiple online
dictionaries) as well as quoted terms become keyterm
candidates. Finally, a non-overlapping set of keyterms
is produced by unifying the list of possibly overlapping
and duplicated candidate keyterms, using manually-
assigned priorities for each source of evidence.

Question Classification: The QA categorizes the
input question according to the expected type of the
answer. Our current approach to question classification

completely replaces the approach we used at NTCIR-5,
and makes use of both machine learning and manually-
encoded rules. Both the trained classifier and the rule-
based classifier rely on the same basic features to
produce a hierarchical classification:

• lexical unigrams and bigrams
• question word (wh-word) and whether it modifies

another word as a determiner
• main verb
• focus adjective (e.g. ‘long’ in ‘How long is the

bridge?’)
• semantic type of the focus noun (e.g. the focus

noun in ‘Which town was attacked?’ is ‘town’,
which has a semantic type of CITY), determined
using WordNet

For a given input question, the rule-based classifier
produces a classification or a “don’t know” value. In the
cases where the rule-based classifier doesn’t produce a
classification, we use the value returned by a maximum
entropy classifier [27] trained on question / answer type
pairs from NTCIR-5 CLQA-1 as well as TREC 8-12.

For English-Chinese CLQA, we use a two-level
answer type hierarchy containing a total of 54
categories, of which the top-level categories are DATE,
DURATION, ENTITY, LOCATION, MEASURE,
MONEY, NUMEX, ORGANIZATION, PERCENT,
PERSON, TITLE. For English-Japanese CLQA, we use
a slightly different two-level answer type hierarchy
containing a total of 55, of which the top-level
categories are ARTIFACT, DATE, LOCATION, MONEY,
NUMEX, ORGANIZATION, PERCENT, PERSON,
TIME.

Semantic Analysis: For English-Japanese CLQA,
the Question Analyzer also analyzes the input question
in terms of its semantic predicate-argument structure.
We use ASSERT [2] to identify verbal predicates and
their arguments and produce PropBank-style [3]
argument labels. A significant problem arises, however,
from the fact that no predicates for the verb ‘be’ are
labeled in the PropBank corpus, which was used to train
ASSERT. The subsequent inability of ASSERT to
produce any results for sentences with ‘be’ as a main
verb caused us to employ an additional tool for the
semantic analysis of questions, many of which in the
factoid domain contain ‘be’ as the only verbal predicate.
The output of the Analyzer module of the KANTOO [4]
machine translation system is thus consulted if ASSERT
fails to recognize any semantic predicates in the
question.

The set of semantic predicates recognized in the input
question is also expanded before query formulation
using an event ontology that defines is-a, implies,
inverse and reflexive relations between verbs. For
example, if the question is about entity A selling
weapons to entity B (sell(A,weapons,B)), the system will
also search for B buying weapons from A
(buy(B,weapons,A)). The verbs buy and sell are encoded
as inverse predicates. By definition, inverse predicates
have essentially the same meaning as each other, but
switch the actor (ARG0) and destination/source
(ARG2) semantic roles.

4. Translation Module

To find answers to an English question in Chinese or
Japanese document collections, the system first extracts
keyterms from the English question and then passes the
extracted keyterms along with their associated properties
(such as its named entity type or part-of-speech) on to
the Translation Module (TM). For every input English
keyterm, TM returns a set of Chinese or Japanese
translation candidates in ranked order of their translation
score.

To acquire the set of translation candidates, TM uses
different types of translation resources including
Machine Readable Dictionaries (MRDs), Machine
Translation systems (MTs), web-mining-based
translators (WBMTs), and hand-built rule-based
translators for dates and numbers. Every resource and
every type of resource has its strengths and weaknesses.
For example, MRDs are usually better for translating
common nouns and verbs but have poor coverage of
named entities, while WBMTs are good for translating
popular named entities but do a poor job of translating
common nouns and verbs. TM uses different resources
for translating the keyterm based on whether it is a
common noun, verb, proper name, numerical expression,
or other types of word or phrase.

To rank the keyterm translation candidates, TM
assigns translation candidates a score using co-
occurrence statistics of the source keyterm (in this case
English) and the target candidate translation (in this case
Chinese or Japanese) found in HTML pages on the Web.
The co-occurrence information is obtained by using a
search engine, and the correlation statistic is calculated
using chi-square (see Fig. 2). At the end TM returns the
set of translation candidates in ranked order of their chi-
square score.

=),(2 YXχ

∑ ∑
∈ ∈

=
−

}1,0{ }1,0{

2

)Pr()Pr(
))Pr()Pr(),(Pr(

X Y YX
YXYXn

))()()((
)(2

dbdccaba
bcadn

++++
−

Figure 2: Equation for chi-square statistic: a is
the number of web pages containing both the
source keyterm and the target translation
candidate, b, only source, c, only target, d,
neither.

The translated keyterm candidates, along with their
ranking, are used to formulate a query for retrieving
relevant blocks from the document collections. The
ranking assigned to each translation candidate is used to
boost its confidence score when formulating the query.

5. Retrieval Strategist

The Retrieval Strategist is responsible for retrieving
relevant text from the corpus and passing it to the

Information Extractor. The corpus is indexed with Indri
[5], a part of the open-source Lemur 1 toolkit. For
Chinese, the locations of Named Entity types identified
by the Chinese-language version of BBN Identifinder
[6] are stored in the index. For Japanese, Named Entity
types identified by Cabocha2 are stored in the index,
along with annotations corresponding to Japanese case
markers and semantic role labels in the style of
Propbank [7]. The unit of retrieval is an overlapping,
three-sentence window that we call a block. For
Chinese, block boundaries are calculated using sentence
segmentation provided by S-MSRSeg [23] 3 ; for
Japanese, wrote regular expressions. For each language,
block and sentence boundaries are stored in the index.

The Retrieval Strategist formulates Indri queries from
the analysis provided by the Question Analyzer. Each
query contains an outer clause scoring and ranking
blocks based on the degree to which they match the
keyterms identified by the Question Analyzer. A query
contains one inner clause for each keyterm, weighted by
its respective importance, which matches the original
form of the keyterm, or an alternate form that receives a
discounted match score according to the term weights
provided by the Question Analyzer. The queries follow
this template (the term weights pictured are notional):

#weight[block](
 weight1 #wsyn(1.0 term1 0.85 alt1a 0.60 alt1b …)
 weight2 #wsyn(1.0 term2 0.75 alt2a …)
 …)

6. Answer Candidate Extraction

We are interested in extracting answer candidates
given a set of potentially relevant documents. Our
extraction approach for NTCIR-6 addressed some
problems we noted with the surface pattern-based and
proximity-based approaches that we implemented as
FST IX and LIGHT IX, respectively, in NTCIR-5
CLQA-1 [8].

In the pattern-based approach, we have to spend a
lot of human effort if we create patterns by hand. Even if
we generate patterns automatically, the coverage of each
pattern is usually limited due to the data sparseness of
the training data, and thus the resulting system achieves
high precision but low recall. And what is worse, the
approach is not general and must be tailored for each
new language.

The proximity-based approach utilizes surface
distance between keyterms and the answer candidate,
assuming that answer candidates occur close to
keyterms. The simplicity of this algorithm makes it easy
to implement; however, it often fails to capture linguistic
relations among terms and is easily fooled by common
linguistic phenomena (such as negation).

More advanced techniques (for example, the use of
syntactic dependencies [9] [10] [11], or shallow

1 See: http://www.lemurproject.org
2 See: http://chasen.org/~taku/software/cabocha/
3 See: http://research.microsoft.com/~jfgao/

semantics [12]) have been applied to complement the
disadvantages of these simple approaches, but none of
the single solutions that have been proposed work
perfectly. Therefore, we decided to use machine learning
techniques to take advantages of multiple features,
which support a combination of algorithms which is
tuned by training on real data, and can potentially
outperform an ad-hoc combination of extraction
algorithms.

We will present the language-specific
implementations of the extractors in the following
subsections.

6.1. Japanese

We first obtain Named Entities from the target
documents using the CaboCha tool4 . Then a pattern-
based Named Entity Recognizer is used to extract more
fine-grained categories of Named Entities from the
corpus.

Ittycheriah et al. [13] used Maximum Entropy
Models to automatically learn weights of features and
predict the probability that answer candidates are
correct. Other systems have followed the same approach
and show a consistent improvement over ad-hoc scoring
functions [14] [10].

Taking into account the previous successes of the
Maximum Entropy models, we also model the
distribution of correctness c being TRUE given a
question q, document d and an answer candidate a as:

{ }
∑

∈

⋅

⋅=
==

FALSETRUEc

adqcf
adqTRUEcfadqTRUEcp

,

)),,,(exp(
)),,,(exp(),,|(

θ
θ

where f is a vector of features andθ is a vector of feature
weights. Table 2 shows a list of the features we used.

6.2. Chinese

 In our C-C system, we processed input questions
using the same procedure used for Chinese corpus
preparation (see Section 8), with an additional step that
identifies the “question word” (e.g. what, when, where)
based on hand-crafted patterns. In our E-C system, we
created multiple full-sentence translations of the English
question, and processed them as if they were Chinese
questions. Then we select the best translation according
to a word alignment score, which we will explain next.

 To model the syntactic and semantic coherence
between the question and the answer sentence, we want
to first align the words in both sentences. Our matching
scheme takes into account synonym matching, partial
word matching and word-type matching. We then
adopted a weighted maximum network flow algorithm
(O (n3)) [15] to find a bipartite matching with the highest
alignment score. In the case of the E-C system, where
we have multiple translations of the English question,

4 See: http://chasen.org/~taku/software/cabocha/

we pick the translated sentence that aligns the best when
we evaluate an answer sentence.

After word alignment, we extracted all pairs of words
that are aligned. We use {ai, qi} to denote the set of pairs
of aligned words, and we denote the answer candidate as
d, and the “question word” as w (e.g. what, when, etc.).
The next step is to find the relations between the
keywords in the answer sentence ({ai}) and the answer
candidate (d), and compare these relations with the
relations between the keywords in the question ({qi})
and the “question word” (w). To do this, we extract the
syntactic dependency path from ai to d via their lowest
common ancestor (LCA) in the answer sentence
dependency tree, and pair it with the dependency path
between qi and w in the question tree to form a feature to
our learning algorithm. The LCA finding algorithm we
implemented is from [16], which has a remarkable
constant (O(1)) complexity. Other features included
word alignment score, named-entity and answer type
matching features, term occurrence features, etc. The
complete list of features is given in Table 3.

We experimented with two different learning
algorithms for scoring and ranking answer candidates,
using the same set of features. The first learner is the
Maxent learner described in Japanese IX section. The
second learner we experimented with is an in-house
Ranking SVM algorithm that we have developed.
Ranking SVM has also been applied to document
retrieval and re-ranking of definitions. Due to length
limitation, we will not give the algorithmic details about
the Ranking SVM algorithm; please refer to [17] and
[18] for full details.

Results in Table 1 show the evaluation results of IX
outputs on E-C and C-C tasks using Maxent and
Ranking SVM. There does not seem to be a salient
difference between the two models. Ranking SVM
seems to perform better on the E-C set, while Maxent
gives better performance on the C-C set, but the relative
difference is within 10%.

Table 1. Results of Chinese IX module output
Model C-C E-C

Maxent 0.280 (0.286) 0.160 (0.180)

Ranking SVM 0.260 (0.273) 0.173 (0.200)

Table 2. Features used for Japanese IX Module
Pattern Name Description

RANK-OF-RS
Rank of the document in
retrieval time

PROXIMITY-OF-KEYTERM Proximity of keyterm and AC

COVERAGE-OF-KEYTERM How many keyterms found in

POSITION-IN-SENTENCE
Distance of AC from the
beginning of the sentence

TENSE-MATCHED
1 if the tense of the question
and answer bearing sentence
matched

PREDICATE-ARGUMENT
Structural similarity score of
predicate argument structures

UNIT-MATCHED
1 if the unit from the question
was attached to AC

ATYPE-NE
1 if each pair occurred (e.g.
PERSON-PERSON)

PATTERN
1 if each pattern appeared (250
patterns used)

Table 3. Features used for Chinese IX Module
Pattern Name Description

ALWAYS-ON
An always-on feature acting as
a label prior

SENT-TERM-FREQ
The number of times question
keyterms appeared in the AC
sentence

BLOCK-TERM-FREQ
The number of times question
keyterms appeared in the AC
3-sentence block

SENT-TERM-COVERAGE
The percentage of question
keyterms that appeared in the
AC sentence.

BLOCK-TERM-COVERAGE
The percentage of question
keyterms that appeared in the
AC 3-sentence block.

ALIGNMENT-SCORE
Question and AC sentence
term alignment score

PREV-NEXT-WORD-MATCH

1 if AC contains the previous
or next word to the question
word (e.g. what, when) in the
question.

UNIT-MATCHED
1 if the unit from the question
was attached to AC

ATYPE-NE
1 if a pair occurred (e.g.
PERSON-PERSON)

ANSWER-SUBTYPE-MATCH
1 if AC matches particular
pattern defined by the subtype
(e.g. CITY-市)

DEP-PATH-MATCHING
1 if a pair of dependency paths
occurred (e.g. NMOD-SUB<-
>NMOD-OBJ), see Section 6.2

7. Answer Generator

The Answer Generator (AG) is responsible for
selecting the correct answer from the answer candidates
produced by the Information Extractor. In NTCIR-5, the
AG used a simple answer clustering approach which
merged similar or redundant answers and then calculated
a new score for each answer cluster based on individual
answer scores in the cluster. However, the answer
selection task should consider the degree to which an
answer candidate is relevant to the question and the
amount of supporting evidence for the answer candidate.
Formally, the first task is to estimate the probability
P(correct(Ai)|Ai,Q), where Q is a question and Ai is an
answer candidate for the question. The second task is to
estimate the probability P(correct(Ai)|Ai, Aj), where Aj is
similar to Ai. As both probabilities affect the decision
about how much we boost the rank of an answer
candidate, we should combine them in a unified
framework and estimate the probability of an answer
candidate as: P(correct(Ai)|Q, A1,..., An).

For the comprehensive answer selection task, we
developed an answer ranking framework which
estimates P(correct(Ai)|Q, A1,..., An) given multiple
answer relevance features and answer similarity features.
The evaluation results on English TREC questions show
that the framework significantly improved answer
selection performance in English QA [19]. In preparing
for NTCIR6, we extended the framework to Chinese and
Japanese QA by incorporating language-specific
features. We used two sets of features: answer relevance
features and answer similarity features. Answer
relevance features utilized language-specific resources
such as Chinese HowNet [20], Japanese Gengo

GoiTaikei dictionary5, the Web and Wikipedia. These
resources were used to generate an answer relevance
score for each answer candidate. Answer similarity
features calculated similarity between two answer
candidates using string similarity metrics (e.g.,
Levenshtein, Jaro-Winkler, and Cosine similarity) and
synonyms. Synonyms were acquired from Wikipedia,
the Japanese EIJIRO dictionary and manual conversion
rules which convert Chinese and Japanese temporal and
numeric expressions into Arabic numbers. More details
on the features are found in [21].

The answer ranking framework used logistic
regression to estimate the probability of individual
answer candidates using those features. Then, the
answer candidates were re-ranked according to their
estimated probability and the top one was chosen as the
final answer to the question.

8. Corpus Preprocessing

To support information extraction processes in both
Japanese and Chinese, the evaluation corpora were
preprocessed with various NLP tools to produce
annotations used during system training and runtime.

For Japanese language corpora the following
preprocessing was performed: Morphology, dependency
parses, and named entity tags were generated using
CaboCha. Basic semantic predicate-argument structures
were extracted from dependency parses in a three-stage
process: First, those constituents containing either a verb
or sahen-verb from the IPAL lexicon were selected as
predicate targets; Then, constituents connected in the
dependency parse to a target constituent were labeled as
arguments of the target constituent. Finally, additional
attributes were assigned to predicate arguments based on
manually encoded rules, and predicate targets having no
arguments were discarded. Additional patterns were
applied to the text to improve named entity tagging of
particular entity types such as numeric and date
quantities.

For Chinese language corpora, additional work was
required to handle Traditional Chinese text as all of our
NLP tools for Chinese are trained on Simplified Chinese
text. As a pre-processing step, we converted all
documents in the corpus from Traditional Chinese to
Simplified Chinese using an online converter 6 . The
conversion is done based on simple character-mapping,
and therefore cannot account for lexical gaps between
Traditional and Simplified Chinese texts. For example,
the original expression of the name of movie director
Luc Besson in Traditional Chinese is 盧貝松 , after
converting to Simplified Chinese it becomes 卢贝松, but
the correct form in Simplified Chinese is 吕克贝松. This
problem of lexical semantic gap between the two forms
of Chinese language is very hard to overcome as
discussed in Mitamura et. al [22], and it is clearly the
case that our downstream NLP tools (especially the
Chinese word segmenter) suffer from cascaded error

5 http://www.kecl.ntt.co.jp/mtg/resources/GoiTaikei
6 http://www.mandarintools.com/zhcode.html

caused by this problem. Once the documents are
converted into Simplified Chinese, word segmentation
and named-entity tagging is done using S-MSRSeg [23].
We also performed NE tagging using BBN’s
Identifinder [6], and merged with NE tags produced by
S-MSRSeg. Then we assigned POS tags to each word
using a Chinese POS tagger described in [29]. Finally,
using the POS and segmented words as input, we
produced syntactic dependency analysis of the corpus
sentences using MaltParser [24].

9. Results

In this section we will first discuss our NTCIR-6
evaluation results, and then present a module-by-module
analysis of the performance of the latest version of the
system.

9.1 NTCIR-6 Evaluation

For NTCIR-6, our team participated in 4 CLQA
subtasks. Table 4 shows the number of official and
unofficial runs we submitted for formal evaluation, and
Table 5 shows the score of the top scoring official runs
as judged by NTCIR:

Table 4. Number of runs submitted by LTI to
each subtask.

 Official Unofficial
J-J 2 0
E-J 3 2
C-C 3 2
E-C 3 2

Table 5. Score of top official runs judged by
NTCIR. R+U is the score when unsupported
answers are included in calculation. The scores
represent top 1 answer accuracy.

 R R+U
Best J-J Run 0.335 0.360
Best E-J Run 0.095 0.115
Best E-J Run (2) 0.070 0.115
Best C-C Run 0.253 0.253
Best C-C Run (2) 0.240 0.260
Best E-C Run 0.147 0.200

For the J-J subtask, we achieved the highest score

among all participants: 0.335(R)/0.360(R+U), with the
next best system at 0.310(R)/0.335(R+U) [28]. On the
other hand, the E-J system performed relatively poorly:
0.095(R)/0.115(R+U), which is only 28.3% of the
accuracy of its monolingual counterpart. However, it is
important to note that these two numbers cannot be
directly compared against each other, since some of the
degradation of performance is due to keyterm translation
errors; due to time constraints, we could not train the IX
for E-J with a complete training data. In the next section,
we present E-J results using the same extractor we used
for submitting the J-J run.

For the C-C subtask, we were at the median of the
highest scoring official runs of 7 participants, both in R
and R+U categories. For the E-C subtask, we were one
above the median among the highest scoring official
runs of 7 participants, both in R and R+U; the system
achieved 58.1%(R) and 76.9%(R+U) of the accuracy of
its best monolingual counterpart.

9.2 Post NTCIR-6 Evaluation and Analysis

After submitting our system output for the formal
runs, we evaluated our system on our own with gold-
standard data provided by NTCIR. Our goal was to
obtain a more detailed module-by-module analysis of
our NTCIR-6 system. In addition, we were able to
evaluate runs that we could not submit for formal
evaluation either due to time constraints or the limited
number of runs we could submit. Tables below show
detailed analysis.
QA Prec: Average # of questions where the answer type
(including sub-type) matched the gold standard answer
type.
RS Prec: Percentage of retrieved blocks containing the
answer string, averaged over all the questions.
RS TopN: Average # of questions where the highest-
ranked retrieved block containing the answer has a rank
less than or equal to N.
RS Block MRR: Mean Reciprocal Rank of highest-
ranked retrieved block containing the answer.
IX/AG R or R+U: R means extracted answer was
correct and it came from supported document whereas
R+U only look at surface string to judge.
IX/AG TopN: Average # of questions where the
highest-ranked answer candidate that matches one of the
gold standard answers has a rank less than or equal to N.
IX/AG MRR: MRR of the highest-ranked answer
candidate that matches one of the gold standard answers
(considering only the top 5 answer candidates).

Table 6. Detailed per-module analysis of J-J run

QA Prec 0.810
RS Prec 0.203
 Top1 0.385
 Top5 0.530
 Top10 0.650
 Top20 0.720
 MRR 0.456
 R R+U
IX Top1 0.300 0.320
 Top5 0.435 0.480
 Top10 0.485 0.550
 Top20 0.540 0.640
 MRR 0.344 0.374
AG Top1 0.330 0.370
 Top5 0.445 0.500
 Top10 0.495 0.580
 Top20 0.525 0.630
 MRR 0.368 0.412

Table 7. Detailed per-module analysis of E-J run

QA Prec 0.890

RS Prec 0.119
 Top1 0.220
 Top5 0.365
 Top10 0.455
 Top20 0.490
 MRR 0.286
 R R+U
IX Top1 0.130 0.210
 Top5 0.180 0.290
 Top10 0.235 0.355
 Top20 0.255 0.425
 MRR 0.148 0.238
AG Top1 0.135 0.220
 Top5 0.200 0.350
 Top10 0.250 0.420
 Top20 0.260 0.465
 MRR 0.159 0.267

Table 8. Detailed per-module analysis of C-C
run using MaxEnt classifier

QA Prec 0.680
RS Prec 0.160
 Top1 0.253
 Top5 0.340
 Top10 0.407
 Top20 0.440
 MRR 0.296
 R R+U
IX Top1 0.280 0.287
 Top5 0.440 0.493
 Top10 0.487 0.560
 Top20 0.533 0.620
 MRR 0.340 0.364
AG Top1 0.327 0.393
 Top5 0.453 0.547
 Top10 0.507 0.613
 Top20 0.527 0.633
 MRR 0.380 0.458

Table 9. Detailed per-module analysis of E-C
run using MaxEnt classifier

QA Prec 0.860
RS Prec 0.104
 Top1 0.113
 Top5 0.267
 Top10 0.307
 Top20 0.353
 MRR 0.176
 R R+U
IX Top1 0.147 0.173
 Top5 0.233 0.307
 Top10 0.287 0.407
 Top20 0.320 0.520
 MRR 0.175 0.218
AG Top1 0.147 0.193
 Top5 0.247 0.340
 Top10 0.280 0.440
 Top20 0.307 0.507
 MRR 0.179 0.240

As noted in previous section, the detailed per-module
analysis of the E-J run shown above is not the same as
the one submitted to NTCIR for formal evaluation.

In the Question Analyzer module, the English and
Japanese question analysis achieved about the same
performance; however, the performance of the Chinese
question analysis is much lower. We attribute this to the
fact that our training data (from NTCIR-5) had a
significantly different distribution of question types.

In the Retrieval Strategist module, the performance
drop is indicative of the performance of the Translation
Module, since we maintain a similar document retrieval
strategy across languages. For Japanese subtasks, we see
E-J maintaining 68.1% and 62.7% of monolingual
retrieval performance in Top20 and MRR categories,
respectively. For Chinese subtasks, we see E-C
maintaining 80.2% and 59.5% of monolingual retrieval
performance in Top20 and MRR categories,
respectively. The translation performance is about the
same for E-J and E-C, and both leave room for much
improvement.

The per-module analysis also shows that the Answer
Generator (AG) was not effective in ranking the correct
and supported answers to the top position. One reason
was that the extractors sometimes produced answer
candidates whose document frequency is high (e.g., "第
一", "美国", "日本") and the AG gave them a high Web
validation score. The Web validation routine sends a
query consisting of an answer candidate and question
keyterms to Google, and then calculates the word
distance between keyterms and an answer candidate
from the retrieved text snippets. Since answer candidates
consisting of common terms had more retrieved snippets
and therefore received a higher score, the AG often
boosted such (incorrect) candidates to the top position.
After the formal evaluation, we changed the Web
validation by incorporating a tf-idf measure, which gives
less weight for common terms. This boosted the score
(“R”) from 0.280 to 0.327 for the C-C run. Another
reason is that AG was trained without considering
whether a correct answer was extracted from supported
documents or not. This is why the AG tended to improve
the performance of (R+U), but not (R). How to identify
correct answers extracted from supporting documents is
one future research topic for answer generation.

10. Translation and Language-specific
Issues

From the results section we see the difference
between the performance of E-J and E-C systems
compared to that of their monolingual counterparts,
which leaves much room for improvement. An analysis
of the translation errors points to three main problems:
1) vocabulary mismatch, 2) lack of translation for
certain named entities, and 3) incorrect extraction of
keyterms.

The vocabulary mismatch is a difficult problem, and
one that not necessarily apply only to cross-lingual
applications. Query-based document retrieval encounters
the same problem when trying to match query terms

from user input to terms found in the document
collection. Also, based on our observation, vocabulary
mismatch occurs mostly with common nouns and verbs,
which are not as important for information retrieval or
answer extraction as named entities. The lack of
translation for certain named entities can only be
remedied by incorporating more of certain translation
resources; our incorporation of resources such as
Wikipedia and web-mining translators seems to have
improved our named entity translation over NTCIR-5
CLQA-1, but we may need more of these resources. Our
unit of translation is a keyterm, which can be a word, a
phrase, a book title, or even a short quote; the correct
extraction of keyterms is extremely important for
translation. As an example, from the question “When did
the 1999 Hualien International Stone Sculptural Festival
start?”, we extracted “Hualien International Stone” as a
keyterm, which resulted in erroneous translation. Also,
there is the question of whether to translate “Hualien
International Stone Sculptural Festival” as a phrase or
“Hualien”, “International”, “Stone”, “Sculptural”, and
“Festival” separately; maybe it is better to do both.
Recent works on Cross-Lingual Information Retrieval
show that finding a good unit of translation significantly
improves CLIR performance [26].

Our post-NTCIR error analysis for the C-C and E-C
runs showed that for a significant portion of the
questions that our system failed to answer, the error
came directly from the underlying Chinese NLP systems
but not from our QA algorithms. Most severely, we
observed many errors in the segmentation module (S-
MSRSeg) and named-entity identification module (S-
MSRSeg and Identifinder). The root of these problems is
in the language difference between the NTCIR corpus
(in Traditional Chinese) and the corpus which these
NLP tools are trained on (in Simplified Chinese). Since
we did not have access to Traditional Chinese tools or
training resources, we converted the Traditional Chinese
corpus into Simplified Chinese using a non-
comprehensive character-mapping table and simple
heuristics. The noise resulting from this conversion
process, as well as the inherent differences between
Simplified and Traditional Chinese [22], caused a
cascade of errors in our Chinese pipeline, degrading the
input quality to our retrieval, extraction and answer
ranking modules.

On the other hand, we observed in E-J and J-J
specific issues due to the properties of Japanese.
Japanese text contains many instances of ellipsis when
the topic or focus of a sentence is obvious to a human
reader, making it difficult for a program to capture long
term dependencies between keyterms and the answer.
This form of ellipsis (known as zero-anaphora), seems to
have had a negative impact on our block-level retrieval
and answer extraction. According to a prior analysis of
CLQA-1 formal data, about 20% of questions on
average might be affected by this.

11. Future Work

Thanks to the many state-of-the-art techniques we
implemented, our system performed better than the older
version evaluated at NTCIR-5. However, we realize that
the overall system becomes more and more complex as
we implement new techniques.

In order to better understand errors in the system
output, we have been analyzing system performance
using different measures, including accuracy by answer
type and module-by-module evaluation [25] [30].
Various Boolean properties can be assigned to each
input question, and system performance can be analyzed
according to the property values of each question. Each
property represents one (usually challenging) aspect in
answering the question. A sample of the properties we
can make use of is listed below:
• A long-distance dependency (across multiple

sentences) exists between the keyterm and the
answer

• Question contains a Named Entity which is hard to
translate

• Phrase level paraphrasing would help
• Co-reference resolution would help
• Question and answer-bearing sentence have the

same predicate argument structure
• Answer-bearing sentence contains the answer in an

extra-grammatical context
By comparing how well the system performs on
questions with or without a certain property, we will be
able to identify what problems can be solved in what
degree, after introducing a specific algorithm, feature,
resource or assumption.

Acknowledgment

This work was supported in part by the Disruptive
Technologies Office (DTO)’s Advanced Question
Answering for Intelligence (AQUAINT) Program. We
thank Eric Riebling for his assistance in corpus
preprocessing.

References

[1] E. Nyberg, R. Frederking, T. Mitamura, M. Bilotti, K.

Hannan, L. Hiyakumoto, J. Ko, F. Lin, L. Lita, V. Pedro,
and A. Schlaikjer. JAVELIN I and II systems at TREC
2005, In Proc. of TREC’05, 2005.

 [2] S. Pradhan, W. Ward, K. Hacioglu, J. Martin and D.
Jurafsky. Shallow semantic parsing using support vector
machines. In Proc. of the HLT/NAACL’04, 2004.

[3] P. Kingsbury and M. Palmer. From Treebank to Propbank.
In Proc. of LREC’02, 2002.

[4] E. Nyberg and T. Mitamura. The KANTOO Machine
Translation Environment. In Proc. of AMTA 2000, 2000.

[5] T. Strohman, D. Metzler, H. Turtle and W. B. Croft. Indri:
A language model-based search engine for complex
queries. In Proceedings of ICIA’05, 2005.

[6] D. Bikel, R. Schwartz and R. Weischedel. An algorithm
that learns what’s in a name. Machine Learning, Special
Issue on Natural Language Learning, Volume 34, Issue 1-
3, p211-231, 1999.

[7] P. Kingsbury, M. Palmer and M. Marcus. Adding semantic
annotation to the penn treebank. In Proc. of HLT’02. 2002.

[8] F. Lin, H. Shima, M. Wang, and T. Mitamura. CMU
JAVELIN system for NTCIR CLQA1. In Proc. of NTCIR-
5, 2005.

[9] T. Takahashi, K. Nawata, K. Inui and Y. Matsumoto.
NAIST QA System for QAC2. In Proc. of NTCIR-4, 2004.

[10] D. Shen, G. M. Kruijff, and D. Klakow. Exploring
syntactic relation patterns for question answering. In Proc.
Of IJCNL’05, 2005.

[11] G. Kurata, N. Okazaki and M. Ishizuka. GDQA: Graph
driven question answering system - NTCIR-4 QAC2
experiments. In Proc. of NTCIR-4. 2004.

[12] D. Kawahara, N. Kaji, and S. Kurohashi. Question and
answering system based on predicate-argument matching,
In Proc. of NTCIR-3, 2002.

[13] A. Ittycheriah, M. Franz, and S. Roukos. IBM’s statistical
question answering system – TREC-10. In Proc. of TREC-
10, 2001.

[14] D. Shen, and D. Klakow. Exploring correlation of
dependency relation paths for answer extraction. In Proc.
of COLING-ACL’06, 2006.

[15] H. Gabow. Implementation of Algorithms for Maximum
Matching on Nonbipartite Graphs. PhD thesis, Stanford
University, 1974.

[16] B. Schieber and U. Vishkin. On finding lowest common
ancestors: simplification and parallelization. SIAM Journal
of Computing, Volumn 17, Issue 6, p1253-1262, 1998.

[17] T. Joachims. Optimizing search engines using
clickthrough data. In Proc. of SIGKDD’02, 2002.

[18] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang and H. Hon.
adapting ranking SVM to document retrieval. In Proc. of
SIGIR’06, 2006.

[19] J. Ko, L. Si, E. Nyberg, A probabilistic framework for
answer selection in question answering, To appear in
NAACL-HLT’07, 2007.

[20] Z. Dong. Hownet: http://www.keenage.com. 2000
[21] J. Ko, T. Mitamura, E. Nyberg, Language independent

probabilistic answer ranking in multilingual question
answering, To appear in ACL’07, 2007.

[22] T. Mitamura, M. Wang, H. Shima, and F. Lin. Keyword
translation accuracy and cross-lingual question answering
in Chinese and Japanese. In Proc. of MLQA workshop,
EACL 06’, 2006.

[23] J. Gao, M. Li, A. Wu and C. Huang. Chinese word
segmentation: a pragmatic approach. Microsoft Research
Technical Report, MSR-TR-2004-123, 2004.

 [24] J. Nivre and J. Hall. MaltParser: a language-independent
system for data-driven dependency parsing. In Proc. of the
Fourth Workshop on Treebanks and Linguistic Theories,
2005.

[25] H. Shima, M. Wang, F. Lin and T. Mitamura. Modular
approach to error analysis and evaluation for multilingual
question answering. In Proc. of LREC’06, 2006.

[26] J. Gao, and Nie, J. A study of statistical models for query
translation: finding a good unit of translation. In Proc. of
SIGIR’06, 2006.

[27] A. Berger, V. Della Pietra, and S. Della Pietra. A
maximum entropy approach to natural language
processing. Computational Linguistics, 22(1):39-71, 1996.

[28] Y. Sasaki, C. Lin, K. Chen and H. Chen. Overview of the
NTCIR-6 cross-Lingual question answering (CLQA) task.
In Proc. of NTCIR-6, 2007.

[29] Wang, M., K. Sagae and T. Mitamura. A fast, accurate
deterministic parser for Chinese. In Proc. of COLING-
ACL’06, 2006.

[30] Y. Sasaki, H. Isozaki, J. Suzuki, K. Kokuryou, T. Hirao, H.
Kazawa, and E. Maeda. SAIQA-II: A Trainable Japanese
QA System with SVM. IPSJ Journal, Vol. 45, NO. 2, pp.
635-646, 2004. (in Japanese)

