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Abstract 
In this paper, we describe the JAVELIN Cross Language 
Question Answering system, which includes modules for 
question analysis, keyword translation, document 
retrieval, information extraction and answer generation. 
In the NTCIR6 CLQA2 evaluation, our system achieved 
19% and 13% accuracy in the English-to-Chinese and 
English-to-Japanese subtasks, respectively. An overall 
analysis and a detailed module-by-module analysis are 
presented. 
 
Keywords: Multilingual Question Answering, Chinese, 
Japanese,  Information Retrieval . 
 
 
1. Introduction 
 

JAVELIN is a question-answering system with a 
modular, extensible architecture [1]. The JAVELIN 
architecture is also language-independent, and we have 
extended the original English version of JAVELIN for 
cross-language question answering between English and 
Chinese or Japanese. JAVELIN participated in four 
CLQA subtasks (J-J, E-J, C-C, E-C), for which we 
submitted a total of 11 official and 6 unofficial runs. Our 
best run for E-J achieved about 13% in answer accuracy 
and our best E-C run achieved 19% in answer accuracy. 

We present the JAVELIN architecture and processing 
modules in Sections 2 through 7. Section 8 summarizes 
our corpus preprocessing strategies, and Section 9 
presents our results from the formal evaluation. We list 
translation and language-specific research issues in 
Section 10 and conclude in Section 11 by describing 
future work. 
 
2.  JAVELIN-3 Architecture 
 

The JAVELIN system is composed of five main 
modules: Question Analyzer (QA), Translation Module 
(TM), Retrieval Strategist (RS), Information eXtractor 
(IX) and Answer Generator (AG). Inputs to the system 
are processed by these modules in the order listed above. 

 
Figure 1: The JAVELIN Architecture 

 
The QA module is responsible for parsing the input 

question, choosing the appropriate answer type, and 
producing a set of keywords. The TM module translates 
the keywords into task-specific languages. The RS 
module is responsible for finding relevant documents 
containing answers to the question using translated 
keywords. The IX module extracts answers from the 
relevant documents. The AG module normalizes the 
answers and ranks them in order of correctness. The 
overall architecture is shown in Figure 1.  
 
3. Question Analyzer 
 

The Question Analyzer (QA) is responsible for 
creating representation of the information need posed by 
the input question.  Following is a description of the 
different subtasks performed by the QA. 

Keyterm identification:  First, the question is 
syntactically parsed, and named entities are tagged.  
Following this preprocessing, candidate keyterms are 
proposed by consulting a variety of sources.  Syntactic 
category (POS) labels from the syntactic parse tree are 
used to select all nouns, verbs, adjectives and cardinal 
numbers as candidate keyterms.  Terms recognized as 
named entities during preprocessing are also selected as 
separate keyterm candidates.  Next, common noun 
phrases (as defined by a collection of multiple online 
dictionaries) as well as quoted terms become keyterm 
candidates.  Finally, a non-overlapping set of keyterms 
is produced by unifying the list of possibly overlapping 
and duplicated candidate keyterms, using manually-
assigned priorities for each source of evidence. 

Question Classification:  The QA categorizes the 
input question according to the expected type of the 
answer.  Our current approach to question classification 



completely replaces the approach we used at NTCIR-5, 
and makes use of both machine learning and manually-
encoded rules.  Both the trained classifier and the rule-
based classifier rely on the same basic features to 
produce a hierarchical classification: 

• lexical unigrams and bigrams 
• question word (wh-word) and whether it modifies 

another word as a determiner 
• main verb 
• focus adjective (e.g. ‘long’ in ‘How long is the 

bridge?’) 
• semantic type of the focus noun (e.g. the focus 

noun in ‘Which town was attacked?’ is ‘town’, 
which has a semantic type of CITY), determined 
using WordNet 

For a given input question, the rule-based classifier 
produces a classification or a “don’t know” value. In the 
cases where the rule-based classifier doesn’t produce a 
classification, we use the value returned by a maximum 
entropy classifier [27] trained on question / answer type 
pairs from NTCIR-5 CLQA-1 as well as TREC 8-12.   

For English-Chinese CLQA, we use a two-level 
answer type hierarchy containing a total of 54 
categories, of which the top-level categories are DATE, 
DURATION, ENTITY, LOCATION, MEASURE, 
MONEY, NUMEX, ORGANIZATION, PERCENT, 
PERSON, TITLE.  For English-Japanese CLQA, we use 
a slightly different two-level answer type hierarchy 
containing a total of 55, of which the top-level 
categories are ARTIFACT, DATE, LOCATION, MONEY, 
NUMEX, ORGANIZATION, PERCENT, PERSON, 
TIME. 

Semantic Analysis:  For English-Japanese CLQA, 
the Question Analyzer also analyzes the input question 
in terms of its semantic predicate-argument structure.  
We use ASSERT [2] to identify verbal predicates and 
their arguments and produce PropBank-style [3] 
argument labels.  A significant problem arises, however, 
from the fact that no predicates for the verb ‘be’ are 
labeled in the PropBank corpus, which was used to train 
ASSERT.  The subsequent inability of ASSERT to 
produce any results for sentences with ‘be’ as a main 
verb caused us to employ an additional tool for the 
semantic analysis of questions, many of which in the 
factoid domain contain ‘be’ as the only verbal predicate.  
The output of the Analyzer module of the KANTOO [4] 
machine translation system is thus consulted if ASSERT 
fails to recognize any semantic predicates in the 
question. 

The set of semantic predicates recognized in the input 
question is also expanded before query formulation 
using an event ontology that defines is-a, implies, 
inverse and reflexive relations between verbs.  For 
example, if the question is about entity A selling 
weapons to entity B (sell(A,weapons,B)), the system will 
also search for B buying weapons from A 
(buy(B,weapons,A)). The verbs buy and sell are encoded 
as inverse predicates. By definition, inverse predicates 
have essentially the same meaning as each other, but 
switch the actor (ARG0) and destination/source 
(ARG2) semantic roles. 

 

4. Translation Module 
 

To find answers to an English question in Chinese or 
Japanese document collections, the system first extracts 
keyterms from the English question and then passes the 
extracted keyterms along with their associated properties 
(such as its named entity type or part-of-speech) on to 
the Translation Module (TM). For every input English 
keyterm, TM returns a set of Chinese or Japanese 
translation candidates in ranked order of their translation 
score. 

To acquire the set of translation candidates, TM uses 
different types of translation resources including 
Machine Readable Dictionaries (MRDs), Machine 
Translation systems (MTs), web-mining-based 
translators (WBMTs), and hand-built rule-based 
translators for dates and numbers. Every resource and 
every type of resource has its strengths and weaknesses. 
For example, MRDs are usually better for translating 
common nouns and verbs but have poor coverage of 
named entities, while WBMTs are good for translating 
popular named entities but do a poor job of translating 
common nouns and verbs. TM uses different resources 
for translating the keyterm based on whether it is a 
common noun, verb, proper name, numerical expression, 
or other types of word or phrase. 

To rank the keyterm translation candidates, TM 
assigns translation candidates a score using co-
occurrence statistics of the source keyterm (in this case 
English) and the target candidate translation (in this case 
Chinese or Japanese) found in HTML pages on the Web. 
The co-occurrence information is obtained by using a 
search engine, and the correlation statistic is calculated 
using chi-square (see Fig. 2). At the end TM returns the 
set of translation candidates in ranked order of their chi-
square score. 
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Figure 2: Equation for chi-square statistic: a is 
the number of web pages containing both the 
source keyterm and the target translation 
candidate, b, only source, c, only target, d, 
neither. 
 

The translated keyterm candidates, along with their 
ranking, are used to formulate a query for retrieving 
relevant blocks from the document collections. The 
ranking assigned to each translation candidate is used to 
boost its confidence score when formulating the query. 
 
5. Retrieval Strategist 
 

The Retrieval Strategist is responsible for retrieving 
relevant text from the corpus and passing it to the 



Information Extractor.  The corpus is indexed with Indri 
[5], a part of the open-source Lemur 1  toolkit.  For 
Chinese, the locations of Named Entity types identified 
by the Chinese-language version of BBN Identifinder 
[6] are stored in the index.  For Japanese, Named Entity 
types identified by Cabocha2  are stored in the index, 
along with annotations corresponding to Japanese case 
markers and semantic role labels in the style of 
Propbank [7].  The unit of retrieval is an overlapping, 
three-sentence window that we call a block.  For 
Chinese, block boundaries are calculated using sentence 
segmentation provided by S-MSRSeg [23] 3 ; for 
Japanese, wrote regular expressions.  For each language, 
block and sentence boundaries are stored in the index. 

The Retrieval Strategist formulates Indri queries from 
the analysis provided by the Question Analyzer.  Each 
query contains an outer clause scoring and ranking 
blocks based on the degree to which they match the 
keyterms identified by the Question Analyzer.  A query 
contains one inner clause for each keyterm, weighted by 
its respective importance, which matches the original 
form of the keyterm, or an alternate form that receives a 
discounted match score according to the term weights 
provided by the Question Analyzer.  The queries follow 
this template (the term weights pictured are notional): 

 
#weight[block]( 
  weight1 #wsyn( 1.0 term1 0.85 alt1a 0.60 alt1b … ) 
  weight2 #wsyn( 1.0 term2 0.75 alt2a … ) 
  …) 

 
6. Answer Candidate Extraction 
 

We are interested in extracting answer candidates 
given a set of potentially relevant documents. Our 
extraction approach for NTCIR-6 addressed some 
problems we noted with the surface pattern-based and 
proximity-based approaches that we implemented as 
FST IX and LIGHT IX, respectively, in NTCIR-5 
CLQA-1 [8].  

In the pattern-based approach, we have to spend a 
lot of human effort if we create patterns by hand. Even if 
we generate patterns automatically, the coverage of each 
pattern is usually limited due to the data sparseness of 
the training data, and thus the resulting system achieves 
high precision but low recall. And what is worse, the 
approach is not general and must be tailored for each 
new language. 

The proximity-based approach utilizes surface 
distance between keyterms and the answer candidate, 
assuming that answer candidates occur close to 
keyterms. The simplicity of this algorithm makes it easy 
to implement; however, it often fails to capture linguistic 
relations among terms and is easily fooled by common 
linguistic phenomena (such as negation). 

More advanced techniques (for example, the use of 
syntactic dependencies [9] [10] [11], or shallow 

                                                 
1 See: http://www.lemurproject.org 
2 See: http://chasen.org/~taku/software/cabocha/ 
3 See: http://research.microsoft.com/~jfgao/ 

semantics [12]) have been applied to complement the 
disadvantages of these simple approaches, but none of 
the single solutions that have been proposed work 
perfectly. Therefore, we decided to use machine learning 
techniques to take advantages of multiple features, 
which support a combination of algorithms which is 
tuned by training on real data, and can potentially 
outperform an ad-hoc combination of extraction 
algorithms.  

We will present the language-specific 
implementations of the extractors in the following 
subsections. 
 
6.1. Japanese 
 

We first obtain Named Entities from the target 
documents using the CaboCha tool4 . Then a pattern-
based Named Entity Recognizer is used to extract more 
fine-grained categories of Named Entities from the 
corpus.  

Ittycheriah et al. [13] used Maximum Entropy 
Models to automatically learn weights of features and 
predict the probability that answer candidates are 
correct. Other systems have followed the same approach 
and show a consistent improvement over ad-hoc scoring 
functions [14] [10].  

Taking into account the previous successes of the 
Maximum Entropy models, we also model the 
distribution of correctness c being TRUE given a 
question q, document d and an answer candidate a as: 
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where f is a vector of features andθ is a vector of feature 
weights. Table 2 shows a list of the features we used.  
 
6.2. Chinese 
 

  In our C-C system, we processed input questions 
using the same procedure used for Chinese corpus 
preparation (see Section 8), with an additional step that 
identifies the “question word” (e.g. what, when, where) 
based on hand-crafted patterns. In our E-C system, we 
created multiple full-sentence translations of the English 
question, and processed them as if they were Chinese 
questions. Then we select the best translation according 
to a word alignment score, which we will explain next.  

   To model the syntactic and semantic coherence 
between the question and the answer sentence, we want 
to first align the words in both sentences. Our matching 
scheme takes into account synonym matching, partial 
word matching and word-type matching. We then 
adopted a weighted maximum network flow algorithm 
(O (n3)) [15] to find a bipartite matching with the highest 
alignment score. In the case of the E-C system, where 
we have multiple translations of the English question, 

                                                 
4 See: http://chasen.org/~taku/software/cabocha/ 



we pick the translated sentence that aligns the best when 
we evaluate an answer sentence.  

After word alignment, we extracted all pairs of words 
that are aligned. We use {ai, qi} to denote the set of pairs 
of aligned words, and we denote the answer candidate as 
d, and the “question word” as w (e.g. what, when, etc.). 
The next step is to find the relations between the 
keywords in the answer sentence ({ai}) and the answer 
candidate (d), and compare these relations with the 
relations between the keywords in the question ({qi}) 
and the “question word” (w). To do this, we extract the 
syntactic dependency path from ai to d via their lowest 
common ancestor (LCA) in the answer sentence 
dependency tree, and pair it with the dependency path 
between qi and w in the question tree to form a feature to 
our learning algorithm. The LCA finding algorithm we 
implemented is from [16], which has a remarkable 
constant ( O(1) ) complexity. Other features included 
word alignment score, named-entity and answer type 
matching features, term occurrence features, etc. The 
complete list of features is given in Table 3. 

We experimented with two different learning 
algorithms for scoring and ranking answer candidates, 
using the same set of features. The first learner is the 
Maxent learner described in Japanese IX section. The 
second learner we experimented with is an in-house 
Ranking SVM algorithm that we have developed. 
Ranking SVM has also been applied to document 
retrieval and re-ranking of definitions. Due to length 
limitation, we will not give the algorithmic details about 
the Ranking SVM algorithm; please refer to [17] and 
[18] for full details.  

Results in Table 1 show the evaluation results of IX 
outputs on E-C and C-C tasks using Maxent and 
Ranking SVM. There does not seem to be a salient 
difference between the two models. Ranking SVM 
seems to perform better on the E-C set, while Maxent 
gives better performance on the C-C set, but the relative 
difference is within 10%. 
 
 

Table 1. Results of Chinese IX module output 
Model C-C E-C 

Maxent 0.280 (0.286) 0.160 (0.180) 

Ranking SVM 0.260 (0.273) 0.173 (0.200) 

 
 
Table 2. Features used for Japanese IX Module 
Pattern Name Description 

RANK-OF-RS 
Rank of the document in  
retrieval time 

PROXIMITY-OF-KEYTERM Proximity of keyterm and AC 

COVERAGE-OF-KEYTERM How many keyterms found in  

POSITION-IN-SENTENCE 
Distance of AC from the 
beginning of the sentence 

TENSE-MATCHED 
1 if the tense of the question 
and answer bearing sentence 
matched 

PREDICATE-ARGUMENT 
Structural similarity score of 
predicate argument structures 

UNIT-MATCHED 
1 if the unit from the question 
was attached to AC 

ATYPE-NE 
1 if each pair occurred (e.g. 
PERSON-PERSON) 

PATTERN 
1 if each pattern appeared (250 
patterns used) 

 
Table 3. Features used for Chinese IX Module 
Pattern Name Description 

ALWAYS-ON 
An always-on feature acting as 
a label prior 

SENT-TERM-FREQ 
The number of times question 
keyterms appeared in the AC 
sentence 

BLOCK-TERM-FREQ 
The number of times question 
keyterms appeared in the AC 
3-sentence block 

SENT-TERM-COVERAGE 
The percentage of question 
keyterms that appeared in the 
AC sentence.  

BLOCK-TERM-COVERAGE 
The percentage of question 
keyterms that appeared in the 
AC 3-sentence block. 

ALIGNMENT-SCORE 
Question and AC sentence 
term alignment score 

PREV-NEXT-WORD-MATCH 

1 if AC contains the previous 
or next word to the question 
word (e.g. what, when) in the 
question. 

UNIT-MATCHED 
1 if the unit from the question 
was attached to AC 

ATYPE-NE 
1 if  a pair occurred (e.g. 
PERSON-PERSON) 

ANSWER-SUBTYPE-MATCH 
1 if  AC matches particular 
pattern defined by the subtype 
(e.g. CITY-市) 

DEP-PATH-MATCHING 
1 if a pair of dependency paths 
occurred (e.g. NMOD-SUB<-
>NMOD-OBJ), see Section 6.2 

 
 
7. Answer Generator 
 

The Answer Generator (AG) is responsible for 
selecting the correct answer from the answer candidates 
produced by the Information Extractor. In NTCIR-5, the 
AG used a simple answer clustering approach which 
merged similar or redundant answers and then calculated 
a new score for each answer cluster based on individual 
answer scores in the cluster. However, the answer 
selection task should consider the degree to which an 
answer candidate is relevant to the question and the 
amount of supporting evidence for the answer candidate. 
Formally, the first task is to estimate the probability 
P(correct(Ai)|Ai,Q), where Q is a question and Ai is an 
answer candidate for the question. The second task is to 
estimate the probability P(correct(Ai)|Ai, Aj), where Aj is 
similar to Ai. As both probabilities affect the decision 
about how much we boost the rank of an answer 
candidate, we should combine them in a unified 
framework and estimate the probability of an answer 
candidate as: P(correct(Ai)|Q, A1,..., An).  

For the comprehensive answer selection task, we 
developed an answer ranking framework which 
estimates P(correct(Ai)|Q, A1,..., An) given multiple 
answer relevance features and answer similarity features. 
The evaluation results on English TREC questions show 
that the framework significantly improved answer 
selection performance in English QA [19]. In preparing 
for NTCIR6, we extended the framework to Chinese and 
Japanese QA by incorporating language-specific 
features. We used two sets of features: answer relevance 
features and answer similarity features. Answer 
relevance features utilized language-specific resources 
such as Chinese HowNet [20], Japanese Gengo 



GoiTaikei dictionary5, the Web and Wikipedia. These 
resources were used to generate an answer relevance 
score for each answer candidate. Answer similarity 
features calculated similarity between two answer 
candidates using string similarity metrics (e.g., 
Levenshtein, Jaro-Winkler, and Cosine similarity) and 
synonyms. Synonyms were acquired from Wikipedia, 
the Japanese EIJIRO dictionary and manual conversion 
rules which convert Chinese and Japanese temporal and 
numeric expressions into Arabic numbers. More details 
on the features are found in [21].  

The answer ranking framework used logistic 
regression to estimate the probability of individual 
answer candidates using those features. Then, the 
answer candidates were re-ranked according to their 
estimated probability and the top one was chosen as the 
final answer to the question.  
 
8. Corpus Preprocessing 
 

To support information extraction processes in both 
Japanese and Chinese, the evaluation corpora were 
preprocessed with various NLP tools to produce 
annotations used during system training and runtime. 

For Japanese language corpora the following 
preprocessing was performed: Morphology, dependency 
parses, and named entity tags were generated using 
CaboCha. Basic semantic predicate-argument structures 
were extracted from dependency parses in a three-stage 
process: First, those constituents containing either a verb 
or sahen-verb from the IPAL lexicon were selected as 
predicate targets; Then, constituents connected in the 
dependency parse to a target constituent were labeled as 
arguments of the target constituent. Finally, additional 
attributes were assigned to predicate arguments based on 
manually encoded rules, and predicate targets having no 
arguments were discarded. Additional patterns were 
applied to the text to improve named entity tagging of 
particular entity types such as numeric and date 
quantities. 

For Chinese language corpora, additional work was 
required to handle Traditional Chinese text as all of our 
NLP tools for Chinese are trained on Simplified Chinese 
text. As a pre-processing step, we converted all 
documents in the corpus from Traditional Chinese to 
Simplified Chinese using an online converter 6 . The 
conversion is done based on simple character-mapping, 
and therefore cannot account for lexical gaps between 
Traditional and Simplified Chinese texts. For example, 
the original expression of the name of movie director 
Luc Besson in Traditional Chinese is 盧貝松 , after 
converting to Simplified Chinese it becomes 卢贝松, but 
the correct form in Simplified Chinese is 吕克贝松. This 
problem of lexical semantic gap between the two forms 
of Chinese language is very hard to overcome as 
discussed in Mitamura et. al [22], and it is clearly the 
case that our downstream NLP tools (especially the 
Chinese word segmenter) suffer from cascaded error 
                                                 
5 http://www.kecl.ntt.co.jp/mtg/resources/GoiTaikei 
6 http://www.mandarintools.com/zhcode.html 

caused by this problem. Once the documents are 
converted into Simplified Chinese, word segmentation 
and named-entity tagging is done using S-MSRSeg [23]. 
We also performed NE tagging using BBN’s 
Identifinder [6], and merged with NE tags produced by 
S-MSRSeg. Then we assigned POS tags to each word 
using a Chinese POS tagger described in [29]. Finally, 
using the POS and segmented words as input, we 
produced syntactic dependency analysis of the corpus 
sentences using MaltParser [24].  
 
9. Results 
 
In this section we will first discuss our NTCIR-6 
evaluation results, and then present a module-by-module 
analysis of the performance of the latest version of the 
system. 
 
9.1 NTCIR-6 Evaluation 
 

For NTCIR-6, our team participated in 4 CLQA 
subtasks. Table 4 shows the number of official and 
unofficial runs we submitted for formal evaluation, and 
Table 5 shows the score of the top scoring official runs 
as judged by NTCIR: 
 
Table 4. Number of runs submitted by LTI to 
each subtask. 

 Official Unofficial 
J-J 2 0 
E-J 3 2 
C-C 3 2 
E-C 3 2 

 
Table 5. Score of top official runs judged by 
NTCIR. R+U is the score when unsupported 
answers are included in calculation. The scores 
represent top 1 answer accuracy. 

 R R+U 
Best J-J Run 0.335 0.360 
Best E-J Run 0.095 0.115 
Best E-J Run (2) 0.070 0.115 
Best C-C Run 0.253 0.253 
Best C-C Run (2) 0.240 0.260 
Best E-C Run 0.147 0.200 

 
For the J-J subtask, we achieved the highest score 

among all participants: 0.335(R)/0.360(R+U), with the 
next best system at 0.310(R)/0.335(R+U) [28]. On the 
other hand, the E-J system performed relatively poorly: 
0.095(R)/0.115(R+U), which is only 28.3% of the 
accuracy of its monolingual counterpart. However, it is 
important to note that these two numbers cannot be 
directly compared against each other, since some of the 
degradation of performance is due to keyterm translation 
errors; due to time constraints, we could not train the IX 
for E-J with a complete training data. In the next section, 
we present E-J results using the same extractor we used 
for submitting the J-J run. 



For the C-C subtask, we were at the median of the 
highest scoring official runs of 7 participants, both in R 
and R+U categories. For the E-C subtask, we were one 
above the median among the highest scoring official 
runs of 7 participants, both in R and R+U; the system 
achieved 58.1%(R) and 76.9%(R+U) of the accuracy of 
its best monolingual counterpart. 
 
9.2 Post NTCIR-6 Evaluation and Analysis 
 

After submitting our system output for the formal 
runs, we evaluated our system on our own with gold-
standard data provided by NTCIR. Our goal was to 
obtain a more detailed module-by-module analysis of 
our NTCIR-6 system. In addition, we were able to 
evaluate runs that we could not submit for formal 
evaluation either due to time constraints or the limited 
number of runs we could submit. Tables below show 
detailed analysis.  
QA Prec: Average # of questions where the answer type 
(including sub-type) matched the gold standard answer 
type.  
RS Prec: Percentage of retrieved blocks containing the 
answer string, averaged over all the questions. 
RS TopN: Average # of questions where the highest-
ranked retrieved block containing the answer has a rank 
less than or equal to N. 
RS Block MRR: Mean Reciprocal Rank of highest-
ranked retrieved block containing the answer. 
IX/AG R or R+U: R means extracted answer was 
correct and it came from supported document whereas 
R+U only look at surface string to judge. 
IX/AG TopN: Average # of questions where the 
highest-ranked answer candidate that matches one of the 
gold standard answers has a rank less than or equal to N. 
IX/AG MRR: MRR of the highest-ranked answer 
candidate that matches one of the gold standard answers 
(considering only the top 5 answer candidates). 
 
Table 6. Detailed per-module analysis of J-J run 

QA Prec 0.810  
RS Prec 0.203  
 Top1 0.385  
 Top5 0.530  
 Top10 0.650  
 Top20 0.720  
 MRR 0.456  
  R R+U 
IX Top1 0.300 0.320
 Top5 0.435 0.480
 Top10 0.485 0.550
 Top20 0.540 0.640
 MRR 0.344 0.374
AG Top1 0.330 0.370
 Top5 0.445 0.500
 Top10 0.495 0.580
 Top20 0.525 0.630
 MRR 0.368 0.412

 
Table 7. Detailed per-module analysis of E-J run  

QA Prec 0.890  

RS Prec  0.119  
 Top1  0.220  
 Top5  0.365  
 Top10  0.455  
 Top20  0.490  
 MRR  0.286  
  R R+U 
IX Top1  0.130  0.210
 Top5  0.180  0.290
 Top10  0.235  0.355
 Top20  0.255  0.425
 MRR  0.148  0.238
AG Top1  0.135  0.220
 Top5  0.200  0.350
 Top10  0.250  0.420
 Top20  0.260  0.465
 MRR  0.159  0.267

 
Table 8. Detailed per-module analysis of C-C 
run using MaxEnt classifier 

QA Prec 0.680  
RS Prec 0.160  
 Top1 0.253  
 Top5 0.340  
 Top10 0.407  
 Top20 0.440  
 MRR 0.296  
  R R+U 
IX Top1 0.280 0.287
 Top5 0.440 0.493
 Top10 0.487 0.560
 Top20 0.533 0.620
 MRR 0.340 0.364
AG Top1 0.327 0.393
 Top5 0.453 0.547
 Top10 0.507 0.613
 Top20 0.527 0.633
 MRR 0.380 0.458

 
Table 9. Detailed per-module analysis of E-C 
run using MaxEnt classifier 

QA Prec 0.860  
RS Prec 0.104  
 Top1 0.113  
 Top5 0.267  
 Top10 0.307  
 Top20 0.353  
 MRR 0.176  
  R R+U 
IX Top1 0.147 0.173
 Top5 0.233 0.307
 Top10 0.287 0.407
 Top20 0.320 0.520
 MRR 0.175 0.218
AG Top1 0.147 0.193
 Top5 0.247 0.340
 Top10 0.280 0.440
 Top20 0.307 0.507
 MRR 0.179 0.240



As noted in previous section, the detailed per-module 
analysis of the E-J run shown above is not the same as 
the one submitted to NTCIR for formal evaluation. 

In the Question Analyzer module, the English and 
Japanese question analysis achieved about the same 
performance; however, the performance of the Chinese 
question analysis is much lower. We attribute this to the 
fact that our training data (from NTCIR-5) had a 
significantly different distribution of question types. 

In the Retrieval Strategist module, the performance 
drop is indicative of the performance of the Translation 
Module, since we maintain a similar document retrieval 
strategy across languages. For Japanese subtasks, we see 
E-J maintaining 68.1% and 62.7% of monolingual 
retrieval performance in Top20 and MRR categories, 
respectively. For Chinese subtasks, we see E-C 
maintaining 80.2% and 59.5% of monolingual retrieval 
performance in Top20 and MRR categories, 
respectively. The translation performance is about the 
same for E-J and E-C, and both leave room for much 
improvement. 

The per-module analysis also shows that the Answer 
Generator (AG) was not effective in ranking the correct 
and supported answers to the top position. One reason 
was that the extractors sometimes produced answer 
candidates whose document frequency is high (e.g., "第
一", "美国", "日本") and the AG gave them a high Web 
validation score. The Web validation routine sends a 
query consisting of an answer candidate and question 
keyterms to Google, and then calculates the word 
distance between keyterms and an answer candidate 
from the retrieved text snippets. Since answer candidates 
consisting of common terms had more retrieved snippets 
and therefore received a higher score, the AG often 
boosted such (incorrect) candidates to the top position. 
After the formal evaluation, we changed the Web 
validation by incorporating a tf-idf measure, which gives 
less weight for common terms. This boosted the score 
(“R”) from 0.280 to 0.327 for the C-C run. Another 
reason is that AG was trained without considering 
whether a correct answer was extracted from supported 
documents or not. This is why the AG tended to improve 
the performance of (R+U), but not (R). How to identify 
correct answers extracted from supporting documents is 
one future research topic for answer generation.  
 
10. Translation and Language-specific 
Issues  
 

From the results section we see the difference 
between the performance of E-J and E-C systems 
compared to that of their monolingual counterparts, 
which leaves much room for improvement. An analysis 
of the translation errors points to three main problems: 
1) vocabulary mismatch, 2) lack of translation for 
certain named entities, and 3) incorrect extraction of 
keyterms. 

The vocabulary mismatch is a difficult problem, and 
one that not necessarily apply only to cross-lingual 
applications. Query-based document retrieval encounters 
the same problem when trying to match query terms 

from user input to terms found in the document 
collection. Also, based on our observation, vocabulary 
mismatch occurs mostly with common nouns and verbs, 
which are not as important for information retrieval or 
answer extraction as named entities. The lack of 
translation for certain named entities can only be 
remedied by incorporating more of certain translation 
resources; our incorporation of resources such as 
Wikipedia and web-mining translators seems to have 
improved our named entity translation over NTCIR-5 
CLQA-1, but we may need more of these resources. Our 
unit of translation is a keyterm, which can be a word, a 
phrase, a book title, or even a short quote; the correct 
extraction of keyterms is extremely important for 
translation. As an example, from the question “When did 
the 1999 Hualien International Stone Sculptural Festival 
start?”, we extracted “Hualien International Stone” as a 
keyterm, which resulted in erroneous translation. Also, 
there is the question of whether to translate “Hualien 
International Stone Sculptural Festival” as a phrase or 
“Hualien”, “International”, “Stone”, “Sculptural”, and 
“Festival” separately; maybe it is better to do both. 
Recent works on Cross-Lingual Information Retrieval 
show that finding a good unit of translation significantly 
improves CLIR performance [26]. 

Our post-NTCIR error analysis for the C-C and E-C 
runs showed that for a significant portion of the 
questions that our system failed to answer, the error 
came directly from the underlying Chinese NLP systems 
but not from our QA algorithms. Most severely, we 
observed many errors in the segmentation module (S-
MSRSeg) and named-entity identification module (S-
MSRSeg and Identifinder). The root of these problems is 
in the language difference between the NTCIR corpus 
(in Traditional Chinese) and the corpus which these 
NLP tools are trained on (in Simplified Chinese). Since 
we did not have access to Traditional Chinese tools or 
training resources, we converted the Traditional Chinese 
corpus into Simplified Chinese using a non-
comprehensive character-mapping table and simple 
heuristics. The noise resulting from this conversion 
process, as well as the inherent differences between 
Simplified and Traditional Chinese [22], caused a 
cascade of errors in our Chinese pipeline, degrading the 
input quality to our retrieval, extraction and answer 
ranking modules. 

On the other hand, we observed in E-J and J-J 
specific issues due to the properties of Japanese. 
Japanese text contains many instances of ellipsis when 
the topic or focus of a sentence is obvious to a human 
reader, making it difficult for a program to capture long 
term dependencies between keyterms and the answer. 
This form of ellipsis (known as zero-anaphora), seems to 
have had a negative impact on our block-level retrieval 
and answer extraction. According to a prior analysis of 
CLQA-1 formal data, about 20% of questions on 
average might be affected by this. 
  
11. Future Work 
 



Thanks to the many state-of-the-art techniques we 
implemented, our system performed better than the older 
version evaluated at NTCIR-5. However, we realize that 
the overall system becomes more and more complex as 
we implement new techniques. 

In order to better understand errors in the system 
output, we have been analyzing system performance 
using different measures, including accuracy by answer 
type and module-by-module evaluation [25] [30]. 
Various Boolean properties can be assigned to each 
input question, and system performance can be analyzed 
according to the property values of each question. Each 
property represents one (usually challenging) aspect in 
answering the question.  A sample of the properties we 
can make use of is listed below: 
• A long-distance dependency (across multiple 

sentences) exists between the keyterm and the 
answer  

• Question contains a Named Entity which is hard to 
translate 

• Phrase level paraphrasing would help 
• Co-reference resolution would help 
• Question and answer-bearing sentence have the 

same predicate argument structure 
• Answer-bearing sentence contains the answer in an 

extra-grammatical context 
By comparing how well the system performs on 
questions with or without a certain property, we will be 
able to identify what problems can be solved in what 
degree, after introducing a specific algorithm, feature, 
resource or assumption. 
 
Acknowledgment 
 
This work was supported in part by the Disruptive 
Technologies Office (DTO)’s Advanced Question 
Answering for Intelligence (AQUAINT) Program. We 
thank Eric Riebling for his assistance in corpus 
preprocessing. 
 
References 
 
[1] E. Nyberg, R. Frederking, T. Mitamura,   M. Bilotti, K. 

Hannan, L. Hiyakumoto, J. Ko, F. Lin, L. Lita, V. Pedro, 
and A. Schlaikjer. JAVELIN I and II systems at TREC 
2005, In Proc. of TREC’05, 2005. 

 [2] S. Pradhan, W. Ward, K. Hacioglu, J. Martin and D. 
Jurafsky. Shallow semantic parsing using support vector 
machines. In Proc. of the HLT/NAACL’04, 2004.  

[3] P. Kingsbury and M. Palmer. From Treebank to Propbank. 
In Proc. of LREC’02, 2002. 

[4] E. Nyberg and T. Mitamura. The KANTOO Machine 
Translation Environment. In Proc. of AMTA 2000, 2000. 

[5] T. Strohman, D. Metzler, H. Turtle and W. B. Croft.  Indri: 
A language model-based search engine for complex 
queries.  In Proceedings of ICIA’05, 2005. 

[6] D. Bikel, R. Schwartz and R. Weischedel. An algorithm 
that learns what’s in a name.  Machine Learning, Special 
Issue on Natural Language Learning, Volume 34, Issue 1-
3, p211-231, 1999. 

[7] P. Kingsbury, M. Palmer and M. Marcus.  Adding semantic 
annotation to the penn treebank. In Proc. of HLT’02.  2002. 

[8] F. Lin, H. Shima, M. Wang, and T. Mitamura. CMU 
JAVELIN system for NTCIR CLQA1. In Proc. of  NTCIR-
5, 2005. 

[9] T. Takahashi, K. Nawata, K. Inui and Y. Matsumoto. 
NAIST QA System for QAC2. In Proc. of NTCIR-4, 2004. 

[10] D. Shen, G. M. Kruijff, and D. Klakow. Exploring 
syntactic relation patterns for question answering. In Proc. 
Of IJCNL’05, 2005. 

[11] G. Kurata, N. Okazaki and M. Ishizuka. GDQA: Graph 
driven question answering system - NTCIR-4 QAC2 
experiments. In Proc. of NTCIR-4. 2004. 

[12] D. Kawahara, N. Kaji, and S. Kurohashi. Question and 
answering system based on predicate-argument matching, 
In Proc. of NTCIR-3, 2002. 

[13] A. Ittycheriah, M. Franz, and S. Roukos. IBM’s statistical 
question answering system – TREC-10. In Proc. of TREC-
10, 2001. 

[14] D. Shen, and D. Klakow. Exploring correlation of 
dependency relation paths for answer extraction. In Proc. 
of COLING-ACL’06, 2006. 

[15] H. Gabow. Implementation of Algorithms for Maximum 
Matching on Nonbipartite Graphs. PhD thesis, Stanford 
University, 1974. 

[16] B. Schieber and U. Vishkin. On finding lowest common 
ancestors: simplification and parallelization. SIAM Journal 
of Computing, Volumn 17, Issue 6, p1253-1262, 1998. 

[17] T. Joachims. Optimizing search engines using 
clickthrough data. In Proc. of SIGKDD’02, 2002. 

[18] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang and H. Hon. 
adapting ranking SVM to document retrieval. In Proc. of 
SIGIR’06, 2006. 

[19] J. Ko, L. Si, E. Nyberg, A probabilistic framework for 
answer selection in question answering, To appear in 
NAACL-HLT’07, 2007. 

[20] Z. Dong. Hownet: http://www.keenage.com. 2000 
[21] J. Ko, T. Mitamura, E. Nyberg, Language independent 

probabilistic answer ranking in multilingual question 
answering, To appear in ACL’07, 2007. 

[22] T. Mitamura, M. Wang, H. Shima, and F. Lin. Keyword 
translation accuracy and cross-lingual question answering 
in Chinese and Japanese. In Proc. of MLQA workshop, 
EACL 06’, 2006. 

[23] J. Gao, M. Li, A. Wu and C. Huang. Chinese word 
segmentation: a pragmatic approach. Microsoft Research 
Technical Report, MSR-TR-2004-123, 2004. 

 [24] J. Nivre and J. Hall. MaltParser: a language-independent 
system for data-driven dependency parsing. In Proc. of the 
Fourth Workshop on Treebanks and Linguistic Theories, 
2005. 

[25] H. Shima, M. Wang, F. Lin and T. Mitamura. Modular 
approach to error analysis and evaluation for multilingual 
question answering. In Proc. of LREC’06, 2006. 

[26] J. Gao, and Nie, J. A study of statistical models for query 
translation: finding a good unit of translation. In Proc. of 
SIGIR’06, 2006. 

[27] A. Berger, V. Della Pietra, and S. Della Pietra. A 
maximum entropy approach to natural language 
processing. Computational Linguistics, 22(1):39-71, 1996. 

[28] Y. Sasaki, C. Lin, K. Chen and H. Chen. Overview of the 
NTCIR-6 cross-Lingual question answering (CLQA) task. 
In Proc. of NTCIR-6, 2007. 

[29] Wang, M., K. Sagae and T. Mitamura. A fast, accurate 
deterministic parser for Chinese. In Proc. of COLING-
ACL’06, 2006. 

[30] Y. Sasaki, H. Isozaki, J. Suzuki, K. Kokuryou, T. Hirao, H. 
Kazawa, and E. Maeda. SAIQA-II: A Trainable Japanese 
QA System with SVM. IPSJ Journal, Vol. 45, NO. 2, pp. 
635-646, 2004. (in Japanese) 


