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Abstract

Natural language parsing has typically
been done with small sets of discrete cat-
egories such as NP and VP, but this rep-
resentation does not capture the full syn-
tactic nor semantic richness of linguistic
phrases, and attempts to improve on this
by lexicalizing phrases or splitting cate-
gories only partly address the problem at
the cost of huge feature spaces and sparse-
ness. Instead, we introduce a Compo-
sitional Vector Grammar (CVG), which
combines PCFGs with a syntactically un-
tied recursive neural network that learns
syntactico-semantic, compositional vector
representations. The CVG improves the
PCFG of the Stanford Parser by 3.8% to
obtain an F1 score of 90.4%. It is fast
to train and implemented approximately as
an efficient reranker it is about 20% faster
than the current Stanford factored parser.
The CVG learns a soft notion of head
words and improves performance on the
types of ambiguities that require semantic
information such as PP attachments.

1 Introduction

Syntactic parsing is a central task in natural lan-
guage processing because of its importance in me-
diating between linguistic expression and mean-
ing. For example, much work has shown the use-
fulness of syntactic representations for subsequent
tasks such as relation extraction, semantic role la-
beling (Gildea and Palmer, 2002) and paraphrase
detection (Callison-Burch, 2008).

Syntactic descriptions standardly use coarse
discrete categories such as NP for noun phrases
or PP for prepositional phrases. However, recent
work has shown that parsing results can be greatly
improved by defining more fine-grained syntactic
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Figure 1: Example of a CVG tree with (cate-
gory,vector) representations at each node. The
vectors for nonterminals are computed via a new
type of recursive neural network which is condi-
tioned on syntactic categories from a PCFG.

categories, which better capture phrases with simi-
lar behavior, whether through manual feature engi-
neering (Klein and Manning, 2003a) or automatic
learning (Petrov et al., 2006). However, subdi-
viding a category like NP into 30 or 60 subcate-
gories can only provide a very limited represen-
tation of phrase meaning and semantic similarity.
Two strands of work therefore attempt to go fur-
ther. First, recent work in discriminative parsing
has shown gains from careful engineering of fea-
tures (Taskar et al., 2004; Finkel et al., 2008). Fea-
tures in such parsers can be seen as defining effec-
tive dimensions of similarity between categories.
Second, lexicalized parsers (Collins, 2003; Char-
niak, 2000) associate each category with a lexical
item. This gives a fine-grained notion of semantic
similarity, which is useful for tackling problems
like ambiguous attachment decisions. However,
this approach necessitates complex shrinkage esti-
mation schemes to deal with the sparsity of obser-
vations of the lexicalized categories.

In many natural language systems, single words
and n-grams are usefully described by their distri-
butional similarities (Brown et al., 1992), among
many others. But, even with large corpora, many



n-grams will never be seen during training, espe-
cially when n is large. In these cases, one cannot
simply use distributional similarities to represent
unseen phrases. In this work, we present a new so-
lution to learn features and phrase representations
even for very long, unseen n-grams.

We introduce a Compositional Vector Grammar
Parser (CVG) for structure prediction. Like the
above work on parsing, the model addresses the
problem of representing phrases and categories.
Unlike them, it jointly learns how to parse and how
to represent phrases as both discrete categories and
continuous vectors as illustrated in Fig. 1. CVGs
combine the advantages of standard probabilistic
context free grammars (PCFG) with those of re-
cursive neural networks (RNNs). The former can
capture the discrete categorization of phrases into
NP or PP while the latter can capture fine-grained
syntactic and compositional-semantic information
on phrases and words. This information can help
in cases where syntactic ambiguity can only be re-
solved with semantic information, such as in the
PP attachment of the two sentences: They ate udon
with forks. vs. They ate udon with chicken.

Previous RNN-based parsers used the same
(tied) weights at all nodes to compute the vector
representing a constituent (Socher et al., 2011b).
This requires the composition function to be ex-
tremely powerful, since it has to combine phrases
with different syntactic head words, and it is hard
to optimize since the parameters form a very deep
neural network. We generalize the fully tied RNN
to one with syntactically untied weights. The
weights at each node are conditionally dependent
on the categories of the child constituents. This
allows different composition functions when com-
bining different types of phrases and is shown to
result in a large improvement in parsing accuracy.

Our compositional distributed representation al-
lows a CVG parser to make accurate parsing de-
cisions and capture similarities between phrases
and sentences. Any PCFG-based parser can be im-
proved with an RNN. We use a simplified version
of the Stanford Parser (Klein and Manning, 2003a)
as the base PCFG and improve its accuracy from
86.56 to 90.44% labeled F1 on all sentences of the
WSJ section 23. The code of our parser is avail-
able at nlp.stanford.edu.

2 Related Work
The CVG is inspired by two lines of research:
Enriching PCFG parsers through more diverse

sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations
As mentioned in the introduction, there are several
approaches to improving discrete representations
for parsing. Klein and Manning (2003a) use
manual feature engineering, while Petrov et
al. (2006) use a learning algorithm that splits
and merges the syntactic categories in order
to maximize likelihood on the treebank. Their
approach splits categories into several dozen
subcategories. Another approach is lexicalized
parsers (Collins, 2003; Charniak, 2000) that
describe each category with a lexical item, usually
the head word. More recently, Hall and Klein
(2012) combine several such annotation schemes
in a factored parser. We extend the above ideas
from discrete representations to richer continuous
ones. The CVG can be seen as factoring discrete
and continuous parsing in one model. Another
different approach to the above generative models
is to learn discriminative parsers using many well
designed features (Taskar et al., 2004; Finkel et
al., 2008). We also borrow ideas from this line of
research in that our parser combines the generative
PCFG model with discriminatively learned RNNs.

Deep Learning and Recursive Deep Learning
Early attempts at using neural networks to de-
scribe phrases include Elman (1991), who used re-
current neural networks to create representations
of sentences from a simple toy grammar and to
analyze the linguistic expressiveness of the re-
sulting representations. Words were represented
as one-on vectors, which was feasible since the
grammar only included a handful of words. Col-
lobert and Weston (2008) showed that neural net-
works can perform well on sequence labeling lan-
guage processing tasks while also learning appro-
priate features. However, their model is lacking
in that it cannot represent the recursive structure
inherent in natural language. They partially cir-
cumvent this problem by using either independent
window-based classifiers or a convolutional layer.
RNN-specific training was introduced by Goller
and Küchler (1996) to learn distributed represen-
tations of given, structured objects such as logi-
cal terms. In contrast, our model both predicts the
structure and its representation.



Henderson (2003) was the first to show that neu-
ral networks can be successfully used for large
scale parsing. He introduced a left-corner parser to
estimate the probabilities of parsing decisions con-
ditioned on the parsing history. The input to Hen-
derson’s model consists of pairs of frequent words
and their part-of-speech (POS) tags. Both the orig-
inal parsing system and its probabilistic interpre-
tation (Titov and Henderson, 2007) learn features
that represent the parsing history and do not pro-
vide a principled linguistic representation like our
phrase representations. Other related work in-
cludes (Henderson, 2004), who discriminatively
trains a parser based on synchrony networks and
(Titov and Henderson, 2006), who use an SVM to
adapt a generative parser to different domains.

Costa et al. (2003) apply recursive neural net-
works to re-rank possible phrase attachments in
an incremental parser. Their work is the first to
show that RNNs can capture enough information
to make correct parsing decisions, but they only
test on a subset of 2000 sentences. Menchetti et
al. (2005) use RNNs to re-rank different parses.
For their results on full sentence parsing, they re-
rank candidate trees created by the Collins parser
(Collins, 2003). Similar to their work, we use the
idea of letting discrete categories reduce the search
space during inference. We compare to fully tied
RNNs in which the same weights are used at every
node. Our syntactically untied RNNs outperform
them by a significant margin. The idea of untying
has also been successfully used in deep learning
applied to vision (Le et al., 2010).

This paper uses several ideas of (Socher et al.,
2011b). The main differences are (i) the dual
representation of nodes as discrete categories and
vectors, (ii) the combination with a PCFG, and
(iii) the syntactic untying of weights based on
child categories. We directly compare models with
fully tied and untied weights. Another work that
represents phrases with a dual discrete-continuous
representation is (Kartsaklis et al., 2012).

3 Compositional Vector Grammars

This section introduces Compositional Vector
Grammars (CVGs), a model to jointly find syntac-
tic structure and capture compositional semantic
information.

CVGs build on two observations. Firstly, that a
lot of the structure and regularity in languages can
be captured by well-designed syntactic patterns.

Hence, the CVG builds on top of a standard PCFG
parser. However, many parsing decisions show
fine-grained semantic factors at work. Therefore
we combine syntactic and semantic information
by giving the parser access to rich syntactico-
semantic information in the form of distributional
word vectors and compute compositional semantic
vector representations for longer phrases (Costa
et al., 2003; Menchetti et al., 2005; Socher et
al., 2011b). The CVG model merges ideas from
both generative models that assume discrete syn-
tactic categories and discriminative models that
are trained using continuous vectors.

We will first briefly introduce single word vec-
tor representations and then describe the CVG ob-
jective function, tree scoring and inference.

3.1 Word Vector Representations

In most systems that use a vector representa-
tion for words, such vectors are based on co-
occurrence statistics of each word and its context
(Turney and Pantel, 2010). Another line of re-
search to learn distributional word vectors is based
on neural language models (Bengio et al., 2003)
which jointly learn an embedding of words into an
n-dimensional feature space and use these embed-
dings to predict how suitable a word is in its con-
text. These vector representations capture inter-
esting linear relationships (up to some accuracy),
such as king−man+woman ≈ queen (Mikolov
et al., 2013).

Collobert and Weston (2008) introduced a new
model to compute such an embedding. The idea
is to construct a neural network that outputs high
scores for windows that occur in a large unla-
beled corpus and low scores for windows where
one word is replaced by a random word. When
such a network is optimized via gradient ascent the
derivatives backpropagate into the word embed-
ding matrix X . In order to predict correct scores
the vectors in the matrix capture co-occurrence
statistics.

For further details and evaluations of these em-
beddings, see (Turian et al., 2010; Huang et al.,
2012). The resulting X matrix is used as follows.
Assume we are given a sentence as an ordered list
of m words. Each word w has an index [w] = i
into the columns of the embedding matrix. This
index is used to retrieve the word’s vector repre-
sentation aw using a simple multiplication with a
binary vector e, which is zero everywhere, except



at the ith index. So aw = Lei ∈ Rn. Henceforth,
after mapping each word to its vector, we represent
a sentence S as an ordered list of (word,vector)
pairs: x = ((w1, aw1), . . . , (wm, awm)).

Now that we have discrete and continuous rep-
resentations for all words, we can continue with
the approach for computing tree structures and
vectors for nonterminal nodes.

3.2 Max-Margin Training Objective for
CVGs

The goal of supervised parsing is to learn a func-
tion g : X → Y , where X is the set of sentences
and Y is the set of all possible labeled binary parse
trees. The set of all possible trees for a given sen-
tence xi is defined as Y (xi) and the correct tree
for a sentence is yi.

We first define a structured margin loss ∆(yi, ŷ)
for predicting a tree ŷ for a given correct tree.
The loss increases the more incorrect the proposed
parse tree is (Goodman, 1998). The discrepancy
between trees is measured by counting the number
of nodes N(y) with an incorrect span (or label) in
the proposed tree:

∆(yi, ŷ) =
∑

d∈N(ŷ)

κ1{d /∈ N(yi)}. (1)

We set κ = 0.1 in all experiments. For a given
set of training instances (xi, yi), we search for the
function gθ, parameterized by θ, with the smallest
expected loss on a new sentence. It has the follow-
ing form:

gθ(x) = arg max
ŷ∈Y (x)

s(CVG(θ, x, ŷ)), (2)

where the tree is found by the Compositional Vec-
tor Grammar (CVG) introduced below and then
scored via the function s. The higher the score of
a tree the more confident the algorithm is that its
structure is correct. This max-margin, structure-
prediction objective (Taskar et al., 2004; Ratliff
et al., 2007; Socher et al., 2011b) trains the CVG
so that the highest scoring tree will be the correct
tree: gθ(xi) = yi and its score will be larger up to
a margin to other possible trees ŷ ∈ Y(xi):

s(CVG(θ, xi, yi)) ≥ s(CVG(θ, xi, ŷ)) + ∆(yi, ŷ).

This leads to the regularized risk function for m

training examples:

J(θ) =
1

m

m∑
i=1

ri(θ) +
λ

2
‖θ‖22, where

ri(θ) = max
ŷ∈Y (xi)

(
s(CVG(xi, ŷ)) + ∆(yi, ŷ)

)
− s(CVG(xi, yi)) (3)

Intuitively, to minimize this objective, the score of
the correct tree yi is increased and the score of the
highest scoring incorrect tree ŷ is decreased.

3.3 Scoring Trees with CVGs
For ease of exposition, we first describe how to
score an existing fully labeled tree with a standard
RNN and then with a CVG. The subsequent sec-
tion will then describe a bottom-up beam search
and its approximation for finding the optimal tree.

Assume, for now, we are given a labeled
parse tree as shown in Fig. 2. We define
the word representations as (vector, POS) pairs:
((a,A), (b, B), (c, C)), where the vectors are de-
fined as in Sec. 3.1 and the POS tags come from
a PCFG. The standard RNN essentially ignores all
POS tags and syntactic categories and each non-
terminal node is associated with the same neural
network (i.e., the weights across nodes are fully
tied). We can represent the binary tree in Fig. 2
in the form of branching triplets (p → c1c2).
Each such triplet denotes that a parent node p has
two children and each ck can be either a word
vector or a non-terminal node in the tree. For
the example in Fig. 2, we would get the triples
((p1 → bc), (p2 → ap1)). Note that in order
to replicate the neural network and compute node
representations in a bottom up fashion, the parent
must have the same dimensionality as the children:
p ∈ Rn.

Given this tree structure, we can now compute
activations for each node from the bottom up. We
begin by computing the activation for p1 using
the children’s word vectors. We first concatenate
the children’s representations b, c ∈ Rn×1 into a

vector
[
b
c

]
∈ R2n×1. Then the composition

function multiplies this vector by the parameter
weights of the RNN W ∈ Rn×2n and applies an
element-wise nonlinearity function f = tanh to
the output vector. The resulting output p(1) is then
given as input to compute p(2).

p(1) = f

(
W

[
b
c

])
, p(2) = f

(
W

[
a
p1

])
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Figure 2: An example tree with a simple Recursive
Neural Network: The same weight matrix is repli-
cated and used to compute all non-terminal node
representations. Leaf nodes are n-dimensional
vector representations of words.

In order to compute a score of how plausible of
a syntactic constituent a parent is the RNN uses a
single-unit linear layer for all i:

s(p(i)) = vT p(i),

where v ∈ Rn is a vector of parameters that need
to be trained. This score will be used to find the
highest scoring tree. For more details on how stan-
dard RNNs can be used for parsing, see Socher et
al. (2011b).

The standard RNN requires a single composi-
tion function to capture all types of compositions:
adjectives and nouns, verbs and nouns, adverbs
and adjectives, etc. Even though this function is
a powerful one, we find a single neural network
weight matrix cannot fully capture the richness of
compositionality. Several extensions are possible:
A two-layered RNN would provide more expres-
sive power, however, it is much harder to train be-
cause the resulting neural network becomes very
deep and suffers from vanishing gradient prob-
lems. Socher et al. (2012) proposed to give ev-
ery single word a matrix and a vector. The ma-
trix is then applied to the sibling node’s vector
during the composition. While this results in a
powerful composition function that essentially de-
pends on the words being combined, the number
of model parameters explodes and the composi-
tion functions do not capture the syntactic com-
monalities between similar POS tags or syntactic
categories.

Based on the above considerations, we propose
the Compositional Vector Grammar (CVG) that
conditions the composition function at each node
on discrete syntactic categories extracted from a
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c

= f   W(A,P  ) a
p(1)

(1)

Figure 3: Example of a syntactically untied RNN
in which the function to compute a parent vector
depends on the syntactic categories of its children
which we assume are given for now.

PCFG. Hence, CVGs combine discrete, syntactic
rule probabilities and continuous vector composi-
tions. The idea is that the syntactic categories of
the children determine what composition function
to use for computing the vector of their parents.
While not perfect, a dedicated composition func-
tion for each rule RHS can well capture common
composition processes such as adjective or adverb
modification versus noun or clausal complementa-
tion. For instance, it could learn that an NP should
be similar to its head noun and little influenced by
a determiner, whereas in an adjective modification
both words considerably determine the meaning of
a phrase. The original RNN is parameterized by a
single weight matrixW . In contrast, the CVG uses
a syntactically untied RNN (SU-RNN) which has
a set of such weights. The size of this set depends
on the number of sibling category combinations in
the PCFG.

Fig. 3 shows an example SU-RNN that com-
putes parent vectors with syntactically untied
weights. The CVG computes the first parent vec-
tor via the SU-RNN:

p(1) = f

(
W (B,C)

[
b
c

])
,

where W (B,C) ∈ Rn×2n is now a matrix that de-
pends on the categories of the two children. In
this bottom up procedure, the score for each node
consists of summing two elements: First, a single
linear unit that scores the parent vector and sec-
ond, the log probability of the PCFG for the rule
that combines these two children:

s
(
p(1)
)

=
(
v(B,C)

)T
p(1) + logP (P1 → B C),

(4)



where P (P1 → B C) comes from the PCFG.
This can be interpreted as the log probability of a
discrete-continuous rule application with the fol-
lowing factorization:

P ((P1, p1)→ (B, b)(C, c)) (5)

= P (p1 → b c|P1 → B C)P (P1 → B C),

Note, however, that due to the continuous nature
of the word vectors, the probability of such a CVG
rule application is not comparable to probabilities
provided by a PCFG since the latter sum to 1 for
all children.

Assuming that node p1 has syntactic category
P1, we compute the second parent vector via:

p(2) = f

(
W (A,P1)

[
a

p(1)

])
.

The score of the last parent in this trigram is com-
puted via:

s
(
p(2)
)

=
(
v(A,P1)

)T
p(2) + logP (P2 → A P1).

3.4 Parsing with CVGs
The above scores (Eq. 4) are used in the search for
the correct tree for a sentence. The goodness of a
tree is measured in terms of its score and the CVG
score of a complete tree is the sum of the scores at
each node:

s(CVG(θ, x, ŷ)) =
∑

d∈N(ŷ)

s
(
pd
)
. (6)

The main objective function in Eq. 3 includes a
maximization over all possible trees maxŷ∈Y (x).
Finding the global maximum, however, cannot be
done efficiently for longer sentences nor can we
use dynamic programming. This is due to the fact
that the vectors break the independence assump-
tions of the base PCFG. A (category, vector) node
representation is dependent on all the words in its
span and hence to find the true global optimum,
we would have to compute the scores for all bi-
nary trees. For a sentence of length n, there are
Catalan(n) many possible binary trees which is
very large even for moderately long sentences.

One could use a bottom-up beam search, keep-
ing a k-best list at every cell of the chart, possibly
for each syntactic category. This beam search in-
ference procedure is still considerably slower than
using only the simplified base PCFG, especially
since it has a small state space (see next section for

details). Since each probability look-up is cheap
but computing SU-RNN scores requires a matrix
product, we would like to reduce the number of
SU-RNN score computations to only those trees
that require semantic information. We note that
labeled F1 of the Stanford PCFG parser on the test
set is 86.17%. However, if one used an oracle to
select the best tree from the top 200 trees that it
produces, one could get an F1 of 95.46%.

We use this knowledge to speed up inference via
two bottom-up passes through the parsing chart.
During the first one, we use only the base PCFG to
run CKY dynamic programming through the tree.
The k = 200-best parses at the top cell of the
chart are calculated using the efficient algorithm
of (Huang and Chiang, 2005). Then, the second
pass is a beam search with the full CVG model (in-
cluding the more expensive matrix multiplications
of the SU-RNN). This beam search only consid-
ers phrases that appear in the top 200 parses. This
is similar to a re-ranking setup but with one main
difference: the SU-RNN rule score computation at
each node still only has access to its child vectors,
not the whole tree or other global features. This
allows the second pass to be very fast. We use this
setup in our experiments below.

3.5 Training SU-RNNs

The full CVG model is trained in two stages. First
the base PCFG is trained and its top trees are
cached and then used for training the SU-RNN
conditioned on the PCFG. The SU-RNN is trained
using the objective in Eq. 3 and the scores as ex-
emplified by Eq. 6. For each sentence, we use the
method described above to efficiently find an ap-
proximation for the optimal tree.

To minimize the objective we want to increase
the scores of the correct tree’s constituents and
decrease the score of those in the highest scor-
ing incorrect tree. Derivatives are computed via
backpropagation through structure (BTS) (Goller
and Küchler, 1996). The derivative of tree i has
to be taken with respect to all parameter matrices
W (AB) that appear in it. The main difference be-
tween backpropagation in standard RNNs and SU-
RNNs is that the derivatives at each node only add
to the overall derivative of the specific matrix at
that node. For more details on backpropagation
through RNNs, see Socher et al. (2010)



3.6 Subgradient Methods and AdaGrad
The objective function is not differentiable due to
the hinge loss. Therefore, we generalize gradient
ascent via the subgradient method (Ratliff et al.,
2007) which computes a gradient-like direction.
Let θ = (X,W (··), v(··)) ∈ RM be a vector of all
M model parameters, where we denote W (··) as
the set of matrices that appear in the training set.
The subgradient of Eq. 3 becomes:

∂J

∂θ
=
∑
i

∂s(xi, ŷmax)

∂θ
− ∂s(xi, yi)

∂θ
+ θ,

where ŷmax is the tree with the highest score. To
minimize the objective, we use the diagonal vari-
ant of AdaGrad (Duchi et al., 2011) with mini-
batches. For our parameter updates, we first de-
fine gτ ∈ RM×1 to be the subgradient at time step
τ and Gt =

∑t
τ=1 gτg

T
τ . The parameter update at

time step t then becomes:

θt = θt−1 − α (diag(Gt))
−1/2 gt, (7)

where α is the learning rate. Since we use the di-
agonal of Gt, we only have to store M values and
the update becomes fast to compute: At time step
t, the update for the i’th parameter θt,i is:

θt,i = θt−1,i −
α√∑t
τ=1 g

2
τ,i

gt,i. (8)

Hence, the learning rate is adapting differ-
ently for each parameter and rare parameters get
larger updates than frequently occurring parame-
ters. This is helpful in our setting since some W
matrices appear in only a few training trees. This
procedure found much better optima (by ≈3% la-
beled F1 on the dev set), and converged more
quickly than L-BFGS which we used previously
in RNN training (Socher et al., 2011a). Training
time is roughly 4 hours on a single machine.

3.7 Initialization of Weight Matrices
In the absence of any knowledge on how to com-
bine two categories, our prior for combining two
vectors is to average them instead of performing a
completely random projection. Hence, we initial-
ize the binary W matrices with:

W (··) = 0.5[In×nIn×n0n×1] + ε,

where we include the bias in the last column and
the random variable is uniformly distributed: ε ∼

U [−0.001, 0.001]. The first block is multiplied by
the left child and the second by the right child:

W (AB)

 a
b
1

 =
[
W (A)W (B)bias

] a
b
1


= W (A)a+W (B)b+ bias.

4 Experiments

We evaluate the CVG in two ways: First, by a stan-
dard parsing evaluation on Penn Treebank WSJ
and then by analyzing the model errors in detail.

4.1 Cross-validating Hyperparameters

We used the first 20 files of WSJ section 22
to cross-validate several model and optimization
choices. The base PCFG uses simplified cate-
gories of the Stanford PCFG Parser (Klein and
Manning, 2003a). We decreased the state split-
ting of the PCFG grammar (which helps both by
making it less sparse and by reducing the num-
ber of parameters in the SU-RNN) by adding
the following options to training: ‘-noRightRec -
dominatesV 0 -baseNP 0’. This reduces the num-
ber of states from 15,276 to 12,061 states and 602
POS tags. These include split categories, such as
parent annotation categories like VPˆS. Further-
more, we ignore all category splits for the SU-
RNN weights, resulting in 66 unary and 882 bi-
nary child pairs. Hence, the SU-RNN has 66+882
transformation matrices and scoring vectors. Note
that any PCFG, including latent annotation PCFGs
(Matsuzaki et al., 2005) could be used. However,
since the vectors will capture lexical and semantic
information, even simple base PCFGs can be sub-
stantially improved. Since the computational com-
plexity of PCFGs depends on the number of states,
a base PCFG with fewer states is much faster.

Testing on the full WSJ section 22 dev set (1700
sentences) takes roughly 470 seconds with the
simple base PCFG, 1320 seconds with our new
CVG and 1600 seconds with the currently pub-
lished Stanford factored parser. Hence, increased
performance comes also with a speed improve-
ment of approximately 20%.

We fix the same regularization of λ = 10−4

for all parameters. The minibatch size was set to
20. We also cross-validated on AdaGrad’s learn-
ing rate which was eventually set to α = 0.1 and
word vector size. The 25-dimensional vectors pro-
vided by Turian et al. (2010) provided the best



Parser dev (all) test≤ 40 test (all)
Stanford PCFG 85.8 86.2 85.5
Stanford Factored 87.4 87.2 86.6
Factored PCFGs 89.7 90.1 89.4
Collins 87.7
SSN (Henderson) 89.4
Berkeley Parser 90.1
CVG (RNN) 85.7 85.1 85.0
CVG (SU-RNN) 91.2 91.1 90.4
Charniak-SelfTrain 91.0
Charniak-RS 92.1

Table 1: Comparison of parsers with richer state
representations on the WSJ. The last line is the
self-trained re-ranked Charniak parser.

performance and were faster than 50-,100- or 200-
dimensional ones. We hypothesize that the larger
word vector sizes, while capturing more seman-
tic knowledge, result in too many SU-RNN matrix
parameters to train and hence perform worse.

4.2 Results on WSJ

The dev set accuracy of the best model is 90.93%
labeled F1 on all sentences. This model re-
sulted in 90.44% on the final test set (WSJ sec-
tion 23). Table 1 compares our results to the
two Stanford parser variants (the unlexicalized
PCFG (Klein and Manning, 2003a) and the fac-
tored parser (Klein and Manning, 2003b)) and
other parsers that use richer state representations:
the Berkeley parser (Petrov and Klein, 2007),
Collins parser (Collins, 1997), SSN: a statistical
neural network parser (Henderson, 2004), Fac-
tored PCFGs (Hall and Klein, 2012), Charniak-
SelfTrain: the self-training approach of McClosky
et al. (2006), which bootstraps and parses addi-
tional large corpora multiple times, Charniak-RS:
the state of the art self-trained and discrimina-
tively re-ranked Charniak-Johnson parser combin-
ing (Charniak, 2000; McClosky et al., 2006; Char-
niak and Johnson, 2005). See Kummerfeld et al.
(2012) for more comparisons. We compare also
to a standard RNN ‘CVG (RNN)’ and to the pro-
posed CVG with SU-RNNs.

4.3 Model Analysis

Analysis of Error Types. Table 2 shows a de-
tailed comparison of different errors. We use
the code provided by Kummerfeld et al. (2012)
and compare to the previous version of the Stan-
ford factored parser as well as to the Berkeley
and Charniak-reranked-self-trained parsers (de-
fined above). See Kummerfeld et al. (2012) for
details and comparisons to other parsers. One of

Error Type Stanford CVG Berkeley Char-RS
PP Attach 1.02 0.79 0.82 0.60
Clause Attach 0.64 0.43 0.50 0.38
Diff Label 0.40 0.29 0.29 0.31
Mod Attach 0.37 0.27 0.27 0.25
NP Attach 0.44 0.31 0.27 0.25
Co-ord 0.39 0.32 0.38 0.23
1-Word Span 0.48 0.31 0.28 0.20
Unary 0.35 0.22 0.24 0.14
NP Int 0.28 0.19 0.18 0.14
Other 0.62 0.41 0.41 0.50

Table 2: Detailed comparison of different parsers.

the largest sources of improved performance over
the original Stanford factored parser is in the cor-
rect placement of PP phrases. When measuring
only the F1 of parse nodes that include at least one
PP child, the CVG improves the Stanford parser
by 6.2% to an F1 of 77.54%. This is a 0.23 re-
duction in the average number of bracket errors
per sentence. The ‘Other’ category includes VP,
PRN and other attachments, appositives and inter-
nal structures of modifiers and QPs.
Analysis of Composition Matrices. An analy-
sis of the norms of the binary matrices reveals
that the model learns a soft vectorized notion of
head words: Head words are given larger weights
and importance when computing the parent vec-
tor: For the matrices combining siblings with cat-
egories VP:PP, VP:NP and VP:PRT, the weights in
the part of the matrix which is multiplied with the
VP child vector dominates. Similarly NPs dom-
inate DTs. Fig. 5 shows example matrices. The
two strong diagonals are due to the initialization
described in Sec. 3.7.
Semantic Transfer for PP Attachments. In this
small model analysis, we use two pairs of sen-
tences that the original Stanford parser and the
CVG did not parse correctly after training on
the WSJ. We then continue to train both parsers
on two similar sentences and then analyze if the
parsers correctly transferred the knowledge. The
training sentences are He eats spaghetti with a
fork. and She eats spaghetti with pork. The very
similar test sentences are He eats spaghetti with a
spoon. and He eats spaghetti with meat. Initially,
both parsers incorrectly attach the PP to the verb
in both test sentences. After training, the CVG
parses both correctly, while the factored Stanford
parser incorrectly attaches both PPs to spaghetti.
The CVG’s ability to transfer the correct PP at-
tachments is due to the semantic word vector sim-
ilarity between the words in the sentences. Fig. 4
shows the outputs of the two parsers.
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(b) Compositional Vector Grammar
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Figure 4: Test sentences of semantic transfer for PP attachments. The CVG was able to transfer se-
mantic word knowledge from two related training sentences. In contrast, the Stanford parser could not
distinguish the PP attachments based on the word semantics.
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Figure 5: Three binary composition matrices
showing that head words dominate the composi-
tion. The model learns to not give determiners
much importance. The two diagonals show clearly
the two blocks that are multiplied with the left and
right children, respectively.

5 Conclusion

We introduced Compositional Vector Grammars
(CVGs), a parsing model that combines the speed
of small-state PCFGs with the semantic richness
of neural word representations and compositional
phrase vectors. The compositional vectors are
learned with a new syntactically untied recursive
neural network. This model is linguistically more
plausible since it chooses different composition
functions for a parent node based on the syntac-
tic categories of its children. The CVG obtains
90.44% labeled F1 on the full WSJ test set and is
20% faster than the previous Stanford parser.
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