
Reasoning With Neural Tensor Networks
for Knowledge Base Completion

Richard Socher∗, Danqi Chen*, Christopher D. Manning, Andrew Y. Ng
Computer Science Department, Stanford University, Stanford, CA 94305, USA

richard@socher.org, {danqi,manning}@stanford.edu, ang@cs.stanford.edu

Abstract

Knowledge bases are an important resource for question answering and other tasks
but often suffer from incompleteness and lack of ability to reason over their dis-
crete entities and relationships. In this paper we introduce an expressive neu-
ral tensor network suitable for reasoning over relationships between two entities.
Previous work represented entities as either discrete atomic units or with a single
entity vector representation. We show that performance can be improved when en-
tities are represented as an average of their constituting word vectors. This allows
sharing of statistical strength between, for instance, facts involving the “Sumatran
tiger” and “Bengal tiger.” Lastly, we demonstrate that all models improve when
these word vectors are initialized with vectors learned from unsupervised large
corpora. We assess the model by considering the problem of predicting additional
true relations between entities given a subset of the knowledge base. Our model
outperforms previous models and can classify unseen relationships in WordNet
and FreeBase with an accuracy of 86.2% and 90.0%, respectively.

1 Introduction

Ontologies and knowledge bases such as WordNet [1], Yago [2] or the Google Knowledge Graph are
extremely useful resources for query expansion [3], coreference resolution [4], question answering
(Siri), information retrieval or providing structured knowledge to users. However, they suffer from
incompleteness and a lack of reasoning capability.

Much work has focused on extending existing knowledge bases using patterns or classifiers applied
to large text corpora. However, not all common knowledge that is obvious to people is expressed in
text [5, 6, 2, 7]. We adopt here the complementary goal of predicting the likely truth of additional
facts based on existing facts in the knowledge base. Such factual, common sense reasoning is
available and useful to people. For instance, when told that a new species of monkeys has been
discovered, a person does not need to find textual evidence to know that this new monkey, too, will
have legs (a meronymic relationship inferred due to a hyponymic relation to monkeys in general).

We introduce a model that can accurately predict additional true facts using only an existing
database. This is achieved by representing each entity (i.e., each object or individual) in the database
as a vector. These vectors can capture facts about that entity and how probable it is part of a certain
relation. Each relation is defined through the parameters of a novel neural tensor network which
can explicitly relate two entity vectors. The first contribution of this paper is the new neural tensor
network (NTN), which generalizes several previous neural network models and provides a more
powerful way to model relational information than a standard neural network layer.

The second contribution is to introduce a new way to represent entities in knowledge bases. Previous
work [8, 9, 10] represents each entity with one vector. However, does not allow the sharing of

∗Both authors contributed equally.

1

Reasoning about Relations Knowledge Base

Relation: has part

tail
leg
….

cat
dog
….

Relation: type of

cat
limb
….

tiger
leg
….

tiger
…

Bengal tiger
….

Relation: instance of

Does a Bengal tiger have a tail?
 (Bengal tiger, has part, tail)

Confidence for Triplet

 R
Neural
Tensor

Network

e1 e2

Word Vector Space

eye

tail

leg

dog

cat

tiger

Bengal

India

Figure 1: Overview of our model which learns vector representations for entries in a knowledge base
in order to predict new relationship triples. If combined with word representations, the relationships
can be predicted with higher accuracy and for entities that were not in the original knowledge base.

statistical strength if entity names share similar substrings. Instead, we represent each entity as the
average of its word vectors, allowing the sharing of statistical strength between the words describing
each entity e.g., Bank of China and China.

The third contribution is the incorporation of word vectors which are trained on large unlabeled text.
This readily available resource enables all models to more accurately predict relationships.

We train on relationships in WordNet and Freebase and evaluate on a heldout set of unseen relational
triplets. Our model outperforms previously introduced related models such as those of [8, 9, 10]. Our
new model, illustrated in Fig. 1, outperforms previous knowledge base models by a large margin.
We will make the code and dataset available at www.socher.org.

2 Related Work

The work most similar to ours is that by Bordes et al. [8] and Jenatton et al. [9] who also learn
vector representations for entries in a knowledge base. We implement their approach and compare
to it directly. Our new model outperforms this and other previous work. We also show that both our
and their model can benefit from initialization with unsupervised word vectors.

Another related approach is by Sutskever et al. [11] who use tensor factorization and Bayesian
clustering for learning relational structures. Instead of clustering the entities in a nonparametric
Bayesian framework we rely purely on learned entity vectors. Their computation of the truth of a
relation can be seen as a special case of our proposed model. Instead of using MCMC for inference
and learning, we use standard forward propagation and backpropagation techniques modified for
the NTN. Lastly, we do not require multiple embeddings for each entity. Instead, we consider the
subunits (space separated words) of entity names.

Our Neural Tensor Network is related to other models in the deep learning literature. Ranzato and
Hinton [12] introduced a factored 3-way Restricted Boltzmann Machine which is also parameterized
by a tensor. Recently, Yu et al. [13] introduce a model with tensor layers for speech recognition.
Their model is a special case of our model and is only applicable inside deeper neural networks. Si-
multaneously with this paper, we developed a recursive version of this model for sentiment analysis
[14].

There is a vast amount of work on extending knowledge bases by parsing external, text corpora
[5, 6, 2], among many others. The field of open information extraction [15], for instance, extracts
relationships from millions of web pages. This work is complementary to ours; we mainly note that
little work has been done on knowledge base extension based purely on the knowledge base itself or
with readily available resources but without re-parsing a large corpus.

2

www.socher.org

Lastly, our model can be seen as learning a tensor factorization, similar to Nickel et al. [16]. In the
comparison of Bordes et al. [17] these factorization methods have been outperformed by energy-
based models.

Many methods that use knowledge bases as features such as [3, 4] could benefit from a method that
maps the provided information into vector representations. We learn to modify word representations
via grounding in world knowledge. This essentially allows us to analyze word embeddings and
query them for specific relations. Furthermore, the resulting vectors could be used in other tasks
such as named entity recognition [18] or relation classification in natural language [19].

3 Neural Models for Reasoning over Relations

This section introduces the neural tensor network that reasons over database entries by learning
vector representations for them. As shown in Fig. 1, each relation triple is described by a neural
network and pairs of database entities which are given as input to that relation’s model. The model
returns a high score if they are in that relationship and a low one otherwise. This allows any fact,
whether implicit or explicitly mentioned in the database to be answered with a certainty score. We
first describe our neural tensor model and then show that many previous models are special cases of
it.

3.1 Neural Tensor Networks for Relation Classification

The goal is to learn models for common sense reasoning, the ability to realize that some facts hold
purely due to other existing relations. Another way to describe the goal is link prediction in an
existing network of relationships between entity nodes. The goal of our approach is to be able
to state whether two entities (e1, e2) are in a certain relationship R. For instance, whether the
relationship (e1, R, e2) = (Bengal tiger, has part, tail) is true and with what certainty. To this end,
we define a set of parameters indexed by R for each relation’s scoring function. Let e1, e2 ∈ Rd be
the vector representations (or features) of the two entities. For now we can assume that each value
of this vector is randomly initialized to a small uniformly random number.

The Neural Tensor Network (NTN) replaces a standard linear neural network layer with a bilin-
ear tensor layer that directly relates the two entity vectors across multiple dimensions. The model
computes a score of how likely it is that two entities are in a certain relationship by the following
NTN-based function:

g(e1, R, e2) = uTRf

(
eT1W

[1:k]
R e2 + VR

[
e1
e2

]
+ bR

)
, (1)

where f = tanh is a standard nonlinearity applied element-wise, W [1:k]
R ∈ Rd×d×k is a tensor and

the bilinear tensor product eT1W
[1:k]
R e2 results in a vector h ∈ Rk, where each entry is computed by

one slice i = 1, . . . , k of the tensor: hi = eT1W
[i]
R e2. The other parameters for relation R are the

standard form of a neural network: VR ∈ Rk×2d and U ∈ Rk, bR ∈ Rk.

Linear Slices of Standard Bias
 Layer Tensor Layer Layer

UT f(e1
T W[1:2] e2 + V + b)

e1

e2

 f + +

Neural Tensor Layer

Figure 2: Visualization of the Neural Tensor
Network. Each dashed box represents one
slice of the tensor, in this case there are k = 2
slices.

Fig. 2 shows a visualization of this model. The main
advantage is that it can relate the two inputs mul-
tiplicatively instead of only implicitly through the
nonlinearity as with standard neural networks where
the entity vectors are simply concatenated. Intu-
itively, we can see each slice of the tensor as being
responsible for one type of entity pair or instantiation
of a relation. For instance, the model could learn that
both animals and mechanical entities such as cars
can have parts (i.e., (car, has part, x)) from differ-
ent parts of the semantic word vector space. In our
experiments, we show that this results in improved
performance. Another way to interpret each tensor
slice is that it mediates the relationship between the
two entity vectors differently.

3

3.2 Related Models and Special Cases

We now introduce several related models in increasing order of expressiveness and complexity. Each
model assigns a score to a triplet using a function g measuring how likely the triplet is correct. The
ideas and strengths of these models are combined in our new Neural Tensor Network defined above.

Distance Model. The model of Bordes et al. [8] scores relationships by mapping the left and right
entities to a common space using a relationship specific mapping matrix and measuring the L1

distance between the two. The scoring function for each triplet has the following form:

g(e1, R, e2) = ‖WR,1e1 −WR,2e2‖1,

where WR,1,WR,2 ∈ Rd×d are the parameters of relation R’s classifier. This similarity-based
model scores correct triplets lower (entities most certainly in a relation have 0 distance). All other
functions are trained to score correct triplets higher. The main problem with this model is that the
parameters of the two entity vectors do not interact with each other, they are independently mapped
to a common space.

Single Layer Model. The second model tries to alleviate the problems of the distance model by
connecting the entity vectors implicitly through the nonlinearity of a standard, single layer neural
network. The scoring function has the following form:

g(e1, R, e2) = uTRf (WR,1e1 +WR,2e2) = uTRf

(
[WR,1WR,2]

[
e1
e2

])
,

where f = tanh, WR,1,WR,2 ∈ Rk×d and uR ∈ Rk×1 are the parameters of relation R’s scoring
function. While this is an improvement over the distance model, the non-linearity only provides a
weak interaction between the two entity vectors at the expense of a harder optimization problem.
Collobert and Weston [20] trained a similar model to learn word vector representations using words
in their context. This model is a special case of the tensor neural network if the tensor is set to 0.

Hadamard Model. This model was introduced by Bordes et al. [10] and tackles the issue of weak
entity vector interaction through multiple matrix products followed by Hadamard products. It is
different to the other models in our comparison in that it represents each relation simply as a single
vector that interacts with the entity vectors through several linear products all of which are parame-
terized by the same parameters. The scoring function is as follows:

g(e1, R, e2) = (W1e1 ⊗Wrel,1eR + b1)
T
(W2e2 ⊗Wrel,2eR + b2)

where W1,Wrel,1,W2,Wrel,2 ∈ Rd×d and b1, b2 ∈ Rd×1 are parameters that are shared by all
relations. The only relation specific parameter is eR. While this allows the model to treat relational
words and entity words the same way, we show in our experiments that giving each relationship its
own matrix operators results in improved performance. However, the bilinear form between entity
vectors is by itself desirable.

Bilinear Model. The fourth model [11, 9] fixes the issue of weak entity vector interaction through a
relation-specific bilinear form. The scoring function is as follows: g(e1, R, e2) = eT1WRe2, where
WR ∈ Rd×d are the only parameters of relation R’s scoring function. This is a big improvement
over the two previous models as it incorporates the interaction of two entity vectors in a simple
and efficient way. However, the model is now restricted in terms of expressive power and number
of parameters by the word vectors. The bilinear form can only model linear interactions and is
not able to fit more complex scoring functions. This model is a special case of NTNs with VR =
0, bR = 0, k = 1, f = identity. In comparison to bilinear models, the neural tensor has much
more expressive power which will be useful especially for larger databases. For smaller datasets the
number of slices could be reduced or even vary between relations.

3.3 Training Objective and Derivatives

All models are trained with contrastive max-margin objective functions. The main idea is that each
triplet in the training set T (i) = (e

(i)
1 , R(i), e

(i)
2) should receive a higher score than a triplet in which

one of the entities is replaced with a random entity. There are NR many relations, indexed by R(i)

for each triplet. Each relation has its associated neural tensor net parameters. We call the triplet

4

with a random entity corrupted and denote the corrupted triplet as T (i)
c = (e

(i)
1 , R(i), ec), where we

sampled entity ec randomly from the set of all entities that can appear at that position in that relation.
Let the set of all relationships’ NTN parameters be Ω = u,W,V,b,E. We minimize the following
objective:

J(Ω) =

N∑
i=1

C∑
c=1

max
(
0, 1− g

(
T (i)

)
+ g

(
T (i)
c

))
+ λ‖Ω‖22,

where N is the number of training triplets and we score the correct relation triplet higher than its
corrupted one up to a margin of 1. For each correct triplet we sample C random corrupted triplets.
We use standard L2 regularization of all the parameters, weighted by the hyperparameter λ.

The model is trained by taking derivatives with respect to the five groups of parameters. The deriva-
tives for the standard neural network weights V are the same as in general backpropagation. Drop-
ping the relation specific index R, we have the following derivative for the j’th slice of the full
tensor:

∂g(e1, R, e2)

∂W [j]
= ujf

′(zj)e1e
T
2 , where zj = eT1W

[j]e2 + Vj·

[
e1
e2

]
+ bj ,

where Vj· is the j’th row of the matrix V and we defined zj as the j’th element of the k-dimensional
hidden tensor layer. We use minibatched L-BFGS for optimization which converges to a local
optimum of our non-convex objective function. We also experimented with AdaGrad but found that
it performed slightly worse.

3.4 Entity Representations Revisited
All the above models work well with randomly initialized entity vectors. In this section we introduce
two further improvements: representing entities by their word vectors and initializing word vectors
with pre-trained vectors.

Previous work [8, 9, 10] assigned a single vector representation to each entity of the knowledge base,
which does not allow the sharing of statistical strength between the words describing each entity.
Instead, we model each word as a d-dimensional vector ∈ Rd and compute an entity vector as the
composition of its word vectors. For instance, if the training data includes a fact that homo sapiens
is a type of hominid and this entity is represented by two vectors vhomo and vsapiens, we may extend
the fact to the previously unseen homo erectus, even though its second word vector for erectus might
still be close to its random initialization.

Hence, for a total number of NE entities consisting of NW many unique words, if we train on
the word level (the training error derivatives are also back-propagated to these word vectors), and
represent entities by word vectors, the full embedding matrix has dimensionality E ∈ Rd×NW .
Otherwise we represent each entity as an atomic single vector and train the entity embedding matrix
E ∈ Rd×NE .

We represent the entity vector by averaging its word vectors. For example, vhomo sapiens =
0.5(vhomo+vsapiens). We have also experimented with Recursive Neural Networks (RNNs) [21, 19]
for the composition. In the WordNet subset over 60% of the entities have only a single word and
over 90% have less or equal to 2 words. Furthermore, most of the entities do not exhibit a clear
compositional structure, e.g., people names in Freebase. Hence, RNNs did not show any distinct
improvement over simple averaging and we will not include them in the experimental results.

Training word vectors has the additional advantage that we can benefit from pre-trained unsuper-
vised word vectors, which in general capture some distributional syntactic and semantic information.
We will analyze how much it helps to use these vectors for initialization in Sec. 4.2. Unless other-
wise specified, we use the d = 100-dimensional vectors provided by [18]. Note that our approach
does not explicitly deal with polysemous words. One possible future extension is to incorporate the
idea of multiple word vectors per word as in Huang et al. [22].

4 Experiments
Experiments are conducted on both WordNet [1] and FreeBase [23] to predict whether some re-
lations hold using other facts in the database. This can be seen as common sense reasoning [24]
over known facts or link prediction in relationship networks. For instance, if somebody was born

5

in London, then their nationality would be British. If a German Shepard is a dog, it is also a verte-
brate. Our models can obtain such knowledge (with varying degrees of accuracy) by jointly learning
relationship classifiers and entity representations.

We first describe the datasets, then compare the above models and conclude with several analyses of
important modeling decisions, such as whether to use entity vectors or word vectors.

4.1 Datasets Dataset #R. # Ent. # Train # Dev # Test
Wordnet 11 38,696 112,581 2,609 10,544
Freebase 13 75,043 316,232 5,908 23,733

Table 1: The statistics for WordNet and Freebase including number of different relations #R.

Table 1 gives the statistics of the databases. For WordNet we use 112,581 relational triplets for
training. In total, there are 38,696 unique entities in 11 different relations. One important difference
to previous work is our dataset generation which filters trivial test triplets. We filter out tuples from
the testing set if either or both of their two entities also appear in the training set in a different relation
or order. For instance, if (e1, similar to, e2) appears in training set, we delete (e2, similar to, e1) and
(e1, type of, e2), etc from the testing set. In the case of synsets containing multiple words, we pick
the first, most frequent one. For FreeBase, we use the relational triplets from People domain, and
extract 13 relations. We remove 6 of them (place of death, place of birth, location, parents, children,
spouse) from the testing set since they are very difficult to predict, e.g., the name of somebody’s
spouse is hard to infer from other knowledge in the database.

It is worth noting that the setting of FreeBase is profoundly different from WordNet’s. In WordNet,
e1 and e2 can be arbitrary entities; but in FreeBase, e1 is restricted to be a person’s name, and e2
can only be chosen from a finite answer set. For example, if R = gender, e2 can only be male or
female; if R = nationality, e2 can only be one of 188 country names. All the relations for testing
and their answer set sizes are shown in Fig. 3.

We use a different evaluation set from [8] because it has become apparent to us and them that
there were issues of overlap between their training and testing sets which impacted the quality and
interpretability of their evaluation.

4.2 Relation Triplets Classification

Our goal is to predict correct facts in the form of relations (e1, R, e2) in the testing data. This could
be seen as answering questions such as Does a dog have a tail?, using the scores g(dog, has part,
tail) computed by the various models.

We use the development set to find a threshold TR for each relation such that if g(e1, R, e2) ≥ TR,
the relation (e1, R, e2) holds, otherwise it does not hold.

In order to create a testing set for classification, we randomly switch entities from correct testing
triplets resulting in a total of 2×#Test triplets with equal number of positive and negative examples.
In particular, we constrain the entities from the possible answer set for Freebase by only allowing
entities in a position if they appeared in that position in the dataset. For example, given a correct
triplet (Pablo Picaso, nationality, Spain), a potential negative example is (Pablo Picaso, nationality,
United States). We use the same way to generate the development set. This forces the model to focus
on harder cases and makes the evaluation harder since it does not include obvious non-relations such
as (Pablo Picaso, nationality, Van Gogh). The final accuracy is based on how many triplets are
classified correctly.

Model Comparisons
We first compare the accuracy among different models. In order to get the highest accuracy for all
the models, we cross-validate using the development set to find the best hyperparameters: (i) vector
initialization (see next section); (ii) regularization parameter λ = 0.0001; (iii) the dimensionality
of the hidden vector (for the single layer and NTN models d = 100) and (iv) number of training
iterations T = 500. Finally, the number of slices was set to 4 in our NTN model.

Table 2 shows the resulting accuracy of each model. Our Neural Tensor Network achieves an accu-
racy of 86.2% on the Wordnet dataset and 90.0% on Freebase, which is at least 2% higher than the
bilinear model and 4% higher than the Single Layer Model.

6

Model WordNet Freebase Avg.
Distance Model 68.3 61.0 64.7
Hadamard Model 80.0 68.8 74.4
Single Layer Model 76.0 85.3 80.7
Bilinear Model 84.1 87.7 85.9
Neural Tensor Network 86.2 90.0 88.1

Table 2: Comparison of accuracy of the different models described in Sec. 3.2 on both datasets.

70 75 80 85 90 95 100

has instance

type of

member meronym

member holonym

part of

has part

subordinate instance of

domain region

synset domain topic

similar to

domain topic

WordNet

Accuracy (%)

70 75 80 85 90 95 100

gender (2)

nationality (188)

profession (455)

institution (727)

cause of death (170)

religion (107)

ethnicity (211)

FreeBase

Accuracy (%)

Figure 3: Comparison of accuracy of different relations on both datasets. For FreeBase, the number
in the bracket denotes the size of possible answer set.

First, we compare the accuracy among different relation types. Fig. 3 reports the accuracy of each
relation on both datasets. Here we use our NTN model for evaluation, other models generally have
a lower accuracy and a similar distribution among different relations. The accuracy reflects the
difficulty of inferring a relationship from the knowledge base.

On WordNet, the accuracy varies from 75.5% (domain region) to 97.5% (subordinate instance of).
Reasoning about some relations is more difficult than others, for instance, the relation (dramatic art,
domain region, closed circuit television) is much more vague than the relation (missouri, subordinate
instance of, river). Similarly, the accuracy varies from 77.2% (institution) to 96.6% (gender) in
FreeBase. We can see that the two easiest relations for reasoning are gender and nationality, and the
two most difficult ones are institution and cause of death. Intuitively, we can infer the gender and
nationality from the name, location, or profession of a person, but we hardly infer a person’s cause
of death from all other information.

We now analyze the choice of entity representations and also the influence of word initializations. As
explained in Sec. 3.4, we compare training entity vectors (E ∈ Rd×NE) and training word vectors
(E ∈ Rd×NW), where an entity vector is computed as the average of word vectors. Furthermore, we
compare random initialization and unsupervised initialization for training word vectors. In summary,
we explore three options: (i) entity vectors (EV); (ii) randomly initialized word vectors (WV); (iii)
word vectors initialized with unsupervised word vectors (WV-init).

Fig. 4 shows the various models and their performance with these three settings. We observe
that word vectors consistently and significantly outperform entity vectors on WordNet and this also
holds in most cases on FreeBase. It might be because the entities in WordNet share more common
words. Furthermore, we can see that most of the models have improved accuracy with initialization
from unsupervised word vectors. Even with random initialization, our NTN model with training
word vectors can reach high classification accuracy: 84.7% and 88.9% on WordNet and Freebase
respectively. In other words, our model is still able to perform good reasoning without external
textual resources.

4.3 Examples of Reasoning

We have shown that our model can achieve high accuracy when predicting whether a relational triplet
is true or not. In this section, we give some example predictions. In particular, we are interested in
how the model does transitive reasoning across multiple relationships in the knowledge base.

First, we demonstrate examples of relationship predictions by our Neural Tensor Network on Word-
Net. We select the first entity and a relation and then sort all the entities (represented by their word

7

Distance Hadamard Single Layer Bilinear NTN
50

55

60

65

70

75

80

85

90

WordNet

A
c
c
u

ra
c
y
 (

%
)

EV

WV

WV−init

Distance Hadamard Single Layer Bilinear NTN
60

65

70

75

80

85

90

95

FreeBase

A
c
c
u

ra
c
y
 (

%
)

EV

WV

WV−init

Figure 4: Influence of entity representations. EV: entity vectors. WV: randomly initialized word
vectors. WV-init: word vectors initialized with unsupervised semantic word vectors.

Entity e1 Relationship R Sorted list of entities likely to be in this relationship
tube type of structure; anatomical structure; device; body; body part; organ
creator type of individual; adult; worker; man; communicator; instrumentalist
dubrovnik subordinate instance of city; town; city district; port; river; region; island
armed forces domain region military operation; naval forces; military officier; military court
boldness has instance audaciousness; aggro; abductor; interloper; confession;
peole type of group; agency; social group; organisation; alphabet; race

Table 3: Examples of a ranking by the model for right hand side entities in WordNet. The ranking
is based on the scores that the neural tensor network assigns to each triplet.

vector averages) by descending scores that the model assigns to the complete triplet. Table 3 shows
some examples for several relations, and most of the inferred relations among them are plausible.

Francesco
Guicciardini

historian male

Italy Florence

Francesco
Patrizi

Matteo
Rosselli

profession gender

place of birth

nationality

location nationality

nationality

gender

Figure 5: A reasoning example in Free-
Base. Black lines denote relationships given
in training, red lines denote relationships the
model inferred. The dashed line denotes
word vector sharing.

Fig. 5 illustrates a real example from FreeBase in
which a person’s information is inferred from the
other relations provided in training. Given place
of birth is Florence and profession is historian, our
model can accurately predict that Francesco Guic-
ciardini’s gender is male and his nationality is Italy.
These might be infered from two pieces of com-
mon knowledge: (i) Florence is a city of Italy; (ii)
Francesco is a common name among males in Italy.
The key is how our model can derive these facts from
the knowledge base itself, without the help of ex-
ternal information. For the first fact, some relations
such as Matteo Rosselli has location Florence and
nationality Italy exist in the knowledge base, which
might imply the connection between Florence and
Italy. For the second fact, we can see that many
other people e.g., Francesco Patrizi are shown Ital-
ian or male in the FreeBase, which might imply that
Francesco is a male or Italian name. It is worth not-
ing that we do not have an explicit relation between Francesco Guicciardini and Francesco Patrizi;
the dashed line in Fig. 5 shows the benefits from the sharing via word representations.

5 Conclusion

We introduced Neural Tensor Networks for knowledge base completion. Unlike previous models
for predicting relationships using entities in knowledge bases, our model allows mediated interac-
tion of entity vectors via a tensor. The model obtains the highest accuracy in terms of predicting
unseen relationships between entities through reasoning inside a given knowledge base. It enables
the extension of databases even without external textual resources. We further show that by rep-
resenting entities through their constituent words and initializing these word representations using
readily available word vectors, performance of all models improves substantially. Potential path for
future work include scaling the number of slices based on available training data for each relation
and extending these ideas to reasoning over free text.

8

Acknowledgments
Richard is partly supported by a Microsoft Research PhD fellowship. The authors gratefully acknowledge the
support of a Natural Language Understanding-focused gift from Google Inc., the Defense Advanced Research
Projects Agency (DARPA) Deep Exploration and Filtering of Text (DEFT) Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-13-2-0040, the DARPA Deep Learning program under contract
number FA8650-10-C-7020 and NSF IIS-1159679. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect the view of DARPA,
AFRL, or the US government.

References
[1] G.A. Miller. WordNet: A Lexical Database for English. Communications of the ACM, 1995.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In
Proceedings of the 16th international conference on World Wide Web, 2007.

[3] J. Graupmann, R. Schenkel, and G. Weikum. The SphereSearch engine for unified ranked
retrieval of heterogeneous XML and web documents. In Proceedings of the 31st international
conference on Very large data bases, VLDB, 2005.

[4] V. Ng and C. Cardie. Improving machine learning approaches to coreference resolution. In
ACL, 2002.

[5] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for automatic hypernym
discovery. In NIPS, 2005.

[6] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction.
In EMNLP, 2011.

[7] G. Angeli and C. D. Manning. Philosophers are mortal: Inferring the truth of unseen facts. In
CoNLL, 2013.

[8] A. Bordes, J. Weston, R. Collobert, and Y. Bengio. Learning structured embeddings of knowl-
edge bases. In AAAI, 2011.

[9] R. Jenatton, N. Le Roux, A. Bordes, and G. Obozinski. A latent factor model for highly
multi-relational data. In NIPS, 2012.

[10] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. Joint Learning of Words and Meaning Repre-
sentations for Open-Text Semantic Parsing. AISTATS, 2012.

[11] I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. Modelling relational data using Bayesian
clustered tensor factorization. In NIPS, 2009.

[12] M. Ranzato and A. Krizhevsky G. E. Hinton. Factored 3-Way Restricted Boltzmann Machines
For Modeling Natural Images. AISTATS, 2010.

[13] D. Yu, L. Deng, and F. Seide. Large vocabulary speech recognition using deep tensor neural
networks. In INTERSPEECH, 2012.

[14] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive
deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.

[15] A. Yates, M. Banko, M. Broadhead, M. J. Cafarella, O. Etzioni, and S. Soderland. Textrunner:
Open information extraction on the web. In HLT-NAACL (Demonstrations), 2007.

[16] M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective learning on multi-
relational data. In ICML, 2011.

[17] A. Bordes, N. Usunier, A. Garca-Durn, J. Weston, and O. Yakhnenko. Irreflexive and hierar-
chical relations as translations. CoRR, abs/1304.7158, 2013.

[18] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method for
semi-supervised learning. In Proceedings of ACL, pages 384–394, 2010.

[19] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic Compositionality Through
Recursive Matrix-Vector Spaces. In EMNLP, 2012.

[20] R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural
networks with multitask learning. In ICML, 2008.

9

[21] R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning. Dynamic Pooling and
Unfolding Recursive Autoencoders for Paraphrase Detection. In NIPS. MIT Press, 2011.

[22] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving Word Representations via
Global Context and Multiple Word Prototypes. In ACL, 2012.

[23] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created
graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, SIGMOD, 2008.

[24] N. Tandon, G. de Melo, and G. Weikum. Deriving a web-scale commonsense fact database. In
AAAI Conference on Artificial Intelligence (AAAI 2011), 2011.

10

	Introduction
	Related Work
	Neural Models for Reasoning over Relations
	Neural Tensor Networks for Relation Classification
	Related Models and Special Cases
	Training Objective and Derivatives
	Entity Representations Revisited

	Experiments
	Datasets
	Relation Triplets Classification
	Examples of Reasoning

	Conclusion

