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Preface

For Dan and Hayden, with even greater variances...

Unsupervised learning of hierarchical syntactic structure from free-form natural language

text is an important and difficult problem, with implications for scientific goals, such as un-

derstanding human language acquisition, or engineering applications, including question

answering, machine translation and speech recognition. Asis the case with many unsu-

pervised settings in machine learning, grammar induction usually reduces to a non-convex

optimization problem. This dissertation proposes a novel family of head-outward genera-

tive dependency parsing models and a curriculum learning strategy, co-designed to effec-

tively induce grammars despite local optima, by taking advantage of multiple views of data.

The dependency-and-boundary models are parameterized to exploit, as much as possi-

ble, any observable state, such as words at sentence boundaries, which limits the prolif-

eration of optima that is ordinarily caused by presence of latent variables. They are also

flexible in their modeling of overlapping subgrammars and sensitive to different kinds of

input types. These capabilities allow training data to be split into simpler text fragments,

in accordance with proposed parsing constraints, thereby increasing the numbers of visible

edges. An optimization strategy then gradually exposes learners to more complex data.

The proposed suite of constraints on possible valid parse structures, which can be ex-

tracted from unparsed surface text forms, helps guide language learners towards linguisti-

cally plausible syntactic constructions. These constraints are efficient, easy to implement

and applicable to a variety of naturally-occurring partialbracketings, including capitaliza-

tion changes, punctuation and web markup. Connections between traditional syntax and
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HTML annotations, for instance, were not previously known,and are one of several discov-

eries about statistical regularities in text that this thesis contributes to the science linguistics.

Resulting grammar induction pipelines attain state-of-the-art performance not only on

a standard English dependency parsing test bed, but also as judged by constituent structure

metrics, in addition to a more comprehensive multilingual evaluation that spans disparate

language families. This work widens the scope and difficultyof the evaluation methodol-

ogy for unsupervised parsing, testing against nineteen languages (rather than just English),

evaluating on all (not just short) sentence lengths, and using disjoint (blind) training and test

data splits. The proposed methods also show that it is possible to eliminate commonly used

supervision signals, including biased initializers, manually tuned training subsets, custom

termination criteria and knowledge of part-of-speech tags, and still improve performance.

Empirical evidence presented in this dissertation strongly suggests that complex learn-

ing tasks like grammar induction can cope with non-convexity and discover more correct

syntactic structures by pursuing learning strategies thatbegin with simple data and basic

models and progress to more complex data instances and more expressive model parameter-

izations. A contribution to artificial intelligence more broadly is thus a collection of search

techniques that make expectation-maximization and other optimization algorithms less sen-

sitive to local optima. The proposed tools include multi-objective approaches for avoiding

or escaping fixed points, iterative model recombination and“starting small” strategies that

gradually improve candidate solutions, and a generic framework for transforming these

and other already-found locally optimal models. Such transformations make for informed,

intelligent, non-random restarts, enabling the design of comprehensive search networks that

are capable of exploring combinatorial parameter spaces more rapidly and more thoroughly

than conventional optimization methods.
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Dedicated to my loving family.
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Chapter 1

Introduction

Parsing free-form text is a core task in natural language processing. Written sentences and

speech-transcribed utterances are usually stored in a computer’s memory as character se-

quences. However, this simple representation belies the rich linguistic structure that perme-

ates language. Correctly identifying hierarchical substructures, from the parts-of-speech of

individual words to phrasal and clausal bracketings of multi-word spans (see Figure 1.1),

is indispensable for many applications of computational linguistics. Coreference resolu-

tion [139, 184], semantic role labeling [116, 328] and relation extraction [135, 221] are just

a few of the important problems that depend on the information in syntactic parse trees.

Unfortunately high quality parsers are not available for most languages, since manually

DT NN VBZ IN DT NN

[S [NP The check] [VP is [PP in [NP the mail]]]].
︸ ︷︷ ︸

Subject
︸ ︷︷ ︸

Object

Figure 1.1: A syntactic annotation of the running example sentence, including (i) individ-
ual word tokens’ parts-of-speech (POS), which can be determiners (DT), adjectives (JJ),
nouns (NN), prepositions (IN), verbs (VBZ), etc.; (ii) a bracketing that shows how words are
arranged into coherent chunks, i.e., the noun (NP), prepositional (PP) and verb phrases (VP),
which culminate in a simple declarative clause (S) that spans the input text in its entirety;
and (iii) lexical head words of the constituents, i.e., the main nouns, preposition and verb
of the corresponding phrases, as well as the head verb (is) that derives the full sentence.

1
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specifying comprehensive parsing rules, or constructing large reference treebanks from

which valid grammatical productions could be extracted statistically, is an extremely time,

labor and money-intensive process. Even where modern supervised parsers are available

they tend not to generalize well out-of-domain, for examplefrom traditional news-style

data to biomedical text [210]. Nevertheless the ability to parse understudied and low-

resource languages, in addition to non-standard genres like scientific writing, legalese and

web text, is a crucial prerequisite to exploiting any higher-level NLP components, which

have come to rely on good quality parses for their success, inthese important domains.

Partly because it may not be feasible to thoroughly annotatestructure for most genres of

most languages, fully-unsupervised parsing and grammar induction [44, 82, 345] emerged

as active research areas, alongside more traditional semi-supervised and domain adaptation

methods, but further distinguished by a possible connection to human language acquisition.

Many standard grammatical formalisms and parsing styles have been used as vehi-

cles for inducing syntactic structure, including constituency [245, 82, 171, 34], depen-

dency [44, 345, 244, 172, 133] and combinatory categorial grammars [30, 31], or CCG,

for which reference treebanks already exist from the manualannotation efforts in the su-

pervised parsing settings, as well as tree-substitution grammars [33, 68] and other repre-

sentations [299, 283]. I chose to work within a simple dependency parsing framework,

where the task, given a sentence (e.g.,The check is in the mail.), is to identify its root

word (i.e.,is), along with the parents of all other (non-root) words (i.e., checkfor The, is

for check, is for in, mail for the, and in for mail — see Figure 1.1). If we restrict atten-

tion only to well-formed parses, the task becomes equivalent to finding a spanning tree,

taking the input tokens as vertices of a graph [212]. This representation had become a

dominant paradigm for grammar induction following Klein and Manning’s publication of

the dependency model with valence [172], or DMV, which I describe in the next chap-

ter (see Ch. 2). Resulting unlabeled dependency edges are, arguably, closer to semantics

and capturing meaning [10] than the output of many other syntactic formalisms, such as

unlabeled constituents. At the same time, dependency grammars present a light-weight

framework that, although shallower than CCG, is also easierto induce and faster to parse.

This representation is therefore not only relevant to the more general problem of language

understanding but also strikes the correct balance for certain important applications that
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motivate grammar induction in industry. Prime examples include: (i) information retrieval

and web search [38, 125], where distances between words in dependency parse trees may

work as better indicators of proximity than their nominal sequential positioning in surface

text [45, 181]; (ii) question answering [101], where (once again, dependency) parses of nat-

ural language questions [248] are transformed to match the structure of corresponding hy-

pothetical sentences that may contain an answer; and (iii) syntax-aware statistical machine

translation [340], in which one side of a parallel corpus is sometimes “pre-ordered” to bet-

ter match the other side of a bitext [164], for example, from the subject-verb-object (SVO)

word order of English to subject-object-verb (SOV) in Japanese, simply by pushing main

verbs to ends of sentences, or to object-subject-verb (OSV)of “Yoda-speak,” by also re-

arranging the arguments of root words:In the mail the check is.In situations where con-

stituent parses are preferred, the weak equivalence between phrase and dependency struc-

tures [337] could be exploited to obtain the corresponding unlabeled bracketings, such as

[[The check] [ is [in [the mail]]]].

The DMV ushered a breakthrough in unsupervised dependency parsing performance,

for the first time beating both left- and right-branching baselines, which simply connect ad-

jacent words. Many of the state-of-the-art results that followed Klein and Manning’s semi-

nal publication were also based on their model [295, 65, 133,66, 117, 33]. For this reason, I

began by replicating the core DMV architecture, inheritingmany of its simplifying assump-

tions. These included: (i) using POS tags as word categories[44], in place of actual words;

(ii) imposing a projective parsing model to generate these tokens [7, 8, 244],1 efficiently

learnable via inside-outside re-estimation [89, 243]; and(iii) processing all sentences in-

dependently. The above simplifications are, of course, mereheuristics and don’t always

hold. Lexical items will often contain important semantic information that could facilitate

parsing in a way that coarse syntactic categories cannot. A minority of correct dependency

parse trees will be non-projective, with some dependency arcs crossing, hence unattainable

by the DMV. Expectation-maximization (EM) algorithms [83,14] for grammar induction

1In a projectiveparse structure, the yield of any syntactic head is requiredto be continuous [176]: more
specifically, a dependency graph is projective precisely when an edge froma© to z© implies the existence of
a directed path froma© also to all of the intervening words that lie between them in asentence [211,§1.3.1].
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will get stuck in local optima, requiring careful initialization and/or restarts. And the syn-

tactic roles played by words in nearby sentences will tend tobe correlated [270]. Despite

these clear deficiencies, the DMV has stood the test of time asa robust platform for getting

grammar inducers off the ground. Taking a cue from this success story, the work pre-

sented in this thesis further strengthens independence assumptions, for example splitting

sentences on punctuation and processing the resulting pieces separately. Focusing on sim-

ple examples, such as short sentences and incomplete text fragments, helps guide unsuper-

vised learning, mirroring the well-known effect that boosting hard examples has in super-

vised training [108]. And unlike in supervised parsing, where one popular trend has been

to introduce more complex models, with specialized priors to prevent overfitting [156],

the over-arching theme of this work on grammar induction is to employ extremely simple

parsing models, but coupled with strong, hard constraints,to guard againstunderfitting.

The research described in this dissertation followed a two-phase trajectory. In the first

phase, I took apart the DMV set-up, trying to understand which pieces worked, which didn’t

and why. In the second phase, I used the insights obtained from my experience in the first

phase to improve the working components and to design more effective grammar induction

models and pipelines around them. Some of the known weak points in the DMV set-up in-

clude its sensitivity to local optima and choice of initializer [113,§6.2]. Part I of this thesis

therefore focuses on optimization strategies that either don’t require initialization (Ch. 3)

or work well with uninformed, uniform-at-random initializers (Ch. 4), as well as strategies

for avoiding and escaping local optima (Ch. 5). The DMV’s “ad-hoc harmonic” initializer,

whose stated goal was “to point the model in the vague generaldirection of what linguistic

dependency structures should look like,” is only one of manykinds of universal knowledge

that could be baked into a grammar inducer. In that vein, Smith and Eisner [295] further

emphasized structural locality biases; Seginer [283, 284]made use of the facts that humans

process most sentences in linear time, that parse trees tendto be skewed, and that words

follow a Zipfian distribution; Gillenwater et al. [117] exploited the realized sparsity in the

quadratic space of possible word-word interactions; and myearly attempt to understand the

power laws of harmonic initializers yielded an additional,novel observation: dependency

arc lengths are log-normally distributed (Ch. 2). Leveraging such biases can be trouble-

some, however, since the exact parameters of soft universalproperties have typically been
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optimized for English or fitted to treebanks, rather than learned from text. Part II of this the-

sis therefore focuses on identifying reliable sources of hard constraints on parse trees that

can be mined for naturally-occurring partial bracketings [245], making explicit the con-

nection between linguistic structure and web markup (Ch. 6,the first work to explore such

a connection), punctuation (Ch. 7), and capitalization (Ch. 8), to augment the projectivity

restrictions that are implicitly enforced by head-outwardgenerative parsing models.

One of the biggest questions that this dissertation aims to answer is the extent to which

supervision is truly necessary for grammar induction. To this end, Part III begins by show-

ing how word categories based on gold parts-of-speech, on which the entire dependency

grammar induction field had been relying for state-of-the-art performance since 2004,2

when the lexicalized system of Paskin [244] was revealed to score below chance [172], can

be replaced by fully-unsupervised word clusters and still improve results (Ch. 9).3 This is a

key contribution, since assuming knowledge of parts-of-speech is not only unrealistic from

the language acquisition perspective but also an inefficient use of the syntactic information

that these tags contain: at around the same time, in 2011, McDonald et al. [213] showed

how universal part-of-speech categories [249] can be exploited to transfer delexicalized

parsers across languages, resulting in a stronger alternative solution to the unsupervised

parsing problem than grammar induction from gold tags. The remainder of Part III covers

dependency-and-boundary models (DBMs), which heavily exploit any available informa-

tion about structure that isnot latent, for example at sentence boundaries — another key

contribution of this thesis. DBMs are novel head-outward generative parsing models and

can be learned via simple curricula (Ch. 10) that don’t require knowing manually tuned

training length cut-offs (e.g., “up to length ten” from the DMV set-up). They can also be

bootstrapped from inter-punctuation fragments (Ch. 11), which vastly increases the number

of visible edges being exploited, as well as the overall amount of simple text made available

2A notable exception is the work of Seginer [283, 284] whose incremental “common cover link” (CCL)
parser is trained from raw text, without discarding long sentences or punctuation. His contribution was
carefully analyzed by Ponvert et al. [253, 254], who determined that the CCL parser is, in fact, an excellent
unsupervised chunker, and that better (constituent) parsers could be constructed simply by hooking up the
lowest-level bracketings induced by CCL into a linear chain. Their thorough analysis attributed CCL’s success
at finding word clumps specifically to how punctuation marks are incorporated in its internal representations.

3It is important to mention here that, unlike most work that followed the DMV, which does not report
performance with unsupervised tags, Klein and Manning’s 2004 paper does include results that rely only on
word clusters, which are worse than their state-of-the-artresults with gold POS tags [172, Table 6: English].



6 CHAPTER 1. INTRODUCTION

to the earliest phases of learning. Splitting sentences on punctuation is a natural next step

in the progression of hard constraints based on punctuationfrom Part II, which quantifies

the strength of correlations between punctuation marks andphrase structure, and also in

the exploration of initialization strategies from Part I, which first demonstrates the power

of starting from simpler and easier input data. Every chapter in parts I–III, chapters 3–11,

corresponds to a peer-reviewed publication. The final part,Part IV, consists of a single ad-

ditional chapter that integrates the majority of this dissertation’s contributions to the field

in a modular state-of-the-art grammar induction pipeline (Ch. 12); this tenth article, which

can be viewed as a culmination of the entire thesis, receiveda “best paper” award at the

2013 Conference on Empirical Methods in Natural Language Processing (EMNLP 2013).

My efforts, throughout the thesis, to minimize the amount ofprior knowledge built into

grammar inducers boil it down to knowing about punctuation and projectivity.4 Having

eliminated POS, I found that it can be useful to view sentences not only as sequences of

word categories [44, 172], which can be crucial in the earliest training phases, but also as

actual words [345, 244], which filters out any clustering noise and further allows for simple

and precise system combination via mixture models (Ch. 12).But the lexicalized versus

unlexicalized distinction is just one dichotomy — a narrow band in the rich spectrum of the

grammar induction typology. For instance, though it is common to use chart-based parsing

methods, as I had, it is also possible to induce grammars with(left-to-right) incremen-

tal parsers [283, 79, 259]. In addition, the underlying models themselves can be not only

simple, generative, projective and learned via EM, as in this work, but also feature-rich, dis-

criminative, and non-projective [212, 238, 239], as in supervised settings, learned via sam-

pling methods like MCMC [33, 227, 202] or gradient-based optimizers like L-BFGS [24].

Rather than explore all such alternative possibilities myself, I show (Chs. 5, 12) how the

existence of these and other views [32] of a learning problemcan be exploited, again and

again, to systematically fight the challenges posed by non-convexity of objective functions.

Part IV really introduces aframeworkfor designing comprehensive search networks

and may therefore be the biggest contribution of this dissertation, as it applies not just to

grammar induction but any areas where non-convex optimization and local search problems

4In addition to sentence and token boundaries, which could themselves have been induced from raw text,
along with the identities of the tokens that represent punctuation marks, as part ofunsupervised tokenization.
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arise. Its primitive modules are the individual local optimizers, system combination and

several other entirely generic methods for intelligently finding places to restart local search,

informed by already-discovered locally-optimal solutions, such as model ablation, data-set

filtering and self-training. The trouble with unsupervisedlearning in general [97, 219, 189],

and grammar induction in particular [245, 82, 119], is frequently having to optimize against

a likelihood objective that is not only plagued by local extrema, which is enough to make

research frustrating and its replication inconvenient, but also a poor proxy for extrinsic

performance, like parsing accuracy. This last fact is both depressing and liberating, for

it justifies, on occasion, ignoring the moves proposed by a local optimizer, treating them

as mere suggestions, to help a non-convex optimization process make progress. Part I

culminates in several “lateen EM” strategies (Ch. 5) that zig-zag around local attractors, for

example by switching between ordinary “soft” and “hard” EM algorithms. The basic idea

is simple: if one flavor of EM stalls, use the other to dig it out, in a way that doesn’t undo all

previous work; a faster and more practical approach, which strives to avoid getting close to

local optima in the first place, is to validate proposed moves, switching when improving one

EM’s objective would harm another’s. Lateen EM thus leverages the fact that two views

of data, as sentence strings (soft EM) or as their most likelyparse trees (hard EM), yield

different equi-plausible unsupervised objective functions. Part IV formalizes the various

ways in which other views of data can be similarly exploited to break out of local optima.



Chapter 2

Background

This thesis continues a line of grammar induction research that was sparked by the famous

experiments of Carroll and Charniak [44, Footnote 1], who credit Mark Johnson for sharing

with them Martin Kay’s suggestion to use adependencyschema. The idea was to bound the

number of possible valid productions that might participate in the derivation of a sentence

by restricting the set of non-terminal symbols to its words.In practice, the space of gram-

matical rules had to be further reduced to a more manageable size, by replacing words with

their parts-of-speech and emphasizing short sentences [44, Footnote 2]. A resulting depen-

dency grammar was then cast as a one-bar-level X-bar [59, 149] constituency grammar, so

that its rules’ probabilities could be learned efficiently via inside-outside re-estimation [14],

an instance of the EM algorithm [83], by locally maximizing the likelihood of a text corpus.

Subsequent research focused onsplit-headdependency grammars (under various names),

which also allow for efficient implementations of the inside-outside algorithm, due to Eis-

ner and Satta [91,§8]. These grammars correspond to a special case of the head-outward

automata for producing dependency parse trees proposed by Alshawi [7, 6, 9]. Their gener-

ative stories begin by selecting a root word, e.g.,is (see Figure 1.1), with some probability.

Each generated word then recursively initiates a new chain of probabilistic state transitions

in an automaton that simulates a head word spawning off dependents, i.e.,isattachingcheck

to its left andin to its right, away from itself. If the automaton associated to iswere to spawn

off an additional dependent prior to entering a stopping state, that dependent would have

8
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to lie either to the left ofcheckor to the right ofin; instead,is stops after just two depen-

dents,checkattaches onlyThe, in attaches onlymail, mail attaches onlythe, and the two

determiners,Theandthe, stop without generating any children. Models equivalent to head-

outward automata, restricted to the split-head case,1 in which each head generates left- and

right-dependents separately, have been central to many generative parsing systems. One of

their earlier manifestations was in supervised “head-driven” constituent parsers [69, 71].

Among unsupervised models, a 2001 system [243, 244] was the first to learn locally-

optimal probabilities from naturally occurring monolingual text (and did not rely on POS).2

Paskin used a rudimentary grammar, in which root words were chosen uniformly at random,

and whose equivalent split-head automata could be thought of as having just two states (see

Figure 2.1), with an even chance of leaving the (split) starting states for a stopping state.

The only learned state transition parameters in this “grammatical bigrams” model are pair-

wise word-word probabilities,{γ←dh} and{γ→hd}, of spawning a particular dependentd upon

taking a self-loop to stay in a generative state, conditioned on identities of the head wordh

and side (left or right) of the path taken in its associated automaton. Although the machine

learning behind the approach is sound, dependency parse trees induced by Paskin’s system

were less accurate than random guessing [172]. Its major stumbling blocks were, most

likely, due to starting from specific words,3 instead of generalized word categories (see

Ch. 9) — and all sentences with soft EM instead of just the short inputs (see Ch. 3) or hard

EM (see Ch. 4) — andnot because of the extremely simple parsing model (see Ch. 11).

The dependency model with valence operates over wordclasses, i.e.,{ch}, instead of

raw lexical items{h}, and is therefore more compact than “grammatical bigrams,”drawing

on Carroll and Charniak’s [44] work from 1992. In addition toaggregating the lexicalized

bigram parameters{γ} according to POS tags, the DMV can be viewed as using slightly

larger, three-state automata (see Figure 2.2). Furthermore, Klein and Manning introduced

explicit parameters (which I labeled as{α} and{β} in the automata diagram) to capture the

1Unrestricted head-outward automata are strictly more powerful (e.g., they recognize the languageanbn

in finite state) than the split-head variants, which can be thought of as processing one side before the other.
2Though several years prior, Yuret [345] had used mutual information to guide greedy linkage of words;

and the head automaton models trained by Alshawi et al. [9, 11] also estimated such probabilities, with two
sets of parameters being learned simultaneously, using bitexts, in a fully-unsupervised fashion, from words.

3Alshawi et al. [9, 11] could get away with using actual words in their head-outward automata because
they were performingsynchronousgrammar induction, with the bitext constraining both learning problems.
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h

h

1
2

1
2

START

left-unsealed right-unsealed

left-sealed right-sealed

notSTOP: right-spawn wordd,
with probabilityγ→hd

notSTOP: left-spawn wordd,
with probabilityγ←dh

Figure 2.1: Paskin’s “grammatical bigrams” as head-outward automata (for head wordsh).

linguistic notion ofvalency[319, 104]: “adjacent” stopping probabilities (binomial param-

eters{α}) capture the likelihood that a word will not spawn any children, on a particular

side (left or right); and the “non-adjacent” probabilities(geometric parameters{β}) encode

the tendency to stop after at least one child has been generated on that side. With the extra

state, POS tags and a more fleshed out parameterization of theautomata, which I describe

in more traditional detail, including the required initializer, in the next section, the DMV

could beat baseline performance for an important subcase ofgrammar induction, motivated

by language acquisition in children: text corpora limited to sentences up to length ten.

Klein and Manning experimented with both gold part-of-speech tags and unsupervised

English word clusters. Despite their finding that the unsupervised tags performed signif-

icantly worse, much of the work that followed chose to adopt the version of the task that

assumes knowledge of POS, perhaps expecting that improvements in induction from raw

words rather than gold tags would be orthogonal to other advances in unsupervised de-

pendency parsing. Yet several research efforts focused specifically on exploiting syntactic

information in the gold tags, e.g., by manually specifying universal parsing rules [228] or

statistically tying parameters of grammars across different languages [66], shifting the fo-

cus away from grammar induction proper. One of the main proposed contributions of this
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ch

ch

START

left-unsealed right-unsealed

left-sealed right-sealed

α←ch α→ch

β←ch β→ch

notSTOP: right-spawn adjacent word
of classcd, with probabilityγ−→chcd

notSTOP: left-spawn adjacent word
of classcd, with probabilityγ←−cdch

notSTOP: right-spawn non-adjacent word
of classcd, with probabilityγ−→chcd

notSTOP: left-spawn non-adjacent word
of classcd, with probabilityγ←−cdch

not left-
adjacent

not right-
adjacent

Figure 2.2: Klein and Manning’s dependency model with valence (DMV) as head-outward
automata (for head words of classch). A similar diagram could depict Headden et al.’s [133]
extended valence grammar (EVG), by using a separate set of parameters,{δ} instead of
{γ}, for the word-word attachment probabilities in the self-loops of non-adjacent states.

dissertation to methodology, as already mentioned in the previous chapter, is to show how

state-of-the-art results can be attained using fully unsupervised word clusters. Other impor-

tant methodological contributions address the evaluationof unsupervised parsing systems.

Since the DMV did not include smoothing, Klein and Manning tested their unsuper-

vised parsers on the training sets, i.e., sentences up to length ten in the input. Most work that

followed also evaluated on short data, which can be problematic for many reasons, includ-

ing overfitting to simple grammatical structures, higher measurement noise due to smaller

evaluation sets, and overstated results, since short sentences are easier to parse (left- and

right-branching baselines can be much more formidable at higher length cutoffs [127, Fig-

ure 1]). Although a child may initially encounter only basicutterances, an important goal

of language acquisition is to enable the comprehension of previously unheard and complex

speech. The work in this dissertation therefore tests on both short and long sentence lengths

and uses held-out evaluation sets, such as the parsed portion of the Brown corpus [106],

when training on text from the Wall Street Journal [200]. Furthermore, since children are

expected to be able to acquire arbitrary human languages, itis important to make sure that a
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grammar inducer similarly generalizes, to avoid accidentally over-engineering to a particu-

lar language and genre. Consequently, many of the systems inthis thesis are also evaluated

against all 19 languages of the 2006/7 CoNLL test sets [42, 236], essentially treating En-

glish WSJ as development data. Indeed, work presented in this dissertation is some of the

earliest to call for this kind of evaluation:all languages,all sentences andblind test sets.

2.1 The Dependency Model with Valence

DT NN VBZ IN DT NN ♦
The check is in the mail .

P = (1−
0

︷ ︸︸ ︷

PSTOP(⋄ | L; T)) × PATTACH(VBZ | ⋄; L)
× (1− PSTOP( · | L; T, VBZ)) × PATTACH(NN | VBZ; L)
× (1− PSTOP( · | R; T, VBZ)) × PATTACH(IN | VBZ; R)
× PSTOP( · | L; F, VBZ) × PSTOP( · | R; F, VBZ)
× (1− PSTOP( · | L; T, NN))2 × P

2
ATTACH

(DT | NN; L)
× (1− PSTOP( · | R; T, IN)) × PATTACH(NN | IN; R)
× P

2
STOP

( · | R; T, NN) × P
2
STOP

( · | L; F, NN)
× PSTOP( · | L; T, IN) × PSTOP( · | R; F, IN)
× P

2
STOP

( · | L; T, DT) × P
2
STOP

( · | R; T, DT)
× PSTOP(⋄ | L; F)

︸ ︷︷ ︸

1

× PSTOP(⋄ | R; T)
︸ ︷︷ ︸

1

.

Figure 2.3: A dependency structure and its probability, as factored by the DMV.

The DMV is a simple head automata model over lexical word classes{cw} — POS

tags. Its generative story for a subtree rooted at a head (of classch) rests on three types

of independent decisions: (i) initial directiondir ∈ {L, R} (left or right) in which to at-

tach children, via probabilityPORDER(ch); (ii) whether to sealdir, stopping with probability

PSTOP(ch, dir, adj), conditioned onadj ∈ {T, F} (true only when consideringdir’s first, i.e.,

adjacent, child); and (iii) attachment of a particular dependent (ofclasscd), according to

PATTACH(ch, dir, cd). This process produces only projective trees. By convention [93], a root
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token♦ generates the head of a sentence as its left (and only) child.Figure 2.3 displays an

example that ignores (sums out)PORDER, for the short running example sentence.

The DMV was trained by re-estimating without smoothing, starting from an “ad-hoc

harmonic” completion: aiming for balanced trees, non-roothead words attached depen-

dents in inverse proportion to (a constant plus) their distance;♦ generated heads uniformly

at random. This non-distributional heuristic created favorable initial conditions that nudged

learners towards typical linguistic dependency structures. In practice, 40 iterations of EM

was usually deemed sufficient, as opposed to waiting for optimization to actually converge.

Although the DMV is described as ahead-outwardmodel [172,§3], the probabilities

that it assigns to dependency parse trees are, in fact, invariant to permutations of siblings

on the given side of a head word. Naturally, the same is also true of “grammatical bigrams”

and the EVG (see Figures 2.1–2.2). Dependency-and-boundary models that I introduce in

Part III (Chs. 10–11) will be more sensitive to the ordering of words in input.

2.2 Evaluation Metrics

DT NN VBZ IN DT NN ♦
The check is in the mail .

Figure 2.4: A dependency structure that interprets determiners as heads of noun phrases.
Four of the six arcs in the parse tree are wrong (in red), resulting in a directed score of 2/6 or
33.3%. But two of the incorrect dependencies connect the right pairs of words, determiners
and nouns, in the wrong direction. Undirected scoring grants partial credit: 4/6 or 66.7%.

The standard way to judge a grammar inducer is by the quality of the single “best”

parses that it chooses for each sentence: adirectedscore is then simply the fraction of cor-

rectly guessed (unlabeled) dependencies; a more flatteringundirectedscore is also some-

times used (see Figure 2.4). Ignoring polarity of parent-child relations can partially obscure

effects of alternate analyses (systematic choices betweenmodals and main verbs for heads

of sentences, determiners for noun phrases, etc.) and facilitated comparisons of the DMV
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Corpus Sentences POS Tokens
WSJ1 159 159
WSJ2 499 839
WSJ3 876 1,970
WSJ4 1,394 4,042
WSJ5 2,008 7,112
WSJ6 2,745 11,534
WSJ7 3,623 17,680
WSJ8 4,730 26,536
WSJ9 5,938 37,408
WSJ10 7,422 52,248
WSJ11 8,856 68,022
WSJ12 10,500 87,750
WSJ13 12,270 110,760
WSJ14 14,095 136,310
WSJ15 15,922 163,715
WSJ20 25,523 336,555
WSJ25 34,431 540,895
WSJ30 41,227 730,099
WSJ35 45,191 860,053
WSJ40 47,385 942,801
WSJ45 48,418 986,830
WSJ100 49,206 1,028,054
Section 23 2,353 48,201
Brown100 24,208 391,796
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Figure 2.5: Sizes of WSJ{1, . . . , 45, 100}, Section 23 of WSJ∞ and Brown100.

with prior work. Stylistic disagreements between valid linguistic theories complicate eval-

uation of unsupervised grammar inducers to this day, despite several recent efforts to neu-

tralize the effects of differences in annotation [282, 322].4 Since theory-neutral evaluation

of unsupervised dependency parsers is not yet a solved problem [113,§6.2], the primary

metric used in this dissertation is simple unlabeled directed dependency accuracies (DDA).

4As an additional alternative to intrinsic, supervised parse quality metrics, unsupervised systems could
also be evaluated extrinsically, by using features of theirinduced parse structures in down-stream tasks [81].
Unfortunately, task-based evaluation would make it difficult to compare to previous work: even concurrent
evaluation of grammar induction systems, for machine translation, has proved impractical [113, Footnote 16].
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2.3 English Data

The DMV was both trained and tested on a customized subset (WSJ10) of Penn English

Treebank’s Wall Street Journal portion [200]. Its 49,208 annotated parse trees were pruned

down to 7,422 sentences of at most ten terminals, spanning 35unique POS tags, by strip-

ping out all empty subtrees, punctuation and terminals (tagged# and$) not pronounced

where they appear. Following standard practice, automatic“head-percolation” rules [70]

were used to convert remaining trees into dependencies. Thework presented in this thesis

makes use of generalizations WSJk, for k ∈ {1, . . . , 45, 100}, as well as Section 23 of

WSJ∞ (the entire WSJ) and the Brown100 data set (see Figure 2.5 forall data set sizes),

which is similarly derived from the parsed portion of the Brown corpus [106].

2.4 Multilingual Data

In addition to English WSJ, most of the work in this dissertation is also evaluated against

all 23 held-out test sets of the 2006/7 CoNLL data [42, 236], spanning 19 languages from

several different language families (see Table 2.1 for the sizes of itsdisjoint training and

evaluation data, which were furnished by the CoNLL conference organizers). As with

Section 23 of WSJ, here too I test onall sentence lengths, with the small exception of

Arabic ’07, from which I discarded the longest sentence (145tokens). When computing

macro-averages of directed dependency accuracies for the multilingual data, I down-weigh

the four languages that appear in both years (Arabic, Chinese Czech and Turkish) by 50%.

2.5 A Note on Initialization Strategies

The exact form of Klein and Manning’s initializer appears inthe next chapter (Ch. 3), but

two salient facts are worth mentioning sooner. First, my preliminary attempts to replicate

the DMV showed that it is extremely important to start from the highest scoring trees for

each training input (i.e., a step of Viterbi EM), instead of aforest of all projective trees
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CoNLL Year Training Testing
& Language Sentences Tokens Sentences Tokens
(ar) Arabic 2006 1,460 52,752 146 5,215

’7 2,912 102,375 130 4,537
(eu) Basque ’7 3,190 41,013 334 4,511
(bg) Bulgarian ’6 12,823 162,985 398 5,032
(ca) Catalan ’7 14,958 380,525 167 4,478
(zh) Chinese ’6 56,957 337,162 867 5,012

’7 56,957 337,175 690 5,161
(cs) Czech ’6 72,703 1,063,413 365 5,000

’7 25,364 368,624 286 4,029
(da) Danish ’6 5,190 80,743 322 4,978
(nl) Dutch ’6 13,349 172,958 386 4,989
(en) English ’7 18,577 395,139 214 4,386
(de) German ’6 39,216 605,337 357 4,886
(el) Greek ’7 2,705 58,766 197 4,307
(hu) Hungarian ’7 6,034 111,464 390 6,090
(it) Italian ’7 3,110 60,653 249 4,360
(ja) Japanese ’6 17,044 133,927 709 5,005
(pt) Portuguese ’6 9,071 177,581 288 5,009
(sl) Slovenian ’6 1,534 23,779 402 5,004
(es) Spanish ’6 3,306 78,068 206 4,991
(sv) Swedish ’6 11,042 163,301 389 4,873
(tr) Turkish ’6 4,997 48,373 623 6,288

’7 5,635 54,761 300 3,983

Table 2.1: Sizes of all 2006/7 CoNLL training and evaluationdata sets.

weighed proportionally to their ad-hoc harmonic scores. Viterbi training steps are collo-

quially known to be a worthwhile tool in machine learning,5 and will be used extensively

in the final part of this dissertation (Ch. 12) to transfer information between differently-

factored models, initializing retraining. Although the properties of Viterbi EM (Chs. 4–5)

are starting to receive theoretical treatment [67, 4], it may be interesting to also zoom in on

the effects of the initial Viterbi step. For instance, Cohenand Smith [67] showed the op-

timality of initializing Viterbi training from uniform distributions. Pilot experiments with

the DMV indicate that starting from parse trees chosen uniformly at random not only works

5Personal communication with Jenny Finkel and Slav Petrov.
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even better with soft EM but also outperforms the ad-hoc harmonic initializer, across many

languages, and especially when a favorable maximum length cut-off has not been tuned.

Second, the harmonic part of Klein and Manning’s initializer suggests a power law, with

probabilities of attachment inversely proportional to distances between heads and depen-

dents. However, a careful statistical analysis of arc lengths in the CoNLL data shows that

if they indeed followed a power law, withPATTACH(d) ∝ |d|−r, whered is the difference be-

tween connected words’ positions in a sentence, then the powerr would have to be at least

two, and certainly not as low as one. It so happens that many empirical phenomena are easy

to mistake for power laws,6 particularly if the underlying distribution is log-normal[222].

The binned log-normal functional form

PATTACH(d) ∝
[
∫ ln |d|

ln(|d|−1)

e−
1
2(

t−µ
σ )

2

dt

]−1

is a better fit for the data (see Figure 2.6 for estimatesµ̂ andσ̂ of the CoNLL languages).

But despite most languages clustering around the standard log-normal (µ = 0 andσ = 1),

using this fact to bias selection of initial parse trees, in pilot experiments, also proved worse

than starting from a uniform distribution, as with harmonicinitializers. Better uses of uni-

versal properties, such as functional forms, might incorporate them into parsing models and

learn their parameters from data. The bulk of this dissertation thus focuses on the training

aspects of grammar induction, aiming to eliminate dependence on tuned initializers.

6http://vserver1.cscs.lsa.umich.edu/ c̃rshalizi/weblog/491.html
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it −0.5942 1.2730
sl −0.2995 1.1691
ja −0.2535 1.0140
bg −0.2446 1.0090
zh −0.2159 0.8593
da −0.0852 0.9483
pt −0.0429 1.0361
ar −0.0219 1.1433
es 0.0030 1.0705
en 0.0307 0.9676
sv 0.0344 0.9173
eu 0.0371 0.9167
el 0.0431 1.0142
ca 0.0827 1.0335
tr 0.1039 1.0381
cs 0.1871 0.8779
nl 0.3752 0.8518
hu 0.3972 0.9394
de 0.4944 0.9170

Figure 2.6: Estimates of the binned log-normals’ parameters,{µ̂} and{σ̂}, for arc lengths
of CoNLL languages cluster around the standard log-normal’sµ = 0 andσ = 1. Outliers
(in red) are Italian (it) and German (de), with very short and very long arcs, respectively.
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... the real challenge is to make simple things look beautiful.
— Glenn Corteza

Glenn and Aviv, fromThe Tango in Ink Gallery, by Jordana del Feld.



Chapter 3

Baby Steps

The purpose of this chapter is to get an understanding of how an established unsuper-

vised dependency parsing model responds to the limits on sentence lengths that are con-

ventionally used to filter input data, as well as its sensitivity to different initialization strate-

gies. Supporting peer-reviewed publication isFrom Baby Steps to Leapfrog: How “Less is

More” in Unsupervised Dependency Parsingin NAACL 2010 [302].

3.1 Introduction

This chapter explores what can be achieved through judicious use of data and simple, scal-

able techniques. The first approach iterates over a series oftraining sets that gradually

increase in size and complexity, forming an initialization-independent scaffolding for learn-

ing a grammar. It works with Klein and Manning’s simple model(the DMV) and training

algorithm (classic EM) but eliminates their crucial dependence on manually-tuned priors.

The second technique is consistent with the intuition that learning is most successful within

a band of the size-complexity spectrum. Both could be applied to more intricate models

and advanced learning algorithms. They are combined in a third, efficient hybrid method.

21
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3.2 Intuition

Focusing on simple examples helps guide unsupervised learning, as blindly added confus-

ing data can easily mislead training. Unless it is increasedgradually, unbridled, complexity

can overwhelm a system. How to grade an example’s difficulty?The cardinality of its solu-

tion space presents a natural proxy. In the case of parsing, the number of possible syntactic

trees grows exponentially with sentence length. For longersentences, the unsupervised

optimization problem becomes severely under-constrained, whereas for shorter sentences,

learning is tightly reined in by data. In the extreme case of asingle-word sentence, there is

no choice but to parse it correctly. At two words, a raw 50% chance of telling the head from

its dependent is still high, but as length increases, the accuracy of even educated guessing

rapidly plummets. In model re-estimation, long sentences amplify ambiguity and pollute

fractional counts with noise. At times, batch systems are better off using less data.

Baby Steps: Global non-convex optimization is hard. But a meta-heuristic can take the

guesswork out of initializing local search. Beginning withan easy (convex) case, it is pos-

sibly to slowly extend it to the fully complex target task by taking tiny steps in the problem

space, trying not to stray far from the relevant neighborhoods of the solution space. A se-

ries of nested subsets of increasingly longer sentences that culminates in the complete data

set offers a natural progression. Its base case — sentences of length one — has a trivial

solution that requires neither initialization nor search yet reveals something of sentence

heads. The next step — sentences of length one and two — refinesinitial impressions

of heads, introduces dependents, and exposes their identities and relative positions. Al-

though not representative of the full grammar, short sentences capture enough information

to paint most of the picture needed by slightly longer sentences. They set up an easier, in-

cremental subsequent learning task. Stepk + 1 augments training input to include lengths

1, 2, . . . , k, k + 1 of the full data set and executes local search starting from the (appropri-

ately smoothed) model estimated by stepk. This truly is grammar induction...

Less is More: For standard batch training, just using simple, short sentences is not

enough. They are rare and do not reveal the full grammar. Instead, it is possible to find

a “sweet spot” — sentence lengths that are neither too long (excluding the truly daunting
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examples) nor too few (supplying enough accessible information), using Baby Steps’ learn-

ing curve as a guide. It makes sense to train where that learning curve flattens out, since

remaining sentences contribute little (incremental) educational value.1

Leapfrog: An alternative to discarding data, and a better use of resources, is to combine

the results of batch and iterative training up to the sweet spot data gradation, then iterate

with a large step size.

3.3 Related Work

Two types of scaffolding for guiding language learning debuted in Elman’s [95] experi-

ments with “starting small”: data complexity (restrictinginput) and model complexity (re-

stricting memory). In both cases, gradually increasing complexity allowed artificial neural

networks to master a pseudo-natural grammar that they otherwise failed to learn. Initially-

limited capacity resembled maturational changes in working memory and attention span

that occur over time in children [163], in line with the “lessis more” proposal [230, 231].

Although Rohde and Plaut [267] failed to replicate this2 result with simple recurrent net-

works, many machine learning techniques, for a variety of language tasks, reliably benefit

from annealed model complexity. Brown et al. [40] used IBM Models 1–4 as “stepping

stones” to training word-alignment Model 5. Other prominent examples include “coarse-

to-fine” approaches to parsing, translation, speech recognition and unsupervised POS tag-

ging [53, 54, 250, 251, 261]. Initial models tend to be particularly simple,3 and each refine-

ment towards a full model introduces only limited complexity, supporting incrementality.

Filtering complex data, the focus of this chapter, is unconventional in natural language

processing. Such scaffolding qualifies asshaping— a method of instruction (routinely

1This is akin to McClosky et al.’s [208] “Goldilocks effect.”
2Worse, they found that limiting inputhinderedlanguage acquisition. And making the grammar more

English-like (by introducing and strengthening semantic constraints),increasedthe already significant ad-
vantage for “starting large!” With iterative training invoking the optimizer multiple times, creating extra op-
portunities to converge, Rohde and Plaut suspected that Elman’s simulations simply did not allow networks
exposed exclusively to complex inputs sufficient training time. Extremely generous, low termination thresh-
old for EM (see§3.4.1) address this concern, and the DMV’s purely syntacticPOS tag-based approach (see
§2.1) is, in a later chapter (see§12.5.2), replaced with Baby Steps iterating over fully-lexicalized models.

3Brown et al.’s [40] Model 1 (and, similarly, the first baby step) has a global optimum that can be computed
exactly, so that no initial or subsequent parameters dependon initialization.
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exploited in animal training) in which the teacher decomposes a complete task into sub-

components, providing an easier path to learning. When Skinner [289] coined the term,

he described it as a “method of successive approximations.”Ideas that gradually make

a task more difficult have been explored in robotics (typically, for navigation), with rein-

forcement learning [288, 275, 271, 86, 279, 280]. More recently, Krueger and Dayan [175]

showed that shaping speeds up language acquisition and leads to better generalization in

abstract neural networks. Bengio et al. [22] confirmed this for deep deterministic and

stochastic networks, using simple multi-stagecurriculumstrategies. They conjectured that

a well-chosen sequence of training criteria — different sets of weights on the examples

— could act as a continuation method [5], helping find better local optima for non-convex

objectives. Elman’s learners constrained the peaky solution space by focusing on just the

right data (simple sentences that introduced basic representational categories) at just the

right time (early on, when their plasticity was greatest). Self-shaping, they simplified tasks

through deliberate omission (or misunderstanding). Analogously, Baby Steps induces an

early structural locality bias [295], then relaxes it, as ifannealing [292]. Its curriculum of

binary weights initially discards complex examples responsible for “high-frequency noise,”

with earlier, “smoothed” objectives revealing more of the global picture.

There are important differences between the work in this chapter and prior research. In

contrast to Elman, it relies on a large data set (WSJ) of real English. Unlike Bengio et al.

and Krueger and Dayan, it shapes a parser, not a language model. Baby Steps is similar, in

spirit, to Smith and Eisner’s methods. Deterministic annealing (DA) shares nice properties

with Baby Steps, but performs worse than EM for (constituent) parsing; Baby Steps hand-

edly defeats standard training. Structural annealing works well, but requires a hand-tuned

annealing schedule and direct manipulation of the objective function; Baby Steps works

“out of the box,” its locality biases a natural consequence of a complexity/data-guided

tour of optimization problems. Skewed DA incorporates a good initializer by interpolating

between two probability distributions, whereas the Leapfrog hybrid admits multiple initial-

izers by mixing structures instead. “Less is More” is novel and confirms the tacit consensus

implicit in training on small data sets (e.g., WSJ10).
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3.4 New Algorithms for the Classic Model

Many seemingly small implementation details can have profound effects on the final output

of a training procedure tasked with optimizing a non-convexobjective. Contributing to

the chaos are handling of ties (e.g., in decoding), the choice of random number generator

and seed (e.g., if tie-breaking is randomized), whether probabilities are represented in log-

space, their numerical precision, and also the order in which these floating point numbers

are added or multiplied, to say nothing of initialization (and termination) conditions. For

these reasons, even the correct choices of tuned parametersin the next section might not

result in a training run that would match Klein and Manning’sactual execution of the DMV.

3.4.1 Algorithm #0: Ad-Hoc∗

— A Variation on Original Ad-Hoc Initialization

Below are the ad-hoc harmonic scores (for all tokens other than♦):

P̃ORDER ≡ 1/2;

P̃STOP ≡ (ds + δs)
−1 = (ds + 3)−1, ds ≥ 0;

P̃ATTACH ≡ (da + δa)
−1 = (da + 2)−1, da ≥ 1.

Integersd{s,a} are distances from heads to stopping boundaries and dependents.4 Training

is initialized by producing best-scoring parses of all input sentences and converting them

into proper probability distributionsPSTOP andPATTACH via maximum-likelihood estimation

(a single step of Viterbi training [40]). Since left and right children are independent,PORDER

is dropped altogether, making “headedness” deterministic. The parser carefully randomizes

tie-breaking, so that all structures having the same score get an equal shot at being selected

(both during initialization and evaluation). EM is terminated when a successive change in

overall per-token cross-entropy drops below2−20 bits.

4Constantsδ{s,a} come from personal communication. Note thatδs is one higher than is strictly necessary
to avoid both division by zero and determinism;δa could have been safely zeroed out, since the quantity
1− PATTACH is never computed (see Figure 2.3).
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3.4.2 Algorithm #1: Baby Steps

— An Initialization-Independent Scaffolding

The need for initialization is eliminated by first training on a trivial subset of the data —

WSJ1; this works, since there is only one (the correct) way toparse a single-token sentence.

A resulting model is plugged into training on WSJ2 (sentences up to two tokens), and so

forth, building up to WSJ45.5 This algorithm is otherwise identical to Ad-Hoc∗, with the

exception that it re-estimates each model using Laplace smoothing, so that earlier solutions

could be passed to next levels, which sometimes contain previously unseen POS tags.

3.4.3 Algorithm #2: Less is More

— Ad-Hoc∗ where Baby Steps Flatlines

Long, complex sentences are dropped, deploying Ad-Hoc∗’s initializer for batch training

at WSĴk∗, an estimate of the sweet spot data gradation. To find it, BabySteps’ successive

models’ cross-entropies on the complete data set, WSJ45, are tracked. An initial segment

of rapid improvement is separated from the final region of convergence by aknee(points

of maximum curvature, see Figure 3.1). An improved6 L method [272] automatically lo-

cates this area of diminishing returns: the end-points[k0, k
∗] are determined by minimizing

squared error, estimatinĝk0 = 7 andk̂∗ = 15. Training at WSJ15 just misses the plateau.

3.4.4 Algorithm #3: Leapfrog

— A Practical and Efficient Hybrid Mixture

Cherry-picking the best features of “Less is More” and Baby Steps, the hybrid begins by

combining their models at WSJk̂∗. Using one best parse from each, for every sentence in

5Its 48,418 sentences (see Figure 3.1) cover 94.4% of all sentences in WSJ;
the longest of the missing 790 has length 171.

6Instead of iteratively fitting a two-segment form and adaptively discarding its tail, we usethree line
segments, applying ordinary least squares to the first two, but requiring the third to be horizontal and tangent
to a minimum. The result is abatchoptimization routine that returns aninterval for the knee, rather than a
point estimate (see Figure 3.1 for details).
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Figure 3.1: Cross-entropy on WSJ45 after each baby step, a piece-wise linear fit, and an
estimated region for the knee.

WSĴk∗, the base case re-estimates a new model from amixtureof twice the normal number

of trees; inductive steps leap overk̂∗ lengths, conveniently ending at WSJ45, and estimate

their initial models by applying a previous solution to a newinput set. Both follow up the

single step of Viterbi training with at most five iterations of EM.

This hybrid makes use of two good (conditionally) independent initialization strategies

and executes many iterations of EM where that is cheap — at shorter sentences (WSJ15 and

below). It then increases the step size, training just threemore times (at WSJ{15, 30, 45})
and allowing only a few (more expensive) iterations of EM there. Early termination im-

proves efficiency and regularizes these final models.



28 CHAPTER 3. BABY STEPS

3.4.5 Reference Algorithms

— Baselines, a Skyline and Published Art

The working performance space can be carved out using two extreme initialization strate-

gies: (i) the uninformed uniform prior, which serves as a fair “zero-knowledge” baseline

for comparing uninitialized models; and (ii) the maximum-likelihood “oracle” prior, com-

puted from reference parses, which yields askyline(a reverse baseline) — how well any

algorithm that stumbled on the true solution would fare at EM’s convergence.

Accuracies on Section 23 of WSJ∞ are compared to two state-of-the-art systems and

past baselines (see Table 3.2), in addition to Klein and Manning’s results. Headden et

al.’s [133] lexicalized EVG had the best previous results onshort sentences, but its perfor-

mance is unreported for longer sentences, for which Cohen and Smith’s [66] seem to be the

highest published scores; intermediate results that preceded parameter-tying — Bayesian

models with Dirichlet and log-normal priors, coupled with both Viterbi and minimum

Bayes-risk (MBR) decoding [65] — are also included.

3.5 Experimental Results

Thousands of empirical outcomes are packed into the space ofseveral graphs (Figures 3.2, 3.3

and 3.4). The colors (also in Tables 3.1 and 3.2) correspond to different initialization strate-

gies — to a first approximation, the learning algorithm was held constant (see§2.1).

Figures 3.2 and 3.3 tell one part of our story. As data sets increase in size, training algo-

rithms gain access to more information; however, since in this unsupervised setting training

and test sets are the same, additional longer sentences makefor substantially more challeng-

ing evaluation. To control for these dynamics, it is possible to apply Laplace smoothing to

all (otherwise unsmoothed) models and replot their performance, holding several test sets

fixed (see Figure 3.4). (Undirected accuracies are reportedparenthetically.)

3.5.1 Result #1: Baby Steps

Figure 3.2 traces out performance on the training set. Kleinand Manning’s published scores

appear as dots (Ad-Hoc) at WSJ10: 43.2% (63.7%). Baby Steps achieves 53.0% (65.7%)
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Figure 3.2: Directed and undirected accuracy scores attained by the DMV, when trained and
tested on the same gradation of WSJ, for several different initialization strategies. Green
circles mark Klein and Manning’s published scores; red, violet and blue curves represent
the supervised (maximum-likelihood oracle) initialization, Baby Steps, and the uninformed
uniform prior. Dotted curves reflect starting performance,solid curves register performance
at EM’s convergence, and the arrows connecting them emphasize the impact of learning.

by WSJ10; trained and tested on WSJ45, it gets 39.7% (54.3%).Uninformed, classic EM

learns little about directed dependencies: it improves only slightly, e.g., from 17.3% (34.2%)

to 19.1% (46.5%) on WSJ45 (learning some of the structure, asevidenced by its undirected

scores), but degrades with shorter sentences, where its initial guessing rate is high. In the

case of oracle training, EM is expected to walk away from supervised solutions [97, 219,

189], but the extent of its drops is alarming, e.g., from the supervised 69.8% (72.2%) to the

skyline’s 50.6% (59.5%) on WSJ45. By contrast, Baby Steps’ scores usually do not change

much from one step to the next, and where its impact of learning is big (at WSJ{4, 5, 14}),
it is invariably positive.

3.5.2 Result #2: Less is More

Ad-Hoc∗’s curve (see Figure 3.3) suggests how Klein and Manning’s Ad-Hoc initializer

may have scaled with different gradations of WSJ. Strangely, the implementation in this
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Figure 3.3: Directed accuracies for Ad-Hoc∗ (shown in green) and Leapfrog (in gold); all
else as in Figure 3.2(a).

chapter performs significantly above their reported numbers at WSJ10: 54.5% (68.3%)

is even slightly higher than Baby Steps; nevertheless, given enough data (from WSJ22

onwards), Baby Steps overtakes Ad-Hoc∗, whose ability to learn takes a serious dive once

the inputs become sufficiently complex (at WSJ23), and neverrecovers. Note that Ad-

Hoc∗’s biased prior peaks early (at WSJ6), eventually falls below the guessing rate (by

WSJ24), yet still remains well-positioned to climb, outperforming uninformed learning.

Figure 3.4 shows that Baby Steps scales better with more (complex) data — its curves

do not trend downwards. However, a good initializer inducesa sweet spot at WSJ15,

where the DMV is learned best using Ad-Hoc∗. This modeis “Less is More,” scoring

44.1% (58.9%) on WSJ45. Curiously, even oracle training exhibits a bump at WSJ15:

once sentences get long enough (at WSJ36), its performance degrades below that of oracle

training with virtually no supervision (at the hardly representative WSJ3).
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Figure 3.4: Directed accuracies attained by the DMV, when trained at various gradations
of WSJ, smoothed, then tested against fixed evaluation sets —WSJ{10, 40}; graphs for
WSJ{20, 30}, not shown, are qualitatively similar to WSJ40.

3.5.3 Result #3: Leapfrog

Mixing Ad-Hoc∗ with Baby Steps at WSJ15 yields a model whose performance initially

falls between its two parents but surpasses both with a little training (see Figure 3.3). Leap-

ing to WSJ45, via WSJ30, results in the strongest model: 45.0% (58.4%) accuracy bridges

half of the gap between Baby Steps and the skyline, and at a tiny fraction of the cost.

Ad-Hoc∗ Baby Steps Leapfrog Ad-Hoc∗ Baby Steps Leapfrog
Section 23 44.1(58.8) 39.2(53.8) 43.3(55.7) 31.5(51.6) 39.4(54.0) 45.0(58.4)
WSJ100 43.8(58.6) 39.2(53.8) 43.3(55.6) 31.3(51.5) 39.4(54.1) 44.7(58.1)
Brown100 43.3(59.2) 42.3(55.1) 42.8(56.5) 32.0(52.4) 42.5(55.5) 43.6(59.1)

@15 @45

Table 3.1: Directed (and undirected) accuracies on Section23 of WSJ∞, WSJ100 and
Brown100 for Ad-Hoc∗, Baby Steps and Leapfrog, trained at WSJ15 (left) and WSJ45.

3.5.4 Result #4: Generalization

These models carry over to the larger WSJ100, Section 23 of WSJ∞, and the independent

Brown100 (see Table 3.1). Baby Steps improves out of domain,confirming that shaping
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Decoding WSJ10 WSJ20 WSJ∞

Attach-Right [172] — 38.4 33.4 31.7
DMV Ad-Hoc [172] Viterbi 45.8 39.1 34.2

Dirichlet [65] Viterbi 45.9 39.4 34.9
Ad-Hoc [65] MBR 46.1 39.9 35.9
Dirichlet [65] MBR 46.1 40.6 36.9
Log-Normal Families [65] Viterbi 59.3 45.1 39.0
Baby Steps(@15) Viterbi 55.5 44.3 39.2
Baby Steps(@45) Viterbi 55.1 44.4 39.4
Log-Normal Families [65] MBR 59.4 45.9 40.5
Shared Log-Normals (tie-verb-noun) [66] MBR 61.3 47.4 41.4
Bilingual Log-Normals (tie-verb-noun) [66] MBR 62.0 48.0 42.2
Less is More(Ad-Hoc∗ @15) Viterbi 56.2 48.2 44.1
Leapfrog(Hybrid @45) Viterbi 57.1 48.7 45.0

EVG Smoothed (skip-val) [133] Viterbi 62.1
Smoothed (skip-head) [133] Viterbi 65.0
Smoothed (skip-head), Lexicalized [133] Viterbi 68.8

Table 3.2: Directed accuracies on Section 23 of WSJ{10, 20,∞ } for several baselines and
previous state-of-the-art systems.

generalizes well [175, 22]. Leapfrog does best across the board but dips on Brown100,

despite its safe-guards against overfitting.

Section 23 (see Table 3.2) reveals, unexpectedly, that BabySteps would have been state-

of-the-art in 2008, whereas “Less is More” outperforms all prior work on longer sentences.

Baby Steps is competitive with log-normal families [65], scoring slightly better on longer

sentences against Viterbi decoding, though worse against MBR. “Less is More” beats state-

of-the-art on longer sentences by close to 2%; Leapfrog gains another 1%.

3.6 Conclusion

This chapter explored three simple ideas for unsupervised dependency parsing. Pace Halevy

et al. [130], it suggests, “Less is More” — the paradoxical result that better performance can

be attained by training with less data, even when removing samples from the true (test) dis-

tribution. Small tweaks to Klein and Manning’s approach of 2004 break through the 2009

state-of-the-art on longer sentences, when trained at WSJ15 (the auto-detected sweet spot

gradation). Second, Baby Steps, is an elegant meta-heuristic for optimizing non-convex
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training criteria. It eliminates the need for linguistically-biased manually-tuned initializers,

particularly if the location of the sweet spot is not known. This technique scales gracefully

with more (complex) data and should easily carry over to morepowerful parsing models

and learning algorithms. Finally, Leapfrog forgoes the elegance and meticulousness of

Baby Steps in favor of pragmatism. Employing both good initialization strategies at its

disposal, and spending CPU cycles wisely, it achieves better performance than both “Less

is More” and Baby Steps.

Later chapters will explore unifying these techniques withother state-of-the-art ap-

proaches, which will scaffold on both data and model complexity. There are many oppor-

tunities for improvement, considering the poor performance of oracle training relative to

the supervised state-of-the-art, and in turn the poor performance of unsupervised state-of-

the-art relative to the oracle models.



Chapter 4

Viterbi Training

The purpose of this chapter is to explore, compare and contrast the implications of us-

ing Viterbi training (hard EM) versus traditional inside-outside re-estimation (soft EM) for

grammar induction with the DMV, as well as to clarify that theunsupervised objectives

used by both algorithms can be “wrong,” from perspectives ofwould-be supervised ob-

jectives. Supporting peer-reviewed publication isViterbi Training Improves Unsupervised

Dependency Parsingin CoNLL 2010 [309].

4.1 Introduction

Unsupervised learning is hard, often involving difficult objective functions. A typical ap-

proach is to attempt maximizing the likelihood of unlabeleddata, in accordance with a

probabilistic model. Sadly, such functions are riddled with local optima [49, Ch. 7,inter

alia], since their number of peaks grows exponentially with instances of hidden variables.

Furthermore, higher likelihood does not always translate into superior task-specific accu-

racy [97, 219]. Both complications are real, but this chapter will discuss perhaps more

significant shortcomings.

This chapter proves that learning can be error-prone even incases when likelihoodis

an appropriate measure of extrinsic performanceandwhere global optimization is feasible.

This is because a key challenge in unsupervised learning is that thedesiredlikelihood is

unknown. Its absence renders tasks like structure discovery inherently under-constrained.

34
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Search-based algorithms adopt surrogate metrics, gambling on convergence to the “right”

regularities in data. Wrong objectives create opportunities to improvebothefficiencyand

performance by replacing expensive exact learning techniques with cheap approximations.

This chapter proposes using Viterbi training [40,§6.2], instead of the more standard

inside-outside re-estimation [14], to induce hierarchical syntactic structure from natural

language text. Since the objective functions being used in unsupervised grammar induction

are provably wrong, advantages of exact inference may not apply. It makes sense to try the

Viterbi approximation — it is also wrong, only simpler and cheaper than classic EM. As it

turns out, Viterbi EM is not only faster but also more accurate, consistent with hypotheses

of de Marcken [82] and with the suggestions from the previouschapter. After reporting

the experimental results and relating its contributions toprior work, this chapter delves into

proofs by construction, using the DMV.

4.2 Viterbi Training and Evaluation with the DMV

Viterbi training [40] re-estimates each next model as if supervised by the previous best

parse trees. And supervised learning from reference parse trees is straight-forward, since

maximum-likelihood estimation reduces to counting:P̂ATTACH(ch, dir, cd) is the fraction

of dependents — those of classcd — attached on thedir side of a head of classch;

P̂STOP(ch, dir, adj = T), the fraction of words of classch with no children on thedir side;

andP̂STOP(ch, dir, adj = F), the ratio1 of the number of words of classch having a child on

thedir side to their total number of such children.

Proposed parse trees are judged on accuracy: adirected scoreis simply the overall

fraction of correctly guessed dependencies. LetS be a set of sentences, with|s| the number

of terminals (tokens) for eachs ∈ S. Denote byT (s) the set of all dependency parse trees

of s, and letti(s) stand for the parent of tokeni, 1 ≤ i ≤ |s|, in t(s) ∈ T (s). Call

the gold referencet∗(s) ∈ T (s). For a given model of grammar, parameterized byθ, let

1The expected number of trials needed to get one Bernoulli(p) success isn ∼ Geometric(p), withn ∈ Z
+,

P(n) = (1−p)n−1p andE(n) = p−1; MoM and MLE agree, in this case,p̂ = (# of successes)/(# of trials).
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t̂θ(s) ∈ T (s) be a (not necessarily unique) likeliest (also known as Viterbi) parse ofs:

t̂θ(s) ∈
{

arg max
t∈T (s)

Pθ(t)

}

;

thenθ’s directed accuracy on a reference setR is

100% ·
∑

s∈R

∑|s|
i=1 1{t̂θi (s)=t∗i (s)}∑

s∈R |s|
.

4.3 Experimental Setup and Results

As in the previous chapter, the DMV was trained on data sets WSJ{1, . . . , 45} using three

initialization strategies: (i) the uninformed uniform prior; (ii) a linguistically-biased ini-

tializer, Ad-Hoc∗; and (iii) an oracle — the supervised MLE solution. Previously, training

was without smoothing, iterating each run until successivechanges in overall per-token

cross-entropy drop below2−20 bits. In this chapter all models are re-trained using Viterbi

EM instead of inside-outside re-estimation, and also explore Laplace (add-one) smoothing

during training and experiment with hybrid initializationstrategies.

4.3.1 Result #1: Viterbi-Trained Models

The results of the previous chapter, tested against WSJ40, are re-printed in Figure 4.1(a);

and the corresponding Viterbi runs appear in Figure 4.1(b).There are crucial differences

between the two training modes for each of the three initialization strategies. Both algo-

rithms walk away from the supervised maximum-likelihood solution; however, Viterbi EM

loses at most a few points of accuracy (3.7% at WSJ40), whereas classic EM drops nearly

twenty points (19.1% at WSJ45). In both cases, the single best unsupervised result is with

good initialization, although Viterbi peaks earlier (45.9% at WSJ8) — and in a narrower

range (WSJ8-9) — than classic EM (44.3% at WSJ15; WSJ13-20).The uniform prior
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Figure 4.1: Directed dependency accuracies attained by theDMV, when trained on WSJk,
smoothed, then tested against a fixed evaluation set, WSJ40,for three different initializa-
tion strategies. Red, green and blue graphs represent the supervised (maximum-likelihood
oracle) initialization, a linguistically-biased initializer (Ad-Hoc∗) and the uninformed (uni-
form) prior. Panel (b) shows results obtained with Viterbi training instead of classic EM
— Panel (a), but is otherwise identical (in both, each of the 45 vertical slices captures five
new experimental results and arrows connect starting performance with final accuracy, em-
phasizing the impact of learning). Panels (c) and (d) show the corresponding numbers of
iterations until EM’s convergence.
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never quite gets off the ground with classic EM but manages quite well under Viterbi train-

ing,2 given sufficient data — it even beats the “clever” initializer everywhere past WSJ10.

The “sweet spot” at WSJ15 — a neighborhood where both Ad-Hoc∗ and the oracle excel

under classic EM — disappears with Viterbi. Furthermore, Viterbi does not degrade with

more (complex) data, except with a biased initializer.

More than a simple efficiency hack, Viterbi EM actually improves performance. And

its benefits to running times are also non-trivial: it not only skips computing the outside

charts in every iteration but also converges (sometimes an order of magnitude) faster than

classic EM (see Figure 4.1(c,d)).3

4.3.2 Result #2: Smoothed Models

Smoothing rarely helps classic EM and hurts in the case of oracle training (see Figure 4.2(a)).

With Viterbi, supervised initialization suffers much less, the biased initializer is a wash, and

the uninformed uniform prior generally gains a few points ofaccuracy, e.g., up 2.9% (from

42.4% to 45.2%, evaluated against WSJ40) at WSJ15 (see Figure 4.2(b)).

Baby Steps (Ch. 3) — iterative re-training with increasingly more complex data sets,

WSJ1, . . . ,WSJ45 — using smoothed Viterbi training fails miserably (see Figure 4.2(b)),

due to Viterbi’s poor initial performance at short sentences (possibly because of data spar-

sity and sensitivity to non-sentences — see examples in§4.6.3).

4.3.3 Result #3: State-of-the-Art Models

Simply training up smoothed Viterbi at WSJ15, using the uninformed uniform prior, yields

44.8% accuracy on Section 23 of WSJ∞, which already surpasses the previous state-of-

the-art by 0.7% (see Table 4.1(A)). Since both classic EM and Ad-Hoc∗ initializers work

2In a concurrently published related work, Cohen and Smith [67] prove that the uniform-at-random ini-
tializer is a competitive starting M-step for Viterbi EM; the uninformed prior from the last chapter consists of
uniform multinomials, seeding the E-step, which also yields equally-likely parse trees for models like DMV.

3For classic EM, the number of iterations to convergence appears sometimes inversely related to perfor-
mance, giving still more credence to the notion of early termination as a regularizer.
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Figure 4.2: Directed accuracies for DMV models trainedwithLaplace smoothing (brightly-
colored curves), superimposed over Figure 4.1(a,b); violet curves represent Baby Steps.

well with short sentences (see Figure 4.1(a)), it makes sense to use their pre-trained mod-

els to initialize Viterbi training, mixing the two strategies. Judging all Ad-Hoc∗ initial-

izers against WSJ15, it turns out that the one for WSJ8 minimizes sentence-level cross-

entropy (see Figure 4.3). This approach does not involve reference parse trees and is

therefore still unsupervised. Using the Ad-Hoc∗ initializer based on WSJ8 to seed clas-

sic training at WSJ15 yields a further 1.4% gain in accuracy,scoring 46.2% on WSJ∞ (see

Table 4.1(B)). This good initializer boosts accuracy attained by smoothed Viterbi at WSJ15

to 47.8% (see Table 4.1(C)). Using its solution to re-initialize training at WSJ45 gives a tiny

further improvement (0.1%) on Section 23 of WSJ∞ but bigger gains on WSJ10 (0.9%) and

WSJ20 (see Table 4.1(D)). These results generalize. Gains due to smoothed Viterbitrain-

ing and favorable initialization carry over to Brown100 — accuracy improves by 7.5% over

previous published numbers (see Table 4.1).
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Model Incarnation WSJ10 WSJ20 WSJ∞

DMV Bilingual Log-Normals (tie-verb-noun) [66] 62.0 48.0 42.2 Brown100
Less is More(Ad-Hoc∗ @15) (Ch. 3) 56.2 48.2 44.1 43.3

A. Smoothed Viterbi Training (@15),
59.9 50.0 44.8 48.1

Initialized with the Uniform Prior
B. A Good Initializer (Ad-Hoc∗’s @8),

63.8 52.3 46.2 49.3
Classically Pre-Trained (@15)

C. Smoothed Viterbi Training (@15),
64.4 53.5 47.8 50.5

Initialized withB
D. Smoothed Viterbi Training (@45),

65.3 53.8 47.9 50.8
Initialized withC

EVG Smoothed (skip-head), Lexicalized [133] 68.8

Table 4.1: Accuracies on Section 23 of WSJ{10, 20,∞ } and Brown100 for three previous
state-of-the-art systems, this chapter’s initializer, and smoothed Viterbi-trained runs that
employ different initialization strategies.
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5.5
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bpt

lowest cross-entropy (4.32bpt) attained at WSJ8

cross-entropyh (on WSJ15, in bits per token)

Figure 4.3: Sentence-level cross-entropy for Ad-Hoc∗ initializers of WSJ{1, . . . , 45}.

4.4 Discussion of Experimental Results

The DMV has no parameters to capture syntactic relationships beyond local trees, e.g.,

agreement. Results from the previous chapter suggest that classic EM breaks down as sen-

tences get longer precisely because the model makes unwarranted independence assump-

tions: the DMV reserves too much probability mass for what should be unlikely produc-

tions. Since EM faithfully allocates such re-distributions across the possible parse trees,

once sentences grow sufficiently long, this process begins to deplete what began as likelier

structures. But medium lengths avoid a flood of exponentially-confusing longer sentences,

as well as the sparseness of unrepresentative shorter ones.The experiments in this chapter

corroborate that hypothesis.
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First of all, Viterbi manages to hang on to supervised solutions much better than classic

EM. Second, Viterbi does not universally degrade with more (complex) training sets, ex-

cept with a biased initializer. And third, Viterbi learns poorly from small data sets of short

sentences (WSJk, k < 5). But although Viterbi may be better suited to unsupervisedgram-

mar induction compared with classic EM, neither is sufficient, by itself. Both algorithms

abandon good solutions and make no guarantees with respect to extrinsic performance.

Unfortunately, these two approaches share a deep flaw.

4.5 Related Work on Improper Objectives

It is well-known that maximizing likelihood may, in fact, degrade accuracy [245, 97, 219].

De Marcken [82] showed that classic EM suffers from a fatal attraction towards determinis-

tic grammars and suggested a Viterbi training scheme as a remedy. Liang and Klein’s [189]

analysis of errors in unsupervised learning began with the inappropriateness of the likeli-

hood objective (approximation), explored problems of datasparsity (estimation) and fo-

cused on EM-specific issues related to non-convexity (identifiability and optimization).

Previous literature primarily relied on experimental evidence; de Marcken’s analytical

result is an exception but pertains only to EM-specific localattractors. The analysis in this

chapter confirms his intuitions and moreover shows that there can beglobal preferences

for deterministic grammars — problems that would persist with tractable optimization.

It proves that there is a fundamental disconnect between objective functions even when

likelihood is a reasonable metric and training data are infinite.

4.6 Proofs (by Construction)

There is a subtle distinction betweenthreedifferent probability distributions that arise in

parsing, each of which can be legitimately termed “likelihood” — the mass that a particular

model assigns to (i) highest-scoring (Viterbi) parse trees; (ii) the correct (gold) reference

trees; and (iii) the sentence strings (sums over all derivations). A classic unsupervised

parser trains to optimize the third, makes actual parsing decisions according to the first, and

is evaluated against the second. There are several potential disconnects here. First of all,
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the true generative modelθ∗ may not yield the largest margin separations for discriminating

between gold parse trees and next best alternatives; and second,θ∗ may assign sub-optimal

mass to string probabilities. There is no reason why an optimal estimatêθ should make the

best parser or coincide with a peak of an unsupervised objective.

4.6.1 The Three Likelihood Objectives

A supervised parser finds the “best” parametersθ̂ by maximizing the likelihood of all ref-

erencestructurest∗(s) — the product, over all sentences, of the probabilities thatit assigns

to each such tree:

θ̂SUP = argmax
θ
L(θ) = argmax

θ

∏

s

Pθ(t
∗(s)).

For the DMV, this objective function is convex — its unique peak is easy to find and should

match the true distributionθ∗ given enough data, barring practical problems caused by

numerical instability and inappropriate independence assumptions. It is often easier to

work in log-probability space:

θ̂SUP = argmaxθ logL(θ)
= argmaxθ

∑

s log Pθ(t
∗(s)).

Cross-entropy, measured in bits per token (bpt), offers an interpretable proxy for a model’s

quality:

h(θ) = −
∑

s lg Pθ(t
∗(s))

∑

s |s|
.

Clearly,argmaxθ L(θ) = θ̂SUP = argminθ h(θ).

Unsupervised parsers cannot rely on references and attemptto jointly maximize the

probability of eachsentenceinstead, summing over the probabilities of all possible trees,

according to a modelθ:

θ̂UNS = argmax
θ

∑

s

log
∑

t∈T (s)

Pθ(t)

︸ ︷︷ ︸

Pθ(s)

.
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This objective function is not convex and in general does nothave a unique peak, so in

practice one usually settles forθ̃UNS — a fixed point. There is no reason whyθ̂SUP should

agree withθ̂UNS, which is in turn (often badly) approximated bỹθUNS, e.g., using EM. A

logical alternative to maximizing the probability of sentences is to maximize the probability

of the most likely parse trees instead:4

θ̂VIT = argmax
θ

∑

s

logPθ(t̂
θ(s)).

This 1-best approximation similarly arrives atθ̃VIT , with no claims of optimality. Each next

model is re-estimated as if supervised by reference parses.

4.6.2 A Warm-Up Case: Accuracy vs.̂θSUP 6= θ∗

A simple way to derail accuracy is to maximize the likelihoodof an incorrect model, e.g.,

one that makes false independence assumptions. Consider fitting the DMV to a contrived

distribution — two equiprobable structures over identicalthree-token sentences from a

unary vocabulary{ a©}:
(i)

x x

a© a© a©; (ii)
y y

a© a© a©.

There are six tokens and only two have children on any given side, so adjacent stopping

MLEs are:

P̂STOP( a©, L, T) = P̂STOP( a©, R, T) = 1− 2

6
=

2

3
.

The rest of the estimated model is deterministic:

P̂ATTACH(♦, L, a©) = P̂ATTACH( a©, ∗, a©) = 1 andP̂STOP( a©, ∗, F) = 1,

since all dependents area© and every one is an only child. But the DMV generates left- and

right-attachments independently, allowing a third parse:

(iii)
x y

a© a© a©.

4It is also possible to usek-best Viterbi, withk > 1 (as was later done by Bisk and Hockenmaier [30]).
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It also cannot capture the fact that all structures are local(or that all dependency arcs point

in the same direction), admitting two additional parse trees:

(iv) a© x

a© a©; (v)
y

a© a© a©.

Each possible structure must make four (out of six) adjacentstops, incurring identical prob-

abilities:

P̂STOP( a©, ∗, T)4 × (1− P̂STOP( a©, ∗, T))2 = 24

36
.

Thus, the MLE model does not break symmetry and rates each of the five parse trees as

equally likely. Therefore, its expected per-token accuracy is 40%. Average overlaps be-

tween structures (i-v) and answers (i,ii) are (i) 100% or 0; (ii) 0 or 100%; and (iii,iv,v) 33.3%:

3 + 3

5× 3
=

2

5
= 0.4.

A decoy model without left- or right-branching, i.e.,

P̃STOP( a©, L, T) = 1 or P̃STOP( a©, R, T) = 1,

would assign zero probability to some of the training data. It would be forced to parse every

instance ofa© a© a© either as (i) or as (ii), deterministically. Nevertheless,it would attain a

higher per-token accuracy of 50%. (Judged on exact matches,at the granularity of whole

trees, the decoy’s guaranteed 50% accuracy clobbers the MLE’s expected 20%.)

The toy data set could be replicatedn-fold without changing the analysis. This confirms

that, even in the absence of estimation errors or data sparsity, there can be a fundamental

disconnect between likelihood and accuracy, if the model iswrong.5

4.6.3 A Subtler Case:θ∗ = θ̂SUP vs. θ̂UNS vs. θ̂VIT

Let’s now prove that, even with theright model, mismatches between the different objec-

tive likelihoods can also handicap the truth. The calculations are again exact, so there are

no issues with numerical stability. The set of parametersθ∗ is already factored by the DMV,

5And as George Box quipped, “Essentially, all models are wrong, but some are useful” [35, p. 424].
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so that its problems could not be blamed on invalid independence assumptions. Yet it is

possible to find another impostor distributionθ̃ that outshineŝθSUP = θ∗ on both unsuper-

vised metrics, which proves that the true modelsθ̂SUP andθ∗ are not globally optimal, as

judged by the two surrogate objective functions.

This next example is organic. Starting with WSJ10 confirms that classic EM abandons

the supervised solution. Large portions of this data set canthen be iteratively discarded, so

long as the remainder maintains the (un)desired effect — EM walking away from itŝθSUP.

This procedure isolates such behavior, arriving at a minimal set:

NP : NNP NNP ♦

— Marvin Alisky.

S : NNP VBD ♦

(Braniff declined).

NP-LOC : NNP NNP ♦

Victoria, Texas

The above kernel is tiny, but, as before, the analysis is invariant ton-fold replication: the

problem cannot be explained away by a small training size — itpersists even in infinitely

large data sets. And so, consider three reference parse trees for two-token sentences over a

binary vocabulary{ a©, z©}:

(i)
x

a© a©; (ii)
x

a© z©; (iii)
y

a© a©.
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One third of the time,z© is the head; onlya© can be a child; and onlya© has right-

dependents. Trees (i)-(iii) are the only two-terminal parses generated by the model and

are equiprobable. Thus, these sentences are representative of a length-two restriction of

everything generated by the trueθ∗:

PATTACH(♦, L, a©) =
2

3
and PSTOP( a©, ∗, T) = 4

5
,

since a© is the head two out of three times, and since only one out of fivea©’s attaches a

child on either side. Elsewhere, the model is deterministic:

PSTOP( z©, L, T) = 0;

PSTOP(∗, ∗, F) = PSTOP( z©, R, T) = 1;

PATTACH( a©, ∗, a©) = PATTACH( z©, L, a©) = 1.

Contrast the optimal estimatêθSUP = θ∗ with the decoyfixed point6 θ̃ that is identical toθ∗,

except

P̃STOP( a©, L, T) =
3

5
and P̃STOP( a©, R, T) = 1.

The probability of stopping is now 3/5 on the left and 1 on the right, instead of 4/5 on both

sides —θ̃ disallows a©’s right-dependents but preserves its overall fertility. The probabili-

ties of leavesa© (no children), under the modelŝθSUP andθ̃, are:

P̂( a©) = P̂STOP( a©, L, T)× P̂STOP( a©, R, T) =

(
4

5

)2

and P̃( a©) = P̃STOP( a©, L, T)× P̃STOP( a©, R, T) =
3

5
.

And the probabilities of, e.g., structure
x

a© z©, are:

P̂ATTACH(♦, L, z©)× P̂STOP( z©, R, T)× (1− P̂STOP( z©, L, T))× P̂STOP( z©, L, F)

6Models estimated from trees induced byθ̃ over these sentences are againθ̃, for both soft and hard EM.
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× P̂ATTACH( z©, L, a©)× P̂( a©)

= P̂ATTACH(♦, L, z©)× P̂( a©) =
1

3
· 16
25

and P̃ATTACH(♦, L, z©)× P̃( a©) =
1

3
· 3
5
.

Similarly, the probabilities of all four possible parse trees for the two distinct sentences,

a© a© and a© z©, under the two models,̂θSUP = θ∗ andθ̃, are:

θ̂SUP = θ∗ θ̃
x

a© z© 1
3

(
16
25

)
= 1

3

(
3
5

)
=

16
75

= 0.213 1
5
= 0.2

y

a© z© 0 0

x

a© a© 2
3

(
4
5

) (
1− 4

5

) (
16
25

)
= 2

3

(
1− 3

5

) (
3
5

)
=

128
1875

= 0.06826 4
25

= 0.16
y

a© a© 0.06826 0

To the threetrue parses, θ̂SUP assigns probability
(
16
75

) (
128
1875

)2 ≈ 0.0009942 — about

1.66bpt; θ̃ leaves zero mass for (iii), corresponding to a larger (infinite) cross-entropy,

consistent with theory. So far so good, but if asked forbest(Viterbi) parses, θ̂SUP could still

produce the actual trees, whereasθ̃ would happily parse sentences of (iii) and (i) the same,

perceiving a joint probability of(0.2)(0.16)2 = 0.00512 — just 1.27bpt, appearing to out-

performθ̂SUP = θ∗! Asked forsentence probabilities, θ̃ would remain unchanged (it parses

each sentence unambiguously), butθ̂SUP would aggregate to
(
16
75

) (
2 · 128

1875

)2 ≈ 0.003977,

improving to 1.33bpt, but still noticeably “worse” thañθ.

Despite leaving zero probability to the truth,θ̃ beatsθ∗ on both surrogate metrics, glob-

ally. This seems like an egregious error. Judged by (extrinsic) accuracy,̃θ still holds its

own: it gets four directed edges from predicting parse trees(i) and (ii) completely right, but

none of (iii) — a solid 66.7%. Subject to tie-breaking,θ∗ is equally likely to get (i) and/or

(iii) entirely right or totally wrong (they are indistinguishable): it could earn a perfect

100%, tieθ̃, or score a low 33.3%, at 1:2:1 odds, respectively — same asθ̃’s deterministic

66.7% accuracy, in expectation, but with higher variance.
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4.7 Discussion of Theoretical Results

Daumé et al. [80] questioned the benefits of using exact models in approximate inference.

In the case of grammar induction, the model already makes strong simplifying assumptions

and the objective is also incorrect. It makes sense that ViterbiEM sometimes works, since

an approximate wrong “solution”could, by chance, be better than one that is exactly wrong.

One reason why Viterbi EM may work well is thatits score is used in selecting actual

output parse trees. Wainwright [330] provided strong theoretical and empirical arguments

for using the same approximate inference method in trainingas in performing predictions

for a learned model. He showed that if inference involves an approximation, then using

the same approximate method to train the model gives even better performance guarantees

than exact training methods. If the task were not parsing butlanguage modeling, where the

relevant score is the sum of the probabilities over individual derivations, perhaps classic

EM would not be doing as badly, compared to Viterbi.

Viterbi training is not only faster and more accurate but also free of inside-outside’s

recursion constraints. It therefore invites more flexible modeling techniques, including

discriminative, feature-rich approaches that targetconditional likelihoods, essentially via

(unsupervised) self-training [63, 232, 208, 209,inter alia]. Such “learning by doing” ap-

proaches may be relevant to understanding human language acquisition, as children fre-

quently find themselves forced to interpret a sentence in order to interact with the world.

Since most models ofhumanprobabilistic parsing are massively pruned [158, 55, 186,inter

alia], the serial nature of Viterbi EM, or the very limited parallelism ofk-best Viterbi, may

be more appropriate in modeling this task than fully-integrated inside-outside solutions.7

4.8 Conclusion

Without a known objective, as in unsupervised learning, correct exact optimization be-

comes impossible. In such cases, approximations, althoughliable to pass over a true opti-

mum, may achieve faster convergence and stillimproveperformance. This chapter showed

7Following the work in this chapter,k-best Viterbi training [30] and other blends of EM have been applied
to both grammar induction [324, 325] (see also next chapter)and other natural language learning tasks [273].
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that this is the case with Viterbi training, a cheap alternative to inside-outside re-estimation,

for unsupervised dependency parsing.

This chapter explained why Viterbi EM may be particularly well-suited to learning from

longer sentences, in addition to any general benefits to synchronizing approximation meth-

ods across learning and inference. Its best algorithm is simpler and an order of magnitude

faster than classic EM and achieves state-of-the-art performance: 3.8% higher accuracy

than previous published best results on Section 23 (all sentences) of the Wall Street Journal

corpus. This improvement generalizes to the Brown corpus, the held-out evaluation set,

where the same model registers a 7.5% gain.

Unfortunately, approximations alone do not bridge the realgap between objective func-

tions. This deeper issue will be addressed by drawing parsing constraints [245] from spe-

cific applications. One example of such an approach, tied to machine translation, is syn-

chronous grammars [11]. An alternative — observing constraints induced by hyper-text

markup harvested from the web, punctuation and capitalization — is explored in the sec-

ond part of this dissertation.



Chapter 5

Lateen EM

This chapter proposes a suite of algorithms that make non-convex optimization with EM

less sensitive to local optima, by exploiting the availability of multiple plausible unsuper-

vised objectives, covered in the previous two chapters. Supporting peer-reviewed publi-

cation isLateen EM: Unsupervised Training with Multiple Objectives, Applied to Depen-

dency Grammar Inductionin EMNLP 2011 [303].

5.1 Introduction

Expectation maximization (EM) algorithms [83] play important roles in learning latent lin-

guistic structure. Unsupervised techniques from this family excel at core natural language

processing (NLP) tasks, including segmentation, alignment, tagging and parsing. Typi-

cal implementations specify a probabilistic framework, pick an initial model instance, and

iteratively improve parameters using EM. A key guarantee isthat subsequent model in-

stances are no worse than the previous, according to training data likelihood in the given

framework. Another attractive feature that helped make EM instrumental [218] is its initial

efficiency: Training tends to begin with large steps in a parameter space, sometimes by-

passing many local optima at once. After a modest number of such iterations, however, EM

lands close to an attractor. Next, its convergence rate necessarily suffers: Disproportion-

ately many (and ever-smaller) steps are needed to finally approach this fixed point, which is

50
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Figure 5.1: A triangular sail atop a traditional Arab sailing vessel, thedhow(right). Older
square sails permitted sailing only before the wind. But theefficientlateensail worked like
a wing (with high pressure on one side and low pressure on the other), allowing a ship to go
almost directly into a headwind. Bytacking, in a zig-zag pattern, it became possible to sail
in any direction, provided there was some wind at all (left).For centuries seafarers expertly
combined both sails to traverse extensive distances, greatly increasing the reach of me-
dieval navigation. (Partially adapted fromhttp://www.britannica.com/EBchecked/
topic/331395, http://allitera.tive.org/archives/004922.html andhttp://
landscapedvd.com/desktops/images/ship1280x1024.jpg.)

almost invariably a local optimum. Deciding when to terminate EM often involves guess-

work; and finding ways out of local optima requires trial and error. This chapter proposes

several strategies that address both limitations.

Unsupervised objectives are, at best, loosely correlated with extrinsic performance [245,

219, 189,inter alia]. This fact justifies (occasionally) deviating from a prescribed train-

ing course. For example, sincemultiple equi-plausible objectives are usually available,

a learner could cycle through them, optimizing alternatives when the primary objective

function gets stuck; or, instead of trying to escape, it could aim to avoid local optima in

the first place, by halting search early if an improvement to one objective would come

at the expense of harming another. This chapter tests these general ideas by focusing on

non-convex likelihood optimization using EM. This settingis standard and has natural and

well-understood objectives: the classic, “soft” EM; and Viterbi, or “hard” EM [166]. The

name “lateen” comes from the sea — triangularlateensails can take wind on either side,

enabling sailing vessels totack (see Figure 5.1). As a captain can’t count on favorable

winds, so an unsupervised learner can’t rely on co-operative gradients: soft EM maximizes
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likelihoods of observed data across assignments to hidden variables, whereas hard EM fo-

cuses on most likely completions. These objectives are plausible, yet both can be provably

“wrong,” as demonstrated in the previous chapter. Thus, it is permissible for lateen EM

to maneuver between their gradients, for example by tackingaround local attractors, in a

zig-zag fashion.

5.2 The Lateen Family of Algorithms

This chapter proposes several strategies that use a secondary objective to improve over

standard EM training. For hard EM, the secondary objective is that of soft EM; and vice

versa if soft EM is the primary algorithm.

5.2.1 Algorithm #1: Simple Lateen EM

Simple lateen EM begins by running standard EM to convergence, using a user-supplied

initial model, primary objective and definition of convergence. Next, the algorithm alter-

nates. A single lateen alternation involves two phases: (i)retraining using the secondary

objective, starting from the previous converged solution (once again iterating until conver-

gence, but now of the secondary objective); and (ii) retraining using the primary objective

again, starting from the latest converged solution (once more to convergence of the primary

objective). The algorithm stops upon failing to sufficiently improve the primary objective

across alternations (applying the standard convergence criterion end-to-end) and returns the

best of all models re-estimated during training (as judged by the primary objective).

5.2.2 Algorithm #2: Shallow Lateen EM

Same as algorithm #1, but switches back to optimizing the primary objective after asingle

step with the secondary, during phase (i) of all lateen alternations. Thus, the algorithm

alternates between optimizing a primary objective to convergence, then stepping away,

using one iteration of the secondary optimizer.
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5.2.3 Algorithm #3: Early-Stopping Lateen EM

This variant runs standard EM but quits early if the secondary objective suffers. Con-

vergence is redefined by “or”-ing the user-supplied termination criterion (i.e., a “small-

enough” change in the primary objective) withanyadverse change of the secondary (i.e.,

an increase in its cross-entropy). Early-stopping lateen EM doesnot alternate objectives.

5.2.4 Algorithm #4: Early-Switching Lateen EM

Same as algorithm #1, but with the new definition of convergence, as in algorithm #3.

Early-switching lateen EM halts primary optimizers as soonas they hurt the secondary ob-

jective and stops secondary optimizers once they harm the primary objective. It terminates

upon failing to sufficiently improve the primary objective across a full alternation.

5.2.5 Algorithm #5: Partly-Switching Lateen EM

Same as algorithm #4, but again iterating primary objectives to convergence, as in algo-

rithm #1; secondary optimizers still continue to terminateearly.

5.3 The Task and Study #1

This chapter tests the impact of the five lateen algorithms onunsupervised dependency

parsing — a task in which EM plays an important role [244, 172,117, inter alia]. It en-

tails two sets of experiments: Study #1 tests whether singlealternations of simple lateen

EM (as defined in§5.2.1, Algorithm #1) improve a publicly-available system for English

dependency grammar induction (from Ch. 6).1 Study #2 introduces a more sophisticated

methodology that uses factorial designs and regressions toevaluate lateen strategies with

unsupervised dependency parsing in many languages, after also controlling for other im-

portant sources of variation.

For study #1, the base system is an instance of the DMV, trained using hard EM on

WSJ45. To confirm that the base model had indeed converged, 10steps of hard EM on

1http://nlp.stanford.edu/pubs/markup-data.tar.bz2: dp.model.dmv
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System DDA (%)
Tree Substitution Grammars [33]55.7

Posterior Sparsity [117] 53.3
Web Markup (Ch. 6) 50.4

+ soft EM + hard EM 52.8 (+2.4)
lexicalized, using hard EM 54.3 (+1.5)

+ soft EM + hard EM 55.6(+1.3)

Table 5.1: Directed dependency accuracies (DDA) on Section23 of WSJ (all sentences)
for contemporary state-of-the-art systems and two experiments (one unlexicalized and one
lexicalized) with a single alternation of lateen EM.

WSJ45 were run, verifying that its objective did not change much. Next, a single alternation

of simple lateen EM was applied: first running soft EM (this took 101 steps, using the same

termination criterion,2−20 bpt), followed by hard EM (again to convergence — another 23

iterations). The result was a decrease in hard EM’s cross-entropy, from 3.69 to 3.59 bits

per token (bpt), accompanied by a 2.4% jump in accuracy, from50.4 to 52.8%, on Section

23 of WSJ (see Table 5.1).

The first experiment showed that lateen EM holds promise for simple models. The next

test is a more realistic setting: re-estimatinglexicalizedmodels,2 starting from the unlexi-

calized model’s parses; this took 24 steps with hard EM. For the second lateen alternation,

soft EM ran for 37 steps, hard EM took another 14, and the new model again improved, by

1.3%, from 54.3 to 55.6% (see Table 5.1); the corresponding drop in (lexicalized) cross-

entropy was from 6.10 to 6.09 bpt. This last model is competitive with the contemporary

state-of-the-art; moreover, gains from single applications of simple lateen alternations (2.4

and 1.3%) are on par with the increase due to lexicalization alone (1.5%).

5.4 Methodology for Study #2

Study #1 suggests that lateen EM can improve grammar induction in English. To establish

statistical significance, however, it is important to test ahypothesis in many settings [148].

2Using Headden et al.’s [133] method (also the approach of thetwo stronger state-of-the-art systems): for
words seen at least 100 times in the training corpus, gold POStags are augmented with their lexical items.
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Therefore, a factorial experimental design and regressionanalyses were used, with a variety

of lateen strategies. Two regressions — one predicting accuracy, the other, the number of

iterations — capture the effects that lateen algorithms have on performance and efficiency,

relative to standard EM training. They controlled for important dimensions of variation,

such as the underlying language: to make sure that results are not English-specific, gram-

mars were induced for 19 languages. Also explored were the impact from the quality of an

initial model (using both uniform and ad hoc initializers),the choice of a primary objective

(i.e., soft or hard EM), and the quantity and complexity of training data (shorter versus both

short and long sentences). Appendix gives the full details.

5.5 Experiments

All 23 train/test splits from the 2006/7 CoNLL shared tasks are used [42, 236]. These

disjoint splits require smoothing (in the WSJ setting, training and test sets overlapped). All

punctuation labeled in the data is spliced out, as is standard practice [244, 172], introducing

new arcs from grand-mothers to grand-daughters where necessary, both in train- and test-

sets. Thus, punctuation does not affect scoring. An optimizer is always halted once a

change in its objective’s consecutive cross-entropy values falls below2−20 bpt, at which

point it is considered “stuck.” All unsmoothed models are smoothed immediately prior to

evaluation; some of the baseline models are also smoothed during training. In both cases,

the “add-one” (a.k.a. Laplace) smoothing algorithm is used.

5.5.1 Baseline Models

This chapter tests a total of six baseline models, experimenting with two types of alterna-

tives: (i) strategies that perturb stuck models directly, by smoothing, ignoring secondary

objectives; and (ii)shallowapplications of a single EM step, ignoring convergence.

BaselineB1 alternates running standard EM to convergence and smoothing. A second

baseline,B2, smooths after every step of EM instead. Another shallow baseline,B3, alter-

nates single steps of soft and hard EM.3 Three such baselines begin with hard EM (marked

3It approximates a mixture (the average of soft and hard objectives) — a natural comparison, computable
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with the subscripth); and three more start with soft EM (marked with the subscript s).

5.5.2 Lateen Models

Ten models,A{1, 2, 3, 4, 5}{h,s}, correspond to the lateen algorithms #1–5 (§5.2), starting

with either hard or soft EM’s objective, to be used as the primary.

5.6 Results

Soft EM Hard EM
Model ∆a ∆i ∆a ∆i

Baselines B3 -2.7 ×0.2 -2.0 ×0.3
B2 +0.6 ×0.7 +0.6 ×1.2
B1 0.0 ×2.0 +0.8 ×3.7

Algorithms A1 0.0 ×1.3 +5.5 ×6.5
A2 -0.0 ×1.3 +1.5 ×3.6
A3 0.0 ×0.7 -0.1 ×0.7
A4 0.0 ×0.8 +3.0 ×2.1
A5 0.0 ×1.2 +2.9 ×3.8

Table 5.2: Estimated additive changes in directed dependency accuracy (∆a) and multi-
plicative changes in the number of iterations before terminating (∆i) for all baseline mod-
els and lateen algorithms, relative to standard training: soft EM (left) and hard EM (right).
Bold entries are statistically different (p < 0.01) from zero, for∆a, and one, for∆i (details
in Table 5.4 and Appendix).

No baseline attained a statistically significant performance improvement. Shallow models

B3{h,s}, in fact, significantly lowered accuracy: by 2.0%, on average (p ≈ 7.8 × 10−4),

for B3h, which began with hard EM; and down 2.7% on average (p ≈ 6.4 × 10−7), for

B3s, started with soft EM. They were, however, 3–5x faster than standard training, on

average (see Table 5.4 for all estimates and associatedp-values; above, Table 5.2 shows a

preview of the full results).

via gradients and standard optimization algorithms, such as L-BFGS [192]. Exact interpolations are not
explored because replacing EM is itself a significant confounder, even with unchanged objectives [24].
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Figure 5.2: Cross-entropies for Italian ’07, initialized uniformly and trained on sentences
up to length 45. The two curves are primary and secondary objectives (soft EM’s lies
below, as sentence yields are at least as likely as parse trees): shaded regions indicate itera-
tions of hard EM (primary); and annotated values are measurements upon each optimizer’s
convergence (soft EM’s are parenthesized).

5.6.1 A1{h,s} — Simple Lateen EM

A1h runs 6.5x slower, but scores 5.5% higher, on average, compared to standard Viterbi

training;A1s is only 30% slower than standard soft EM, but does not impact its accuracy

at all, on average. Figure 5.2 depicts a sample training run:Italian ’07 withA1h. Viterbi

EM converges after 47 iterations, reducing the primary objective to 3.39 bpt (the secondary

is then at 3.26); accuracy on the held-out set is 41.8%. Threealternations of lateen EM

(totaling 265 iterations) further decrease the primary objective to 3.29 bpt (the secondary

also declines, to 3.22) and accuracy increases to 56.2% (14.4% higher).

5.6.2 A2{h,s} — Shallow Lateen EM

A2h runs 3.6x slower, but scores only 1.5% higher, on average, compared tostandard

Viterbi training; A2s is again 30% slower than standard soft EM and also has no mea-

surable impact on parsing accuracy.
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5.6.3 A3{h,s} — Early-Stopping Lateen EM

BothA3h andA3s run 30% faster, on average, than standard training with hardor soft EM;

and neither heuristic causes a statistical change to accuracy. Table 5.3 shows accuracies

and iteration counts for 10 (of 23) train/test splits that terminate early withA3s (in one par-

ticular, example setting). These runs are nearly twice as fast, and only two score (slightly)

lower, compared to standard training using soft EM.

5.6.4 A4{h,s} — Early-Switching Lateen EM

A4h runs only 2.1x slower, but scores only 3.0% higher, on average, compared tostan-

dard Viterbi training;A4s is, in fact, 20% faster than standard soft EM, but still has no

measurable impact on accuracy.

5.6.5 A5{h,s} — Partly-Switching Lateen EM

A5h runs 3.8x slower, scoring 2.9% higher, on average, compared to standard Viterbi train-

ing; A5s is 20% slower than soft EM, but, again, no more accurate. Indeed,A4 strictly

dominates bothA5 variants.

5.7 Discussion

Lateen strategies improve dependency grammar induction inseveral ways. Early stopping

offers a clear benefit: 30% higher efficiency yet same performance as standard training.

This technique could be used to (more) fairly compare learners with radically different

objectives (e.g., lexicalized and unlexicalized), requiring quite different numbers of steps

— or magnitude changes in cross-entropy — to converge.

The second benefit is improved performance, but only starting with hard EM. Initial

local optima discovered by soft EM are such that the impact onaccuracy of all subsequent

heuristics is indistinguishable from noise (it’s not even negative). But for hard EM, lateen

strategies consistently improve accuracy — by 1.5, 3.0 or 5.5% — as an algorithm follows

the secondary objective longer (a single step, until the primary objective gets worse, or to
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CoNLL Year Soft EM A3s
& Language DDA iters DDA iters

Arabic 2006 28.4 180 28.4 118
Bulgarian ’06 39.1 253 39.6 131
Chinese ’06 49.4 268 49.4 204
Dutch ’06 21.3 246 27.8 35
Hungarian ’07 17.1 366 17.4 213
Italian ’07 39.6 194 39.6 164
Japanese ’06 56.6 113 56.6 93
Portuguese ’06 37.9 180 37.5 102
Slovenian ’06 30.8 234 31.1 118
Spanish ’06 33.3 125 33.1 73

Average: 35.4 216 36.1 125

Table 5.3: Directed dependency accuracies (DDA) and iteration counts for the 10 (of 23)
train/test splits affected by early termination (setting:soft EM’s primary objective, trained
using shorter sentences and ad-hoc initialization).

convergence). These results suggest that soft EM should useearly termination to improve

efficiency. Hard EM, by contrast, could use any lateen strategy to improve either efficiency

or performance, or to strike a balance.

5.8 Related Work

5.8.1 Avoiding and/or Escaping Local Attractors

Simple lateen EM is similar to Dhillon et al.’s [84] refinement algorithm for text cluster-

ing with sphericalk-means. Their “ping-pong” strategy alternates batch and incremental

EM, exploits the strong points of each, and improves asharedobjective at every step. Un-

like generalized (GEM) variants [229], lateen EM uses multiple objectives: it sacrifices

the primary in the short run, to escape local optima; in the long run, it also does no harm,

by construction (as it returns the best model seen). Of the meta-heuristics that use more

than a standard, scalar objective, deterministic annealing (DA) [268] is closest to lateen

EM. DA perturbs objective functions, instead of manipulating solutions directly. As other

continuation methods [5], it optimizes an easy (e.g., convex) function first, then “rides”
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that optimum by gradually morphing functions towards the difficult objective; each step

reoptimizes from the previous approximate solution. Smithand Eisner [292] employed

DA to improve part-of-speech disambiguation, but found that objectives had to be fur-

ther “skewed,” using domain knowledge, before it helped (constituent) grammar induction.

(For this reason, this chapter does not experiment with DA, despite its strong similarities

to lateen EM.) Smith and Eisner used a “temperature”β to anneal a flat uniform distribu-

tion (β = 0) into soft EM’s non-convex objective (β = 1). In their framework, hard EM

corresponds toβ −→ ∞, so the algorithms differ only in theirβ-schedule: DA’s is con-

tinuous, from 0 to 1; lateen EM’s is a discrete alternation, of 1 and+∞ (a kind of “beam

search” [194], with soft EM expanding and hard EM pruning a frontier).

5.8.2 Terminating Early, Before Convergence

EM is rarely run to (even numerical) convergence. Fixing a modest number of iterations

a priori [170,§5.3.4], running until successive likelihood ratios becomesmall [301,§4.1]

or using a combination of the two [261,§4, Footnote 5] is standard practice in NLP. El-

worthy’s [97,§5, Figure 1] analysis of part-of-speech tagging showed that, in most cases,

a small number of iterations is actually preferable to convergence, in terms of final ac-

curacies: “regularization by early termination” had been suggested for image deblurring

algorithms in statistical astronomy [197,§2]; and validation against held-out data — a

strategy proposed much earlier, in psychology [179], has also been used as a halting crite-

rion in NLP [344,§4.2, 5.2]. Early-stopping lateen EM tethers termination toasignchange

in the direction of a secondary objective, similarly to (cross-)validation [314, 112, 12], but

without splitting data — it trains using all examples, at alltimes.4,5

4It can be viewed as a milder contrastive estimation [293, 294], agnostic to implicit negative evidence, but
caringwhencelearners push probability mass towards training examples:when most likely parse trees begin
to benefit at the expense of their sentence yields (or vice versa), optimizers halt.

5For a recently proposed instance of EM that uses cross-validation (CV) to optimizesmootheddata
likelihoods (in learning synchronous PCFGs, for phrase-based machine translation), see Mylonakis and
Sima’an’s [226,§3.1] CV-EM algorithm.
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5.8.3 Training with Multiple Views

Lateen strategies may seem conceptually related to co-training [32]. However, bootstrap-

ping methods generally begin with some labeled data and gradually label the rest (discrim-

inatively) as they grow more confident, but do not optimize anexplicit objective function;

EM, on the other hand, can be fully unsupervised, relabels all examples on each iteration

(generatively), and guarantees not to hurt a well-defined objective, at every step.6 Co-

training classically relies on two views of the data — redundant feature sets that allow

different algorithms to label examples for each other, yielding “probably approximately

correct” (PAC)-style guarantees under certain (strong) assumptions. In contrast, lateen EM

uses the same data, features, model and essentially the samealgorithms, changing only

their objective functions: it makes no assumptions, but guarantees not to harm the pri-

mary objective. Some of these distinctions have become blurred with time: Collins and

Singer [72] introduced an objective function (also based onagreement) into co-training;

Goldman and Zhou [126], Ng and Cardie [232] and Chan et al. [46] made do without

redundant views; Balcan et al. [15] relaxed other strong assumptions; and Zhou and Gold-

man [347] generalized co-training to accommodate three andmore algorithms. Several

such methods have been applied to dependency parsing [298],constituent parsing [277]

and parser reranking [76]. Fundamentally, co-training exploits redundancies in unlabeled

data and/or learning algorithms. Lateen strategiesalsoexploit redundancies: in noisy ob-

jectives. Both approaches use a second vantage point to improve their perception of difficult

training terrains.

5.9 Conclusions and Future Work

Lateen strategies can improve performance and efficiency for dependency grammar induc-

tion with the DMV. Early-stopping lateen EM is 30% faster than standard training, without

affecting accuracy — it reduces guesswork in terminating EM. At the other extreme, sim-

ple lateen EM is slower, but significantly improves accuracy— by 5.5%, on average — for

hard EM, escaping some of its local optima. Future work couldexplore other NLP tasks

6Some authors [234, 232, 293] draw a hard line between bootstrapping algorithms, such as self- and
co-training, and probabilistic modeling using EM; others [78, 47] tend to lump them together.
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— such as clustering, sequence labeling, segmentation and alignment — that often employ

EM. The new meta-heuristics are multi-faceted, featuring aspects of iterated local search,

deterministic annealing, cross-validation, contrastiveestimation and co-training. They may

be generally useful in machine learning and non-convex optimization.

5.10 Appendix on Experimental Design

Statistical techniques are vital to many aspects of computational linguistics [155, 50, 3,

inter alia]. This chapter used factorial designs,7 which are standard throughout the natural

and social sciences, to assist with experimental design andstatistical analyses. Combined

with ordinary regressions, these methods provide succinctand interpretable summaries that

explain which settings meaningfully contribute to changesin dependent variables, such as

running time and accuracy.

5.10.1 Dependent Variables

Two regressions were constructed, for two types of dependent variables: to summarize

performance, accuracies were predicted; and to summarize efficiency, (logarithms of) iter-

ations before termination.

In the performance regression, four different scores were used for the dependent vari-

able. These include both directed accuracies andundirectedaccuracies, each computed in

two ways: (i) using a best parse tree; and (ii) using all parsetrees. These four types of

scores provide different kinds of information. Undirectedscores ignore polarity of parent-

child relations [244, 172, 282], partially correcting for some effects of alternate analyses

(e.g., systematic choices between modals and main verbs forheads of sentences, determin-

ers for noun phrases, etc.). Andintegratedscoring, using the inside-outside algorithm [14]

to compute expected accuracy across all — not just best — parse trees, has the advantage of

incorporating probabilities assigned to individual arcs:This metric is more sensitive to the

margins that separate best from next-best parse trees, and is not affected by tie-breaking.

7It usedfull factorial designs for clarity of exposition. But many fewerexperiments would suffice, espe-
cially in regression models without interaction terms: forthe more efficientfractional factorial designs, as
well as for randomized block designs and full factorial designs, see Montgomery [223, Ch. 4–9].
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Regression forAccuracies Regression forln(Iterations)
Goodness-of-Fit: (R2

adj ≈ 76.2%) (R2
adj ≈ 82.4%)

Indicator Factors coeff.̂β adj. p-value
undirected 18.1 < 2.0 × 10−16

integrated -0.9 ≈ 7.0 × 10−7 coeff.β̂ mult. eβ̂ adj. p-value
(intercept) 30.9 < 2.0 × 10−16 5.5 255.8 < 2.0 × 10−16

adhoc 1.2 ≈ 3.1 × 10−13 -0.0 1.0 ≈ 1.0

Model sweet 1.0 ≈ 3.1 × 10−9 -0.2 0.8 < 2.0 × 10−16

B3s shallow (soft-first) -2.7 ≈ 6.4 × 10−7 -1.5 0.2 < 2.0 × 10−16

B3h shallow (hard-first) -2.0 ≈ 7.8 × 10−4 -1.2 0.3 < 2.0 × 10−16

B2s shallow smooth 0.6 ≈ 1.0 -0.4 0.7 ≈ 1.4 × 10−12

B1s smooth 0.0 ≈ 1.0 0.7 2.0 < 2.0 × 10−16

A1s simple lateen 0.0 ≈ 1.0 0.2 1.3 ≈ 4.1 × 10−4

A2s shallow lateen -0.0 ≈ 1.0 0.2 1.3 ≈ 5.8 × 10−4

A3s early-stopping lateen 0.0 ≈ 1.0 -0.3 0.7 ≈ 2.6 × 10−7

A4s early-switching lateen 0.0 ≈ 1.0 -0.3 0.8 ≈ 2.6 × 10−7

A5s partly-switching lateen 0.0 ≈ 1.0 0.2 1.2 ≈ 4.2 × 10−3

viterbi -4.0 ≈ 5.7 × 10−16 -1.7 0.2 < 2.0 × 10−16

B2h shallow smooth 0.6 ≈ 1.0 0.2 1.2 ≈ 5.6 × 10−2

B1h smooth 0.8 ≈ 1.0 1.3 3.7 < 2.0 × 10−16

A1h simple lateen 5.5 < 2.0 × 10−16 1.9 6.5 < 2.0 × 10−16

A2h shallow lateen 1.5 ≈ 5.0 × 10−2 1.3 3.6 < 2.0 × 10−16

A3h early-stopping lateen -0.1 ≈ 1.0 -0.4 0.7 ≈ 1.7 × 10−11

A4h early-switching lateen 3.0 ≈ 1.0 × 10−8 0.7 2.1 < 2.0 × 10−16

A5h partly-switching lateen 2.9 ≈ 7.6 × 10−8 1.3 3.8 < 2.0 × 10−16

Table 5.4: Regressions for accuracies and natural-log-iterations, using 86 binary predictors
(all p-values jointly adjusted for simultaneous hypothesis testing;{langyear} indicators not
shown). Accuracies’ estimated coefficientsβ̂ that are statistically different from 0 — and
iteration counts’ multiplierseβ̂ significantly different from 1 — are shown in bold.

Scores were tagged using two binary predictors in a simple (first order, multi-linear) re-

gression, where having multiple relevant quality assessments improves goodness-of-fit.

In the efficiency regression, dependent variables were logarithms of the numbers of

iterations. Wrapping EM in an inner loop of a heuristic has a multiplicative effect on the

total number of models re-estimated prior to termination. Consequently, logarithms of the

final counts better fit the observed data (however, since the logarithm is concave, the price

of this better fit is a slight bias towards overestimating thecoefficients).

5.10.2 Independent Predictors

All of the predictors are binary indicators (a.k.a. “dummy”variables). Theundirectedand

integratedfactors only affect the regression for accuracies (see Table 5.4, left); remaining
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factors participate also in the running times regression (see Table 5.4, right). In a default

run, all factors are zero, corresponding to the intercept estimated by a regression; other

estimates reflect changes in the dependent variable associated with having that factor “on”

instead of “off.”

• adhoc— This setting controls initialization. By default, the uninformed uniform

initializer is used; when it is on, Ad-Hoc∗, bootstrapped using sentences up to length

10, from the training set, is used.

• sweet— This setting controls the length cutoff. By default, training is with all sen-

tences containing up to 45 tokens; when it is on, the “sweet spot” cutoff of 15 tokens

(recommended for English, WSJ) is used.

• viterbi — This setting controls the primary objective of the learning algorithm. By

default, soft EM is run; when it is on, hard EM is run.

• {langyeari}22i=1 — This is a set of 22 mutually-exclusive selectors for the language/year

of a train/test split; default (all zeros) is English ’07.

Due to space limitations,langyearpredictors are excluded from Table 5.4. Further, interac-

tions between predictors are not explored. This approach may miss some interesting facts,

e.g., that theadhocinitializer is exceptionally good for English, with soft EM. Instead it

yields coarse summaries of regularities supported by overwhelming evidence across data

and training regimes.

5.10.3 Statistical Significance

All statistical analyses relied on the R package [258], which does not, by default, adjust

statistical significance (p-values) for multiple hypotheses testing.8 This was corrected us-

ing the Holm-Bonferroni method [141], which is uniformly more powerful than the older

(Dunn-)Bonferroni procedure; since many fewer hypotheses(44 + 42 — one per inter-

cept/coefficient̂β) than settings combinations were tested, its adjustments to thep-values

8Since one wouldexpectp% of randomly chosen hypotheses to appear significant at thep% level simply
by chance, one must take precautions against these and other “data-snooping” biases.
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CoNLL Year A3s Soft EM A3h Hard EM A1h
& Language DDA iters DDA iters DDA iters DDA iters DDA iters
Arabic 2006 28.4 118 28.4 162 21.6 19 21.6 21 32.1 200

’7 – – 26.9 171 24.7 17 24.8 24 22.0 239
Basque ’7 – – 39.9 180 32.0 16 32.2 20 43.6 128
Bulgarian ’6 39.6 131 39.1 253 41.6 22 41.5 25 44.3 140
Catalan ’7 – – 58.5 135 50.1 48 50.1 54 63.8 279
Chinese ’6 49.4 204 49.4 268 31.3 24 31.6 55 37.9 378

’7 – – 46.0 262 30.0 25 30.2 64 34.5 307
Czech ’6 – – 50.5 294 27.8 27 27.7 33 35.2 445

’7 – – 49.8 263 29.0 37 29.0 41 31.4 307
Danish ’6 – – 43.5 116 43.8 31 43.9 45 44.0 289
Dutch ’6 27.8 35 21.3 246 24.9 44 24.9 49 32.5 241
English ’7 – – 38.1 180 34.0 32 33.9 42 34.9 186
German ’6 – – 33.3 136 25.4 20 25.4 39 33.5 155
Greek ’7 – – 17.5 230 18.3 18 18.3 21 21.4 117
Hungarian ’7 17.4 213 17.1 366 12.3 26 12.4 36 23.0 246
Italian ’7 39.6 164 39.6 194 32.6 25 32.6 27 37.6 273
Japanese ’6 56.6 93 56.6 113 49.6 20 49.7 23 53.5 91
Portuguese ’6 37.5 102 37.9 180 28.6 27 28.9 41 34.4 134
Slovenian ’6 31.1 118 30.8 234 – – 23.4 22 33.6 255
Spanish ’6 33.1 73 33.3 125 18.2 29 18.4 36 33.3 235
Swedish ’6 – – 41.8 242 36.0 24 36.1 29 42.5 296
Turkish ’6 – – 29.8 303 17.8 19 22.2 38 31.9 134

’7 – – 28.3 227 14.0 9 10.7 31 33.4 242
Average: 37.4 162 37.0 206 30.0 26 30.0 35 37.1 221

Table 5.5: Performance (directed dependency accuracies measured against all sentences in
the evaluation sets) and efficiency (numbers of iterations)for standard training (soft and
hard EM), early-stopping lateen EM (A3) and simple lateen EM with hard EM’s primary
objective (A1h), for all 23 train/test splits, withadhocandsweetsettings on.

are small (see Table 5.4).9

5.10.4 Interpretation

Table 5.4 shows the estimated coefficients and their (adjusted)p-values for both intercepts

and most predictors (excluding the language/year of the data sets) for all 1,840 experiments.

The default (English) system uses soft EM, trains with both short and long sentences, and

starts from an uninformed uniform initializer. It is estimated to score 30.9%, converging

after approximately 256 iterations (both intercepts are statistically different from zero:p <

2.0× 10−16). As had to be the case, a gain is detected fromundirectedscoring;integrated

scoring is slightly (but significantly:p ≈ 7.0 × 10−7) negative, which is reassuring: best

9The p-values for all 86 hypotheses were adjusted jointly, usinghttp://rss.acs.unt.edu/Rdoc/
library/multtest/html/mt.rawp2adjp.html.
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CoNLL Year A3s Soft EM A3h Hard EM A1h
& Language DDA iters DDA iters DDA iters DDA iters DDA iters

Arabic 2006 – – 33.4 317 20.8 8 20.2 32 16.6 269
’7 18.6 60 8.7 252 26.5 9 26.4 14 49.5 171

Basque ’7 – – 18.3 245 23.2 16 23.0 23 24.0 162
Bulgarian ’6 27.0 242 27.1 293 40.6 33 40.5 34 43.9 276
Catalan ’7 15.0 74 13.8 159 53.2 30 53.1 31 59.8 176
Chinese ’6 63.5 131 63.6 261 36.8 45 36.8 47 44.5 213

’7 58.5 130 58.5 258 35.2 20 35.0 48 43.2 372
Czech ’6 29.5 125 29.7 224 23.6 18 23.8 41 27.7 179

’7 – – 25.9 215 27.1 37 27.2 64 28.4 767
Danish ’6 – – 16.6 155 28.7 30 28.7 30 38.3 241
Dutch ’6 20.4 51 21.2 174 25.5 30 25.6 38 27.8 243
English ’7 – – 18.0 162 – – 38.7 35 45.2 366
German ’6 – – 24.4 148 30.1 39 30.1 44 30.4 185
Greek ’7 25.5 133 25.3 156 – – 13.2 27 13.2 252
Hungarian ’7 – – 18.9 310 28.9 34 28.9 44 34.7 414
Italian ’7 25.4 127 25.3 165 – – 52.3 36 52.3 81
Japanese ’6 – – 39.3 143 42.2 38 42.4 48 50.2 199
Portuguese ’6 35.2 48 35.6 224 – – 34.5 21 36.7 143
Slovenian ’6 24.8 182 25.3 397 28.8 17 28.8 20 32.2 121
Spanish ’6 – – 27.7 252 – – 28.3 31 50.6 130
Swedish ’6 27.9 49 32.6 287 45.2 22 45.6 52 50.0 314
Turkish ’6 – – 30.5 239 30.2 16 30.6 24 29.0 138

’7 – – 48.8 254 34.3 24 33.1 34 35.9 269
Average: 27.3 161 27.3 225 33.2 28 33.2 35 38.2 236

Table 5.6: Performance (directed dependency accuracies measured against all sentences in
the evaluation sets) and efficiency (numbers of iterations)for standard training (soft and
hard EM), early-stopping lateen EM (A3) and simple lateen EM with hard EM’s primary
objective (A1h), for all 23 train/test splits, with settingadhocoff andsweeton.

parses are scoring higher than the rest and may be standing out by large margins. Theadhoc

initializer boosts accuracy by 1.2%, overall (also significant: p ≈ 3.1 × 10−13), without a

measurable impact on running time (p ≈ 1.0). Training with fewer, shorter sentences, at

thesweetspot gradation, adds 1.0% and shaves 20% off the total numberof iterations, on

average (both estimates are significant).

The viterbi objective is found harmful — by 4.0%, on average (p ≈ 5.7 × 10−16) —

for the CoNLL sets. Half of these experiments are with shorter sentences, and half use

ad hoc initializers (i.e., three quarters of settings are not ideal for Viterbi EM), which may

have contributed to this negative result; still, the estimates do confirm that hard EM is

significantly (80%,p < 2.0× 10−16) faster than soft EM.
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5.10.5 More on Viterbi Training

The overall negative impact of Viterbi objectives is a causefor concern: On average,A1h’s

estimated gain of 5.5% should more than offset the expected 4.0% loss from starting with

hard EM. But it is, nevertheless, important to make sure thatsimple lateen EM with hard

EM’s primary objective is in fact an improvement overbothstandard EM algorithms.

Table 5.5 shows performance and efficiency numbers forA1h, A3{h,s}, as well as stan-

dard soft and hard EM, using settings that are least favorable for Viterbi training: adhoc

and sweeton. AlthoughA1h scores 7.1% higher than hard EM, on average, it is only

slightly better than soft EM — up 0.1% (and worse thanA3s). Withoutadhoc(i.e., using

uniform initializers — see Table 5.6), however, hard EM still improves, by 3.2%, on aver-

age, whereas soft EM drops nearly 10%; here,A1h further improves over hard EM, scoring

38.2% (up 5.0), higher than soft EM’s accuracies frombothsettings (27.3 and 37.0).

This suggests thatA1h is indeed better than both standard EM algorithms. This chap-

ter’s experimental set-up may be disadvantageous for Viterbi training, since half the set-

tings use ad hoc initializers, and because CoNLL sets are small. Viterbi EM works best

with more data and longer sentences.
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Chapter 6

Markup

The purpose of this chapter is to explore ways of constraining a grammar induction process,

to make up for the deficiencies of unsupervised objectives, and to quantify the extent to

which naturally-occurring annotations by laymen that might be used as a guide, such as

web markup, agree with syntactic analyses rooted in linguistic theories or could be of help.

Supporting peer-reviewed publication isProfiting from Mark-Up: Hyper-Text Annotations

for Guided Parsingin ACL 2010 [311].

6.1 Introduction

Pereira and Schabes [245] outlined three major problems with classic EM, applied to the re-

lated problem of constituent parsing. They extended classic inside-outside re-estimation [14]

to respect any bracketing constraints included with a training corpus. This conditioning on

partial parses addressed several problems, leading to: (i)linguistically reasonable con-

stituent boundaries and induced grammars more likely to agree with qualitative judgments

of sentence structure, which is underdetermined by unannotated text; (ii) fewer iterations

needed to reach a good grammar, countering convergence properties that sharply deterio-

rate with the number of non-terminal symbols, due to a proliferation of local maxima; and

(iii) better (in the best case, linear) time complexity per iteration, versus running time that

is ordinarily cubic in both sentence lengthand the total number of non-terminals, render-

ing sufficiently large grammars computationally impractical. Their algorithm sometimes

69
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found good solutions from bracketed corpora but not from rawtext, supporting the view

that purely unsupervised, self-organizing inference methods can miss the trees for the for-

est of distributional regularities. This was a promising break-through, but the problem of

whence to get partial bracketings was left open.

This chapter suggests mining partial bracketings from a cheap and abundant natural

language resource: the hyper-text markup that annotates web-pages. For example, consider

that anchor text can match linguistic constituents, such asverb phrases, exactly:

..., whereas McCain is secure on the topic,

Obama<a>[VP worries about winning the pro-Israel vote]</a>.

Validating this idea involved the creation of a new data set,novel in combining a real blog’s

raw HTML with tree-bank-like constituent structure parses, generated automatically. A

linguistic analysis of the most prevalent tags (anchors, bold, italics and underlines) over its

1M+ words reveals a strong connection between syntax and markup(all of this chapter’s

examples draw from this corpus), inspiring several simple techniques for automatically

deriving parsing constraints. Experiments with both hard and more flexible constraints,

as well as with different styles and quantities of annotatedtraining data — the blog, web

news and the web itself, confirm that markup-induced constraints consistently improve

(otherwise unsupervised) dependency parsing.

6.2 Intuition and Motivating Examples

It is natural to expect hidden structure to seep through whena person annotates a sentence.

As it happens, a non-trivial fraction of the world’s population routinely annotates text dili-

gently, if only partially and informally.1 They inject hyper-links, vary font sizes, and toggle

colors and styles, using markup technologies such as HTML and XML.

As noted, web annotations can be indicative of phrase boundaries, e.g., in a complicated

sentence:

In 1998, however, as I<a>[VP established in<i>[NP The New Republic]</i>]</a> and Bill

Clinton just<a>[VP confirmed in his memoirs]</a>, Netanyahu changed his mind and ...

1Even when (American) grammar schools lived up to their name,they only taught dependencies. This
was back in the days before constituent grammars were invented.
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In doing so, markup sometimes offers useful cues even for low-level tokenization decisions:

[NP [NP Libyan ruler]

<a>[NP Mu‘ammar al-Qaddafi]</a>] referred to ...

(NP (ADJP (NP (JJ Libyan) (NN ruler))

(JJ Mu))

(‘‘ ‘) (NN ammar) (NNS al-Qaddafi))

At one point in time, a backward quote in an Arabic name confused some parsers (see

above).2 Yet markup lines up with the broken noun phrase, signals cohesion, and moreover

sheds light on the internal structure of a compound. As Vadasand Curran [327] point out,

such details are frequently omitted even from manually compiled tree-banks that err on the

side of flat annotations of base-NPs. Admittedly, not all boundaries between HTML tags

and syntactic constituents match up nicely:

..., but[S [NP the<a><i>Toronto Star</i>]

[VP reports[NP this][PP in the softest possible way]</a>,[S stating only that ...]]]

Combining parsing with markup may not be straight-forward,but there is hope: even above,

one of each nested tag’s boundaries aligns; andToronto Star’s neglected determiner could

be forgiven, certainly within a dependency formulation.

6.3 High-Level Outline of the Approach

Instead of learning the DMV from an unannotated test set, theidea here is to train with

text that contains web markup, using various ways of converting HTML into parsing con-

straints. These constraints come from a blog — a new corpus created for this chapter, the

web and news (see Table 6.1 for corpora’s sentence and token counts). To facilitate future

work, the manually-constructed blog data was made publiclyavailable.3 Although it is not

practical to share larger-scale resources, the main results should be reproducible, as both

linguistic analysis and the best model rely exclusively on the blog.

2For example, the Stanford parser (circa 2010):http://nlp.stanford.edu:8080/parser
3http://cs.stanford.edu/ ṽalentin/
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Corpus Sentences POS Tokens
WSJ∞ 49,208 1,028,347
Section 23 2,353 48,201

WSJ45 48,418 986,830
WSJ15 15,922 163,715

Brown100 24,208 391,796

BLOGp 57,809 1,136,659
BLOGt45 56,191 1,048,404
BLOGt15 23,214 212,872
NEWS45 2,263,563,078 32,119,123,561
NEWS15 1,433,779,438 11,786,164,503

WEB45 8,903,458,234 87,269,385,640
WEB15 7,488,669,239 55,014,582,024

Table 6.1: Sizes of corpora derived from WSJ and Brown and those collected from the web.

6.4 Data Sets for Evaluation and Training

The appeal of unsupervised parsing lies in its ability to learn from surface text alone; but

(intrinsic) evaluation still requires parsed sentences. Thus, primary reference sets are still

derived from the Penn English Treebank’s Wall Street Journal portion — WSJ45 (sentences

with fewer than 46 tokens) and Section 23 of WSJ∞ (all sentence lengths), in addition to

Brown100, similarly derived from the parsed portion of the Brown corpus. WSJ{15, 45}
are also used to train baseline models, but the bulk of the experiments is with web data.

6.4.1 A News-Style Blog: Daniel Pipes

Since there was no corpus overlaying syntactic structure with markup, a new one was con-

structed by downloading articles4 from a news-style blog. Although limited to a single

genre — political opinion,danielpipes.org is clean, consistently formatted, carefully

edited and larger than WSJ (see Table 6.1). Spanning decades, Pipes’ editorials are mostly

in-domain for POS taggers and tree-bank-trained parsers; his recent (internet-era) entries

are thoroughly cross-referenced, conveniently providingjust the markup one might hope to

4http://danielpipes.org/art/year/all
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Length Marked POS Bracketings
Cutoff Sentences Tokens All Multi-Token

0 6,047 1,136,659 7,731 6,015
1 of 57,809 149,483 7,731 6,015
2 4,934 124,527 6,482 6,015
3 3,295 85,423 4,476 4,212
4 2,103 56,390 2,952 2,789
5 1,402 38,265 1,988 1,874
6 960 27,285 1,365 1,302
7 692 19,894 992 952
8 485 14,528 710 684
9 333 10,484 499 479

10 245 7,887 365 352
15 42 1,519 65 63
20 13 466 20 20
25 6 235 10 10
30 3 136 6 6
40 0 0 0 0

Table 6.2: Counts of sentences, tokens and (unique) bracketings for BLOGp, restricted to
only those sentences having at least one bracketing no shorter than the length cutoff (but
shorter than the sentence).

study via uncluttered (printer-friendly) HTML.5

After extracting moderately clean text and markup locations, MxTerminator [264] was

used to detect sentence boundaries. This initial automatedpass begot multiple rounds

of various semi-automated clean-ups that involved fixing sentence breaking, modifying

parser-unfriendly tokens, converting HTML entities and non-ASCII text, correcting typos,

and so on. After throwing away annotations of fractional words (e.g.,<i>basmachi</i>s)

and tokens (e.g.,<i>Sesame Street</i>-like), all markup that crossed sentence bound-

aries was broken up (i.e., loosely speaking, replacing constructs like<u>...][S...</u> with

<u>...</u> ][S <u>...</u>) and discarding any tags left covering entire sentences.

Two versions of the data were finalized: BLOGt, tagged with the Stanford tagger [321,

5http://danielpipes.org/article_print.php?id=. . .
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320],6 and BLOGp, parsed with Charniak’s parser [52, 53].7 The reason for this dichotomy

was to use state-of-the-art parses to analyze the relationship between syntax and markup,

yet to prevent jointly tagged (and non-standardAUX[G]) POS sequences from interfering

with the (otherwise unsupervised) training.8

6.4.2 Scaled upQuantity: The (English) Web

A large (see Table 6.1) but messy data set, WEB, was built — English-looking web-

pages, pre-crawled by a search engine. To avoid machine-generated spam, low quality

sites flagged by the indexing system were excluded. Only sentence-like runs of words (sat-

isfying punctuation and capitalization constraints), were kept, POS-tagged with TnT [36].

6.4.3 Scaled upQuality: (English) Web News

In an effort to trade quantity for quality, a smaller, potentially cleaner data set, NEWS,

we also constructed. Editorialized content could lead to fewer extracted non-sentences.

Perhaps surprisingly, NEWS is less than an order of magnitude smaller than WEB (see

Table 6.1); in part, this is due to less aggressive filtering,because of the trust in sites

approved by the human editors at Google News.9 In all other respects, pre-processing of

NEWS pages was identical to the handling of WEB data.

6.5 Linguistic Analysis of Markup

Is there a connection between markup and syntactic structure? Previous work [18] has only

examined search engine queries, showing that they consist predominantly of short noun

phrases. If web markup shared a similar characteristic, it might not provide sufficiently

disambiguating cues to syntactic structure: HTML tags could be too short (e.g., singletons

6http://nlp.stanford.edu/software/stanford-postagger-2008-09-28.tar.gz
7ftp://ftp.cs.brown.edu/pub/nlparser/parser05Aug16.tar.gz
8However, since many taggers are themselves trained on manually parsed corpora, such as WSJ, no parser

that relies on external POS tags could be considered truly unsupervised; for afully unsupervised example,
see Seginer’s [283] CCL parser, available athttp://www.seggu.net/ccl/

9http://news.google.com/
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Count POS Sequence Frac Sum
1 1,242 NNP NNP 16.1%
2 643 NNP 8.3 24.4
3 419 NNP NNP NNP 5.4 29.8
4 414 NN 5.4 35.2
5 201 JJ NN 2.6 37.8
6 138 DT NNP NNP 1.8 39.5
7 138 NNS 1.8 41.3
8 112 JJ 1.5 42.8
9 102 VBD 1.3 44.1

10 92 DT NNP NNP NNP 1.2 45.3
11 85 JJ NNS 1.1 46.4
12 79 NNP NN 1.0 47.4
13 76 NN NN 1.0 48.4
14 61 VBN 0.8 49.2
15 60 NNP NNP NNP NNP 0.8 50.0
BLOGp +3,869 more with Count≤ 49 50.0%

Table 6.3: Top 50% of marked POS tag sequences.

Count Non-Terminal Frac Sum
1 5,759 NP 74.5%
2 997 VP 12.9 87.4
3 524 S 6.8 94.2
4 120 PP 1.6 95.7
5 72 ADJP 0.9 96.7
6 61 FRAG 0.8 97.4
7 41 ADVP 0.5 98.0
8 39 SBAR 0.5 98.5
9 19 PRN 0.2 98.7

10 18 NX 0.2 99.0
BLOGp +81 more with Count≤ 16 1.0%

Table 6.4: Top 99% of dominating non-terminals.

like “click <a>here</a>”) or otherwise unhelpful in resolving truly difficult ambiguities

(such as PP-attachment). Let’s begin simply by counting various basic events in BLOGp.
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Count Constituent Production Frac Sum
1 746 NP→ NNP NNP 9.6%
2 357 NP→ NNP 4.6 14.3
3 266 NP→ NP PP 3.4 17.7
4 183 NP→ NNP NNP NNP 2.4 20.1
5 165 NP→ DT NNP NNP 2.1 22.2
6 140 NP→ NN 1.8 24.0
7 131 NP→ DT NNP NNP NNP 1.7 25.7
8 130 NP→ DT NN 1.7 27.4
9 127 NP→ DT NNP NNP 1.6 29.0

10 109 S → NP VP 1.4 30.4
11 91 NP→ DT NNP NNP NNP 1.2 31.6
12 82 NP→ DT JJ NN 1.1 32.7
13 79 NP→ NNS 1.0 33.7
14 65 NP→ JJ NN 0.8 34.5
15 60 NP→ NP NP 0.8 35.3
BLOGp +5,000 more with Count≤ 60 64.7%

Table 6.5: Top 15 marked productions, viewed as constituents (bracketings are underlined).

6.5.1 Surface Text Statistics

Out of 57,809 sentences, 6,047 (10.5%) are annotated (see Table 6.2); and 4,934 (8.5%)

have multi-token bracketings. Without distinguishing HTML tags, i.e., tracking only unique

bracketing end-points within a sentence, 6,015 are multi-token — an average per-sentence

yield of 10.4%.10 As expected, many of the annotated words are nouns, but thereare adjec-

tives, verbs and other parts of speech too (see Table 6.3). Markup is short, typically under

five words, yet (by far) the most frequently marked sequence of POS tags is a pair.

6.5.2 Common Syntactic Subtrees

For three-quarters of all markup, the lowest dominating non-terminal is a noun phrase (see

Table 6.4); there are also non-trace quantities of verb phrases (12.9%) and other phrases,

clauses and fragments. Of the top fifteen —35.2%of all — annotated productions, only

10A non-trivial fraction of the corpus is older (pre-internet) unannotated articles, so this estimate may be
conservative.
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Count Head-Outward Spawn Frac Sum
1 1,889 NNP 24.4%
2 623 NN 8.1 32.5
3 470 DT NNP 6.1 38.6
4 458 DT NN 5.9 44.5
5 345 NNS 4.5 49.0
6 109 NNPS 1.4 50.4
7 98 VBG 1.3 51.6
8 96 NNP NNP NN 1.2 52.9
9 80 VBD 1.0 53.9

10 77 IN 1.0 54.9
11 74 VBN 1.0 55.9
12 73 DT JJ NN 0.9 56.8
13 71 VBZ 0.9 57.7
14 69 POS NNP 0.9 58.6
15 63 JJ 0.8 59.4
BLOGp +3,136 more with Count≤ 62 40.6%

Table 6.6: Top 15 marked productions, viewed as dependencies, after recursively expand-
ing any internal nodes that did not align with bracketings (underlined). Tabulated depen-
dencies were collapsed, dropping any dependents that fell entirely in the same region as
their parent (i.e., both inside the bracketing, both to its left or both to its right), keeping
only crossing attachments.

one isnot a noun phrase (see Table 6.5). Three of the fifteen lowest dominating non-

terminals donot match the entire bracketing — all three miss the leading determiner, as

earlier. In such cases, internal nodes were recursively split until the bracketing aligned, as

follows:

[S [NP the<a>Toronto Star][VP reports[NP this] [PP in the softest possible way]</a>,[S stating ...]]]

S→ NP VP→ DT NNP NNP VBZ NP PP S

Productions can be summarized more compactly by using a dependency framework and

clipping off any dependents whose subtrees do not cross a bracketing boundary, relative to

the parent.
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Thus,

DT NNP NNP VBZ DT IN DT JJS JJ NN

becomesDT NNP VBZ, “the <a>Star reports</a>.” Viewed this way, the top fifteen (now

collapsed) productions cover59.4%of all cases and include four verb heads, in addition to

a preposition and an adjective (see Table 6.6). This exposesfive cases of inexact matches,

three of which involve neglected determiners or adjectivesto the left of the head. In fact,

the only case that cannot be explained by dropped dependentsis #8, where the daughters

are marked but the parent is left out. Most instances contributing to this pattern are flat NPs

that end with a noun, incorrectly assumed to be the head ofall other words in the phrase,

e.g.,

... [NP a 1994<i>New Yorker</i> article] ...

As this example shows, disagreements (as well as agreements) between markup and machine-

generated parse trees with automatically percolated headsshould be taken with a grain of

salt.11

6.5.3 Proposed Parsing Constraints

The straight-forward approach — forcing markup to correspond to constituents — agrees

with Charniak’s parse trees only48.0% of the time, e.g.,

... in [NP<a>[NP an analysis]</a>[PP of perhaps the

most astonishing PC item I have yet stumbled upon]].

This number should be higher, as the vast majority of disagreements are due to tree-bank

idiosyncrasies (e.g., bare NPs). Earlier examples of incomplete constituents (e.g., legiti-

mately missing determiners) would also be fine in many linguistic theories (e.g., as N-bars).

A dependency formulation is less sensitive to such stylistic differences.

11Ravi et al. [262] report that Charniak’s re-ranking parser [53] — reranking-parserAug06.tar.gz,
also available fromftp://ftp.cs.brown.edu/pub/nlparser/— attains 86.3% accuracy when trained
on WSJ and tested against Brown; this nearly 5% performance loss out-of-domain is consistent with the
numbers originally reported by Gildea [115].
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Let’s start with the hardest possible constraint on dependencies, then slowly relax it. Ev-

ery example used to demonstrate a softer constraint doublesas a counter-example against

all previous versions.

• strict — seals markup into attachments, i.e., inside a bracketing,enforces exactly

one external arc — into the overall head. This agrees with head-percolated trees just

35.6% of the time, e.g.,

As author of<i>The SatanicVerses</i>, I ...

• loose— same asstrict, but allows the bracketing’s head word to have external de-

pendents. This relaxation already agrees with head-percolated dependencies87.5%

of the time, catching many (though far from all) dropped dependents, e.g.,

. . . the<i>TorontoStar</i> reports . . .

• sprawl — same asloose, but now allowsall words inside a bracketing to attach

external dependents.12 This boosts agreement with head-percolated trees to95.1%,

handling new cases, e.g., where “Toronto Star” is embedded in longer markup that

includes its own parent — a verb:

. . . the<a>Toronto Starreports. . .</a> . . .

• tear — allows markup to fracture after all, requiring only that the external heads at-

taching the pieces lie to the same side of the bracketing. This propels agreement with

percolated dependencies to98.9%, fixing previously broken PP-attachment ambigui-

ties, e.g., a fused phrase like “Fox News in Canada” that detached a preposition from

its verb:

12This view evokes the trapezoids of theO(n3) recognizer for split head automaton grammars [91].



80 CHAPTER 6. MARKUP

... concession ... has raised eyebrows among those

waiting [PP for <a>Fox News][PP in Canada]</a>.

Most of the remaining 1.1% of disagreements are due to parsererrors. Nevertheless, itis

possible for markup to be torn apart by external heads frombothsides. Below is a (very

rare) true negative example: “CSA” modifies “authority” (toits left), appositively, while

“Al-Manar” modifies “television” (to its right):13

The French broadcasting authority,<a>CSA, banned

... Al-Manar</a> satellite television from ...

6.6 Experimental Methods and Metrics

Viterbi training admits a trivial implementation of most proposed dependency constraints.

Six settings parameterized each run:

• INIT: 0 — default, uniform initialization; or1 — a high quality initializer, pre-

trained using Ad-Hoc∗, with Laplace smoothing, trained at WSJ15 (the “sweet spot”

data gradation) but initialized off WSJ8, since that initializer has the best cross-

entropy on WSJ15 (see Figure 4.3).

• GENRE: 0— default, baseline training on WSJ; else, uses1— BLOGt; 2— NEWS;

or 3— WEB.

• SCOPE: 0— default, uses all sentences up to length 45; if1, trains using sentences

up to length 15; if2, re-trains on sentences up to length 45, starting from the solution

to sentences up to the “sweet spot” length, 15.

• CONSTR: if 4, strict; if 3, loose; and if2, sprawl(evel1, tear, was not implemented).

Over-constrained sentences are re-attempted at successively lower levels until they

become possible to parse, if necessary at the lowest (default) level0.14

13A stretch, since the comma after “CSA” renders the marked phrase ungrammatical evenoutof context.
14At level 4, <b> X<u> Y</b> Z</u> is over-constrained.
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• TRIM: if 1, discards any sentence without a single multi-token markup(shorter than

its length).

• ADAPT: if 1, upon convergence, initializes re-training on WSJ45 usingthe solution to

<GENRE>, attempting domain adaptation [183].

These make for 294 meaningful combinations. Each one was judged by its accuracy on

WSJ45, using standard directed scoring — the fraction of correct dependencies over ran-

domized “best” parse trees.

6.7 Discussion of Experimental Results

Evaluation on Section 23 of WSJ and Brown reveals that blog-training beats all previously

published state-of-the-art numbers in every traditionally-reported length cutoff category,

with news-training not far behind. Here is a mini-preview ofthese results, for Section 23

of WSJ10 and WSJ∞ (from Table 6.9):

Model WSJ10 WSJ∞

DMV Bilingual Log-Normals (tie-verb-noun) [66] 62.0 42.2
Leapfrog (Ch. 3) 57.1 45.0
NEWS-best 67.3 50.1
BLOGt-best 69.3 50.4

EVG Smoothed (skip-head), Lexicalized [133] 68.8

Table 6.7: Directed accuracies on Section 23 of WSJ{10,∞ } for previous state-of-the-art
systems and the best new runs (as judged against WSJ45) for NEWS and BLOGt (more
details in Table 6.9).

Since the experimental setup involved testing nearly threehundred models simultaneously,

extreme care must be taken in analyzing and interpreting these results, to avoid falling prey

to any looming “data-snooping” biases, as in the previous chapter. In a sufficiently large

pool of models, where each is trained using a randomized and/or chaotic procedure (such

as here), the best may look good due to pure chance. An appeal will be made to three

separate diagnostics, to conclude that the best results arenotnoise.



82 CHAPTER 6. MARKUP

The most radical approach would be to write off WSJ as a development set and to focus

only on the results from the held-out Brown corpus. It was initially intended as a test of

out-of-domain generalization, but since Brown was in no wayinvolved in selecting the best

models, it also qualifies as a blind evaluation set. The best models perform even better (and

gain more — see Table 6.9) on Brown than on WSJ — a strong indication that the selection

process has not overfitted.

The second diagnostic is a closer look at WSJ. Since it would be hard to graph the full

(six-dimensional) set of results, a simple linear regression will suffice, using accuracy on

WSJ45 as the dependent variable. As in the previous chapter,this full factorial design is

preferable to the more traditional ablation studies because it allows one to account for and

to incorporate every single experimental data point incurred along the way. Its output is a

coarse, high-level summary of our runs, showing which factors significantly contribute to

changes in error rate on WSJ45:

Parameter (Indicator) Setting β̂ p-value

INIT 1 ad-hoc @WSJ8,15 11.8 ***

GENRE 1 BLOGt -3.7 0.06

2 NEWS -5.3 **

3 WEB -7.7 ***

SCOPE 1 @15 -0.5 0.40

2 @15→45 -0.4 0.53

CONSTR 2 sprawl 0.9 0.23

3 loose 1.0 0.15

4 strict 1.8 *

TRIM 1 drop unmarked -7.4 ***

ADAPT 1 WSJ re-training 1.5 **

Intercept (R2
Adjusted = 73.6%) 39.9 ***

Convention: *** for p < 0.001; ** for p < 0.01 (very significant); and * forp < 0.05 (significant).

The default training mode (all parameters zero) is estimated to score 39.9%. A good ini-

tializer gives the biggest (double-digit) gain; both domain adaptation and constraints also
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Corpus Marked Sentences All Sentences POS Tokens All Bracketings Multi-Token Bracketings
BLOGt45 5,641 56,191 1,048,404 7,021 5,346
BLOG′

t45 4,516 4,516 104,267 5,771 5,346
BLOGt15 1,562 23,214 212,872 1,714 1,240
BLOG′

t15 1,171 1,171 11,954 1,288 1,240
NEWS45 304,129,910 2,263,563,078 32,119,123,561 611,644,606 477,362,150

NEWS′45 205,671,761 205,671,761 2,740,258,972 453,781,081 392,600,070
NEWS15 211,659,549 1,433,779,438 11,786,164,503 365,145,549 274,791,675

NEWS′15 147,848,358 147,848,358 1,397,562,474 272,223,918 231,029,921
WEB45 1,577,208,680 8,903,458,234 87,269,385,640 3,309,897,461 2,459,337,571

WEB′45 933,115,032 933,115,032 11,552,983,379 2,084,359,555 1,793,238,913
WEB15 1,181,696,194 7,488,669,239 55,014,582,024 2,071,743,595 1,494,675,520

WEB′15 681,087,020 681,087,020 5,813,555,341 1,200,980,738 1,072,910,682

Table 6.8: Counts of sentences, tokens and (unique) bracketings for web-based data sets;
trimmed versions, restricted to only those sentences having at least one multi-token brack-
eting, are indicated by a prime (′).

make a positive impact. Throwing away unannotated data hurts, as does training out of

domain (the blog is least bad; the web is worst). Of course, this overview should not be

taken too seriously. Overly simplistic, a first order model ignores interactions between pa-

rameters. Furthermore, a least squares fit aims to capture central tendencies, whereas the

interesting information is captured by outliers — the best-performing runs.

A major imperfection of the simple regression model is that helpful factors that require

an interaction to “kick in” may not, on their own, appear statistically significant. The

third diagnostic examines parameter settings that give rise to the best-performing models,

looking out for combinations that consistently deliver superior results.

6.7.1 WSJ Baselines

Just two parameters apply to learning from WSJ. Five of theirsix combinations are state-

of-the-art, demonstrating the power of Viterbi training; only the default run scores worse

than 45.0%, attained by Leapfrog, on WSJ45:

Settings SCOPE=0 SCOPE=1 SCOPE=2

INIT=0 41.3 45.0 45.2

1 46.6 47.5 47.6

@45 @15 @15→45
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6.7.2 Blog

Simply training on BLOGt instead of WSJ hurts:

GENRE=1 SCOPE=0 SCOPE=1 SCOPE=2

INIT=0 39.6 36.9 36.9

1 46.5 46.3 46.4

@45 @15 @15→45

The best runs use a good initializer, discard unannotated sentences, enforce theloose

constraint on the rest, follow up with domain adaptation andbenefit from re-training —

GENRE=TRIM=ADAPT=1:

INIT=1 SCOPE=0 SCOPE=1 SCOPE=2

CONSTR=0 45.8 48.3 49.6

(sprawl) 2 46.3 49.2 49.2

(loose) 3 41.3 50.2 50.4

(strict) 4 40.7 49.9 48.7

@45 @15 @15→45

The contrast between unconstrained learning and annotation-guided parsing is higher for

the default initializer, still using trimmed data sets (just over a thousand sentences for

BLOG′t15 — see Table 6.8):

INIT=0 SCOPE=0 SCOPE=1 SCOPE=2

CONSTR=0 25.6 19.4 19.3

(sprawl) 2 25.2 22.7 22.5

(loose) 3 32.4 26.3 27.3

(strict) 4 36.2 38.7 40.1

@45 @15 @15→45

Above, a clearer benefit to the constraints can be seen.
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6.7.3 News

Training on WSJ is also better than using NEWS:

GENRE=2 SCOPE=0 SCOPE=1 SCOPE=2

INIT=0 40.2 38.8 38.7

1 43.4 44.0 43.8

@45 @15 @15→45

As with the blog, the best runs use the good initializer, discard unannotated sentences, en-

force the loose constraint and follow up with domain adaptation —GENRE=2;

INIT=TRIM=ADAPT=1:

Settings SCOPE=0 SCOPE=1 SCOPE=2

CONSTR=0 46.6 45.4 45.2

(sprawl) 2 46.1 44.9 44.9

(loose) 3 49.5 48.1 48.3

(strict) 4 37.7 36.8 37.6

@45 @15 @15→45

With all the extra training data, the best new score is just 49.5%. On the one hand, the lack

of dividends to orders of magnitude more data is disappointing. On the other, the fact that

the system arrives within 1% of its best result — 50.4%, obtained with a manually cleaned

up corpus — now using an auto-generated data set, is comforting.

6.7.4 Web

The WEB-side story is more discouraging:

GENRE=3 SCOPE=0 SCOPE=1 SCOPE=2

INIT=0 38.3 35.1 35.2

1 42.8 43.6 43.4

@45 @15 @15→45
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The best run again uses a good initializer, keepsall sentences, still enforces theloosecon-

straint and follows up with domain adaptation, but performsworse than all well-initialized

WSJ baselines, scoring only 45.9% (trained at WEB15).

The web seems to be too messy for this chapter’s methods. On top of the challenges

of language identification and sentence-breaking, there isa lot of boiler-plate; furthermore,

web text can be difficult for news-trained POS taggers. For example, the verb “sign” is

twice mistagged as a noun and “YouTube” is classified as a verb, in the top four POS

sequences of web sentences:15

POS Sequence WEB Count

Sample web sentence, chosen uniformly at random.

1 DT NNS VBN 82,858,487

All rights reserved.

2 NNP NNP NNP 65,889,181

Yuasa et al.

3 NN IN TO VB RB 31,007,783

Sign in to YouTube now!

4 NN IN IN PRP$ JJ NN 31,007,471

Sign in with your Google Account!

6.7.5 The State of the Art

The best model gains more than 5% over previously published state-of-the-art accuracy

across all sentences of WSJ’s Section 23, more than 8% on WSJ20 and rivals the oracle

skyline (70.2% — see Figure 3.2a) on WSJ10; these gains generalize to Brown100, where

it improves by nearly 10% (see Table 6.9). The best models agree in usinglooseconstraints.

Of these, the models trained with less data perform better, with the best two using trimmed

data sets, echoing that “less is more,” pace Halevy et al. [130]. Orders of magnitude more

data did not improve parsing performance further, though a different outcome might be

expected from lexicalized models: The primary benefit of additional lower-quality data is

15Further evidence: TnT tags the ubiquitous but ambiguous fragments “click here” and “print post” as
noun phrases.
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Model Incarnation WSJ10 WSJ20 WSJ∞

DMV Bilingual Log-Normals (tie-verb-noun) [66] 62.0 48.0 42.2 Brown100
Leapfrog (Ch. 3) 57.1 48.7 45.0 43.6
default

55.9 45.8 41.6 40.5
INIT=0,GENRE=0,SCOPE=0,CONSTR=0,TRIM=0,ADAPT=0

WSJ-best
65.3 53.8 47.9 50.8

INIT=1,GENRE=0,SCOPE=2,CONSTR=0,TRIM=0,ADAPT=0
BLOGt-best

69.3 56.8 50.4 53.3
INIT=1,GENRE=1,SCOPE=2,CONSTR=3,TRIM=1,ADAPT=1

NEWS-best
67.3 56.2 50.1 51.6

INIT=1,GENRE=2,SCOPE=0,CONSTR=3,TRIM=1,ADAPT=1
WEB-best

64.1 52.7 46.3 46.9
INIT=1,GENRE=3,SCOPE=1,CONSTR=3,TRIM=0,ADAPT=1

EVG Smoothed (skip-head), Lexicalized [133] 68.8

Table 6.9: Accuracies on Section 23 of WSJ{10, 20,∞ } and Brown100 for three recent
state-of-the-art systems, our default run, and our best runs (judged by accuracy on WSJ45)
for each of four training sets.

in improved coverage. But with only 35 unique POS tags, data sparsity is hardly an issue.

Extra examples of lexical items help little and hurt when they are mistagged.

6.8 Related Work

The wealth of new annotations produced in many languages every day already fuels a num-

ber of NLP applications. Following their early and wide-spread use by search engines, in

service of spam-fighting and retrieval, anchor text and linkdata enhanced a variety of tra-

ditional NLP techniques: crosslingual information retrieval [233], translation [196], both

named-entity recognition [220] and categorization [335],query segmentation [318], plus

semantic relatedness and word-sense disambiguation [109,342]. Yet several, seemingly

natural, candidate core NLP tasks — tokenization, CJK segmentation, noun-phrase chunk-

ing, and (until now) parsing — remained conspicuously uninvolved.16

Approaches related to ones covered by this chapter arise in applications that combine

parsing with named-entity recognition (NER). For example,constraining a parser to re-

spect the boundaries of known entities is standard practicenot only in joint modeling of

16Following the work in this chapter, this omission has been partially rectified for Chinese [316, 146, 151,
346], as well as in the form of a linguistic inquiry into the constituency of hyperlinks [99].
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(constituent) parsing and NER [103], but also in higher-level NLP tasks, such as relation

extraction [221], that couple chunking with (dependency) parsing. Although restricted to

proper noun phrases, dates, times and quantities, we suspect that constituents identified by

trained (supervised) NER systems would also be helpful in constraining grammar induc-

tion.

Following Pereira and Schabes’ [245] success with partial annotations in training a

model of (English) constituents generatively, their idea has been extended to discrimina-

tive estimation [265] and also proved useful in modeling (Japanese) dependencies [278].

There was demand for partially bracketed corpora. Chen and Lee [57] constructed one

such corpus by learning to partition (English) POS sequences into chunks [2]; Inui and

Kotani [147] usedn-gram statistics to split (Japanese) clauses.17 This chapter combined

the two intuitions, using the web to build a partially parsedcorpus. Such an approach could

be calledlightly supervised, since it does not require manual annotation of asingle com-

plete parse tree. In contrast, traditional semi-supervised methods rely on fully-annotated

seed corpora.18

6.9 Conclusion

This chapter explored novel ways of training dependency parsing models. The linguis-

tic analysis of a blog reveals that web annotations can be converted into accurate pars-

ing constraints (loose: 88%; sprawl: 95%; tear: 99%) that could also be helpful to super-

vised methods, e.g., by boosting an initial parser via self-training [208] on sentences with

markup. Similar techniques may apply to standard word-processing annotations, such as

font changes, and to certain (balanced) punctuation [39].

The blog data set, overlaying markup and syntax, has been made publicly available. Its

annotations are 75% noun phrases, 13% verb phrases, 7% simple declarative clauses and

2% prepositional phrases, with traces of other phrases, clauses and fragments. The type

17Earlier, Magerman and Marcus [198] used mutual information, rather than a grammar, to recognize
phrase-structure. But simple entropy-minimizing techniques tend to clash with human notions of syntax [82].
A classic example is “edby” — a common English character sequence (as in “caused by” or “walked by”)
proposed as a word by Olivier’s [242] segmenter.

18A significant effort expended in building a tree-bank comes with the first batch of sentences [87].
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of markup, combined with POS tags, could make for valuable features in discriminative

models of parsing [260].

A logical next step would be to explore the connection between syntax and markup for

genres other than a news-style blog and for languages other than English. If the strength of

the connection between web markup and syntactic structure is universal across languages

and genres, this fact could have broad implications for NLP,with applications extending

well beyond parsing.



Chapter 7

Punctuation

The purpose of this chapter is to explore whether constraints developed for English web

markup might also be generally useful for punctuation, which is a traditional signal for

text boundaries in many languages. Supporting peer-reviewed publication isPunctuation:

Making a Point in Unsupervised Dependency Parsingin CoNLL 2011 [304].

7.1 Introduction

Uncovering hidden relations between head words and their dependents in free-form text

poses a challenge in part because sentence structure is underdetermined by only raw, unan-

notated words. Structure can be clearer informattedtext, which typically includes proper

capitalization and punctuation [129]. Raw word streams, such as utterances transcribed by

speech recognizers, are often difficult even for humans [167]. Therefore, one would expect

grammar inducers to exploit any available linguistic meta-data (e.g., HTML, which is or-

dinarily stripped out during pre-processing). And yet in unsupervised dependency parsing,

sentence-internal punctuation has long been ignored [44, 244, 172, 33,inter alia].

This chapter proposes exploring punctuation’s potential to aid grammar induction. Con-

sider a motivating example (all of this chapter’s examples are from WSJ), in which all (six)

marks align with constituent boundaries:

[SBAR Although it probably has reduced the level of expenditures for some purchasers], [NP utilization

management] — [PP like most other cost containment strategies] — [VP doesn’t appear to have altered the

90
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long-term rate of increase in health-care costs], [NP the Institute of Medicine], [NP an affiliate of the National

Academy of Sciences], [VP concluded after a two-year study].

This link between punctuation and constituent boundaries suggests that parsing could be
approximated by treating inter-punctuation fragments independently. In training, an algo-
rithm could first parse each fragment separately, then parsethe sequence of the resulting
head words. In inference, a better approximation could be used to allow heads of fragments
to be attached by arbitrary external words, e.g.:

The Soviets complicated the issue by offering to[VP include light tanks], [SBAR which are as light as ...].

Count POS Sequence Frac Cum
1 3,492 NNP 2.8%
2 2,716 CD CD 2.2 5.0
3 2,519 NNP NNP 2.0 7.1
4 2,512 RB 2.0 9.1
5 1,495 CD 1.2 10.3
6 1,025 NN 0.8 11.1
7 1,023 NNP NNP NNP 0.8 11.9
8 916 IN NN 0.7 12.7
9 795 VBZ NNP NNP 0.6 13.3

10 748 CC 0.6 13.9
11 730 CD DT NN 0.6 14.5
12 705 PRP VBD 0.6 15.1
13 652 JJ NN 0.5 15.6
14 648 DT NN 0.5 16.1
15 627 IN DT NN 0.5 16.6
WSJ +103,148 more with Count≤ 621 83.4%

Table 7.1: Top 15 fragments of POS tag sequences in WSJ.

7.2 Definitions, Analyses and Constraints

Punctuation and syntax are related [240, 39, 157, 85,inter alia]. But are there simple

enough connections between the two to aid in grammar induction? This section explores

the regularities. This chapter’s study of punctuation in WSJ parallels the previous chapter’s
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Count Non-Terminal Frac Cum
1 40,223 S 32.5%
2 33,607 NP 27.2 59.7
3 16,413 VP 13.3 72.9
4 12,441 PP 10.1 83.0
5 8,350 SBAR 6.7 89.7
6 4,085 ADVP 3.3 93.0
7 3,080 QP 2.5 95.5
8 2,480 SINV 2.0 97.5
9 1,257 ADJP 1.0 98.5

10 369 PRN 0.3 98.8
WSJ +1,446 more with Count≤ 356 1.2%

Table 7.2: Top 99% of the lowest dominating non-terminals deriving complete inter-
punctuation fragments in WSJ.

analysis of markup from a web-log, since the proposed constraints turn out to be useful.

Throughout, an inter-punctuationfragment is defined as a maximal (non-empty) consec-

utive sequence of words that does not cross punctuation boundaries and is shorter than its

source sentence.

7.2.1 A Linguistic Analysis

Out of 51,558 sentences, most — 37,076 (71.9%) — contain sentence-internal punctuation.

These punctuated sentences contain 123,751 fragments, nearly all — 111,774 (90.3%) —

of them multi-token. Common POS sequences comprising fragments are diverse (note also

their flat distribution — see Table 7.1). The plurality of fragments are dominated by a

clause, but most are dominated by one of several kinds of phrases (see Table 7.2). As ex-

pected, punctuation does not occur at all constituent boundaries: Of the top 15 productions

that yield fragments, five donotmatch the exact bracketing of their lowest dominating non-

terminal (see ranks 6, 11, 12, 14 and 15 in Table 7.3). Four of them miss a left-adjacent

clause, e.g.,S→ S NP VP:

[S [S It’s an overwhelming job], [NP she] [VP says.]]

This production is flagged because the fragmentNPVP is not a constituent — it is two;
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Count Constituent Production Frac Cum
1 7,115 PP→ IN NP 5.7%
2 5,950 S→ NP VP 4.8 10.6
3 3,450 NP→ NP PP 2.8 13.3
4 2,799 SBAR→ WHNP S 2.3 15.6
5 2,695 NP→ NNP 2.2 17.8
6 2,615 S→ S NP VP 2.1 19.9
7 2,480 SBAR→ IN S 2.0 21.9
8 2,392 NP→ NNP NNP 1.9 23.8
9 2,354 ADVP→ RB 1.9 25.7

10 2,334 QP→ CD CD 1.9 27.6
11 2,213 S→ PP NP VP 1.8 29.4
12 1,441 S→ S CC S 1.2 30.6
13 1,317 NP→ NP NP 1.1 31.6
14 1,314 S→ SBAR NP VP 1.1 32.7
15 1,172 SINV→ S VP NP NP 0.9 33.6
WSJ +82,110 more with Count≤ 976 66.4%

Table 7.3: Top 15 productions yielding punctuation-induced fragments in WSJ, viewed
as constituents, after recursively expanding any internalnodes that do not align with the
associated fragmentation (underlined).

still, 49.4% of all fragments do align with whole constituents.

Inter-punctuation fragments correspond more strongly to dependencies (see Table 7.4).

Only one production (rank 14) shows a daughter outside her mother’s fragment. Some

number of such productions is inevitable and expected, since fragments must coalesce (i.e.,

the root of at least one fragment — in every sentence with sentence-internal punctuation

— must be attached by some word from a different, external fragment). It is noteworthy

that in 14 of the 15 most common cases, a word in an inter-punctuation fragment derives

precisely the rest of that fragment, attaching none of the other, external words. This is true

for 39.2% of all fragments, and if fragments whose heads attach otherfragments’ heads are

also included, agreement increases to74.0% (seestrict andlooseconstraints, next).
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Count Head-Outward Spawn Frac Cum
1 11,928 IN 9.6%
2 8,852 NN 7.2 16.8
3 7,802 NNP 6.3 23.1
4 4,750 CD 3.8 26.9
5 3,914 VBD 3.2 30.1
6 3,672 VBZ 3.0 33.1
7 3,436 RB 2.8 35.8
8 2,691 VBG 2.2 38.0
9 2,304 VBP 1.9 39.9

10 2,251 NNS 1.8 41.7
11 1,955 WDT 1.6 43.3
12 1,409 MD 1.1 44.4
13 1,377 VBN 1.1 45.5
14 1,204 IN VBD 1.0 46.5
15 927 JJ 0.7 47.3
WSJ +65,279 more with Count≤ 846 52.8%

Table 7.4: Top 15 productions yielding punctuation-induced fragments in WSJ, viewed
as dependencies, after dropping all daughters that fell entirely in the same region as their
mother (i.e., both inside a fragment, both to its left or bothto its right), keeping only
crossing attachments (just one).

7.2.2 Five Parsing Constraints

The previous chapter showed how to express similar correspondences with markup as pars-

ing constraints, proposing four but employing only the strictest three constraints, and omit-

ting implementation details. This chapter revisits those constraints, specifying precise log-

ical formulations used in the code, and introduces a fifth (most relaxed) constraint.

Let [x, y] be a fragment (or markup) spanning positionsx throughy (inclusive, with

1 ≤ x < y ≤ l), in a sentence of lengthl. And let [i, j]h be a sealed span headed byh

(1 ≤ i ≤ h ≤ j ≤ l), i.e., the word at positionh dominates preciselyi . . . j (but none

other):

i h j
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Define inside(h, x, y) as true iffx ≤ h ≤ y; and also letcross(i, j, x, y) be true iff

(i < x ∧ j ≥ x ∧ j < y) ∨ (i > x ∧ i ≤ y ∧ j > y). Then the three tightest

constraints impose conditions which, when satisfied, disallow sealing[i, j]h in the presence

of an annotation[x, y]:

• strict — requires[x, y] itself to be sealed in the parse tree, voiding all seals that

straddle exactly one of{x, y} or protrude beyond[x, y] if their head is inside. This

constraint holds for39.2% of fragments. By contrast, only 35.6% of HTML anno-

tations, such as anchor texts and italics, agree with it. This necessarily fails in every

sentence with internal punctuation (since there,somefragment must take charge and

attach another), whencross(i, j, x, y) ∨ (inside(h, x, y) ∧ (i < x ∨ j > y)).

... the British daily newspaper, The FinancialTimes .
x = i h = j = y

• loose — if h ∈ [x, y], requires that everything inx . . . y fall underh, with only

h allowed external attachments. This holds for74.0% of fragments — 87.5% of

markup, failing whencross(i, j, x, y).

... arrests followed a“ Snake Day ” at Utrecht ...
i x h = j = y

• sprawl — still requires thath derivex . . . y but lifts restrictions on external attach-

ments. Holding for92.9% of fragments (95.1% of markup), this constraint fails when

cross(i, j, x, y) ∧ ¬inside(h, x, y).

Maryland Club also distributes tea, which ...
x = i h y j



96 CHAPTER 7. PUNCTUATION

These three strictest constraints lend themselves to a straight-forward implementation as an

O(l5) chart-based decoder. Ordinarily, the probability of[i, j]h is computed by multiplying

the probability of the associatedunsealed span by two stopping probabilities — that of the

word ath on the left (adjacent ifi = h; non-adjacent ifi < h) and on the right (adjacent

if h = j; non-adjacent ifh < j). To impose a constraint, one could run through all of the

annotations[x, y] associated with a sentence and zero out this probability if any of them

satisfy disallowed conditions. There are faster — e.g.,O(l4), and evenO(l3)— recognizers

for split head automaton grammars [91]. Perhaps a more practical, but still clear, approach

would be to generaten-best lists using a more efficient unconstrained algorithm,then apply

the constraints as a post-filtering step.

Relaxed constraints disallow joining adjacent subtrees, e.g., preventing the seal[i, j]h

from merging below theunsealed span[j + 1, J ]H, on the left:

i h j j + 1 H J

• tear — preventsx . . . y from being torn apart by external heads fromoppositesides.

This constraint holds for94.7% of fragments (97.9% of markup), and is violated

when(x ≤ j ∧ y > j ∧ h < x), in this case.

... they “were not consulted about the [Ridley decision]

in advance and were surprised at the action taken.

• thread — requires only that no path from the root to a leaf enter[x, y] twice. This

constraint holds for95.0% of all fragments (98.5% of markup); it is violated when

(x ≤ j ∧ y > j ∧ h < x) ∧ (H ≤ y), again, in this case. Example that satisfies

threadbut violatestear:

The ... changes“all make a lot of sense to me,” he added.



7.2. DEFINITIONS, ANALYSES AND CONSTRAINTS 97

The case when[i, j]h is to the right is entirely symmetric, and these constraintscould be

incorporated in a more sophisticated decoder (sincei andJ do not appear in the formu-

lae, above). They could be implemented by zeroing out the probability of the word atH

attaching that ath (to its left), in case of a violation.

Note that all five constraints are nested. In particular, this means that it does not make

sense to combine them, for a given annotation[x, y], since the result would just match the

strictest one. The markup number fortear in this chapter is lower (97.9 versus 98.9%),

compared to the previous one, because that chapter allowed cases where markup wasnei-

ther torn nor threaded. Common structures that violatethread(and, consequently, all five

of the constraints) include, e.g., “seamless” quotations and even ordinary lists:

Her recent report classifies the stock as a“hold.”

The company said its directors, management and

subsidiaries will remain long-term investors and ...

7.2.3 Comparison with Markup

Most punctuation-induced constraints are less accurate than the corresponding markup-

induced constraints (e.g.,sprawl: 92.9 vs. 95.1%;loose: 74.0 vs. 87.5%; but notstrict:

39.2 vs. 35.6%). However, markup is rare: only 10% of the sentences in the blog were

annotated; in contrast, over 70% of the sentences in WSJ are fragmented by punctuation.

Fragments are more than 40% likely to be dominated by a clause; for markup, this num-

ber is below 10% — nearly 75% of it covered by noun phrases. Further, inter-punctuation

fragments are spread more evenly under noun, verb, prepositional, adverbial and adjectival

phrases (approximately27:13:10:3:1 versus75:13:2:1:1) than markup.1

1Markup and fragments are as likely to be in verb phrases.
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7.3 Methods

The DMV ordinarily strips out punctuation. Since this step already requires identification

of marks, the techniques in this chapter are just as “unsupervised.”

7.3.1 A Basic System

The system in this chapter is based on Laplace-smoothed Viterbi EM, using a two-stage

scaffolding: the first stage trains with just the sentences up to length 15; the second stage

then retrains on nearly all sentences — those with up to 45 words.

Initialization

Since the “ad-hoc harmonic” initializer does not work very well for longer sentences, par-

ticularly with Viterbi training (see Figure 4.2), this chapter employs an improved initializer

that approximates the attachment probability between two words as an average, over all

sentences, of their normalized aggregateweighteddistances. The weighting function is

w(d) = 1 + lg−1(1 + d);

the integerd ≥ 1 is a distance between two tokens; (andlg−1 is 1/ log2).

Termination

Since smoothing can (and does, at times) increase the objective, it is more efficient to

terminate early. In this chapter, optimization is stopped after ten steps of suboptimal mod-

els, using the lowest-perplexity (not necessarily the last) model found, as measured by the

cross-entropy of the training data.

Constrained Training

Training with punctuation replaces ordinary Viterbi parsetrees, at every iteration of EM,

with the output of a constrained decoder. All experiments other than #2 (§7.5) train with

the looseconstraint. Previous chapter found this setting to be best for markup-induced

constraints; this chapter applies it to constraints induced by inter-punctuation fragments.
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Constrained Inference

Previous chapter suggested using thesprawlconstraint in inference. Once again, we follow

its suggestion in all experiments except #2 (§7.5).

7.3.2 Forgiving Scoring

One of the baseline systems (below) produces dependency trees containing punctuation.

In this case the heads assigned to punctuation were not scored, usingforgiving scoringfor

regular words: crediting correct heads separated from their children by punctuation alone

(from the point of view of the child, looking up to the nearestnon-punctuation ancestor).

7.3.3 Baseline Systems

This chapter’s primary baseline is the basic system withoutconstraints (standard training).

It ignores punctuation, as is standard, scoring 52.0% against WSJ45.

A secondary (punctuation as words) baseline incorporates punctuation into the gram-

mar as if it were words, as insuperviseddependency parsing [237, 191, 290,inter alia]. It

is worse, scoring only 41.0%.2,3

7.4 Experiment #1: Default Constraints

The first experiment compares “punctuation as constraints”to the baseline systems, using

the default settings:loosein training; andsprawl in inference. Both constrained regimes

2Exactly the same data sets were used in both cases, not counting punctuation towards sentence lengths.
3To get this particular number punctuation was forced to be tacked on, as a layer below the tree of words, to

fairly compare systems (using the same initializer). Sinceimproved initialization strategies — bothweighted
and the “ad-hoc harmonic” — rely on distances between tokens, they could be unfairly biased towards one
approach or the other, if punctuation counted towards length. Similar baselines were also trained without
restrictions, allowing punctuation to appear anywhere in the tree (still withforgiving scoring), using the unin-
formed uniform initializer. Disallowing punctuation as a parent of a real word made things worse, suggesting
that not all marks belong near the leaves (sentence stops, semicolons, colons, etc. make more sense as roots
and heads). The weighted initializer was also tried withoutrestrictions, and all experiments were repeated
without scaffolding, on WSJ15 and WSJ45 alone, but treatingpunctuation as words never came within even
5% of (comparable) standard training. Punctuation, as words, reliably disrupted learning.
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WSJ∞ WSJ10
Supervised DMV 69.8 83.6

w/Constrained Inference 73.0 84.3

Punctuation as Words 41.7 54.8
Standard Training 52.0 63.2

w/Constrained Inference 54.0 63.6
Constrained Training 55.6 67.0

w/Constrained Inference 57.4 67.5

Table 7.5: Directed accuracies on Section 23 of WSJ∞ and WSJ10 for the supervised DMV,
several baseline systems and the punctuation runs (all using the weighted initializer).

improve performance (see Table 7.5). Constrained decodingalone increases the accuracy of

a standardly-trained system from 52.0% to 54.0%. And constrained training yields 55.6%

— 57.4% in combination with inference. These are multi-point increases, but they could

disappear in a more accurate state-of-the-art system. To test this hypothesis, constrained

decoding was also applied to asupervisedsystem. This (ideal) instantiation of the DMV

benefits as much or more than the unsupervised systems: accuracy increases from 69.8% to

73.0%. Punctuation seems to capture the kinds of, perhaps long-distance, regularities that

are not accessible to the model, possibly due to its unrealistic independence assumptions.

7.5 Experiment #2: Optimal Settings

The recommendation to train withlooseand decode withsprawlcame from the previous

chapter’s experiments with markup. But are these the right settings for punctuation? Inter-

punctuation fragments are quite different from markup — they are more prevalent but less

accurate. Furthermore, a new constraint was introduced in this chapter,thread, that had not

been considered before (along withtear).

Next the choices of constraints are re-examined. The full factorial analysis was similar,

but significantly smaller, than in the previous chapter: it excluded the larger-scale news and

web data sets that are not publicly available. Nevertheless, every meaningful combination

of settings was tried, testing boththreadandtear (instead ofstrict, since it can’t work with

sentences containing sentence-internal punctuation), inboth training and inference. Better
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settings thanloosefor training, andsprawlfor decoding, were not among the options.

A full analysis is omitted. But the first, high-level observation is that constrained in-

ference, using punctuation, is helpful and robust. It boosted accuracy (on WSJ45) by ap-

proximately 1.5%, on average, with all settings. Indeed,sprawlwas consistently (but only

slightly, at 1.6%, on average) better than the rest. Second,constrained training hurt more

often than it helped. It degraded accuracy in all but one case, loose, where it gained ap-

proximately 0.4%, on average. Both improvements are statistically significant:p ≈ 0.036

for training with loose; andp ≈ 5.6× 10−12 for decoding withsprawl.

7.6 More Advanced Methods

So far, punctuation has improved grammar induction in a toy setting. But would it help

a modern system? The next two experiments employ a slightly more complicated set-up,

compared with the one used up until now (§7.3.1). The key difference is that this system is

lexicalized, as is standard among the more accurate grammarinducers [33, 117, 133].

Lexicalization

Only in the second (full data) stage is lexicalized, using the method of Headden et al. [133]:

for words seen at least 100 times in the training corpus, the gold POS tag is augmented with

the lexical item. The first (data poor) stage remains entirely unlexicalized, with gold POS

tags for word classes, as in the earlier systems.

Smoothing

Smoothing is not used in the second stage except at the end, for the final lexicalized model.

Stage one still applies “add-one” smoothing at every iteration.

7.7 Experiment #3: State-of-the-Art

The purpose of these experiments is to compare the punctuation-enhanced DMV with other,

more recent state-of-the-art systems. Lexicalized (§7.6), this chapter’s approach performs



102 CHAPTER 7. PUNCTUATION

Brown WSJ∞ WSJ10
L-EVG [133] — — 68.8

Web Markup (Ch. 6) 53.3 50.4 69.3
Posterior Sparsity [117] — 53.3 64.3

Tree Substitution Grammars [33] — 55.7 67.7
Constrained Training 58.4 58.0 69.3

w/Constrained Inference 59.5 58.4 69.5

Table 7.6: Accuracies on the out-of-domain Brown100 set andSection 23 of WSJ∞ and
WSJ10, for the lexicalized punctuation run and other, more recent state-of-the-art systems.

better, by a wide margin; without lexicalization (§7.3.1), it was already better for longer,

but not for shorter, sentences (see Tables 7.6 and 7.5).

7.8 Experiment #4: Multilingual Testing

This final batch of experiments probes the generalization ofthis chapter’s approach (§7.6)

across languages.4 The gains arenot English-specific (see Table 7.7). Every language

improves with constrained decoding (more so without constrained training); and all but

Italian benefit in combination. Averaged across all eighteen languages, the net change in

accuracy is 1.3%. After standard training, constrained decoding alone delivers a 0.7% gain,

on average, never causing harm in any of our experiments. These gains are statistically

significant:p ≈ 1.59× 10−5 for constrained training; andp ≈ 4.27× 10−7 for inference.

A synergy between the two improvements was not detected. However, it is noteworthy

that without constrained training, “full” data sets do not help, on average, despite hav-

ing more data and lexicalization. Furthermore,after constrained training, no evidence of

benefits to additional retraining was detected: not with therelaxedsprawlconstraint, nor

unconstrained.

4Note that punctuation, which was identified by the CoNLL taskorganizers, was treated differently in
the two years: in 2006, it was always at the leaves of the dependency trees; in 2007, it matched original
annotations of the source treebanks. For both, punctuation-insensitive scoring was used (§7.3.2).
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Unlexicalized, Unpunctuated Lexicalized ...and Punctuated
CoNLL Year Initialization @15 Training @15 Retraining @45 Retraining @45 Net
& Language 1. w/Inference 2. w/Inference 3. w/Inference 3′. w/Inference Gain
Arabic 2006 23.3 23.6 (+0.3) 32.8 33.1 (+0.4) 31.5 31.6 (+0.1) 32.1 32.6 (+0.5) +1.1

’7 25.6 26.4 (+0.8) 33.7 34.2 (+0.5) 32.7 33.6 (+0.9) 34.9 35.3 (+0.4) +2.6
Basque ’7 19.3 20.8 (+1.5) 29.9 30.9 (+1.0) 29.3 30.1 (+0.8) 29.3 29.9 (+0.6) +0.6
Bulgarian ’6 23.7 24.7 (+1.0) 39.3 40.7 (+1.4) 38.8 39.9 (+1.1) 39.9 40.5 (+0.6) +1.6
Catalan ’7 33.2 34.1 (+0.8) 54.8 55.5 (+0.7) 54.3 55.1 (+0.8) 54.3 55.2 (+0.9) +0.9
Czech ’6 18.6 19.6 (+1.0) 34.6 35.8 (+1.2) 34.8 35.7 (+0.9) 37.0 37.8 (+0.8) +3.0

’7 17.6 18.4 (+0.8) 33.5 35.4 (+1.9) 33.4 34.4 (+1.0) 35.2 36.2 (+1.0) +2.7
Danish ’6 22.9 24.0 (+1.1) 35.6 36.7 (+1.2) 36.9 37.8 (+0.9) 36.5 37.1 (+0.6) +0.2
Dutch ’6 15.8 16.5 (+0.7) 11.2 12.5 (+1.3) 11.0 11.9 (+1.0) 13.7 14.0 (+0.3) +3.0
English ’7 25.0 25.4 (+0.5) 47.2 49.5 (+2.3) 47.5 48.8 (+1.3) 49.3 50.3 (+0.9) +2.8
German ’6 19.2 19.6 (+0.4) 27.4 28.0 (+0.7) 27.0 27.8 (+0.8) 28.2 28.6 (+0.4) +1.6
Greek ’7 18.5 18.8 (+0.3) 20.7 21.4 (+0.7) 20.5 21.0 (+0.5) 20.9 21.2 (+0.3) +0.7
Hungarian ’7 17.4 17.7 (+0.3) 6.7 7.2 (+0.5) 6.6 7.0 (+0.4) 7.8 8.0 (+0.2) +1.4
Italian ’7 25.0 26.3 (+1.2) 29.6 29.9 (+0.3) 29.7 29.7 (+0.1) 28.3 28.8 (+0.5) -0.8
Japanese ’6 30.0 30.0 (+0.0) 27.3 27.3 (+0.0) 27.4 27.4 (+0.0) 27.5 27.5 (+0.0) +0.1
Portuguese ’6 27.3 27.5 (+0.2) 32.8 33.7 (+0.9) 32.7 33.4 (+0.7) 33.3 33.5 (+0.3) +0.8
Slovenian ’6 21.8 21.9 (+0.2) 28.3 30.4 (+2.1) 28.4 30.4 (+2.0) 29.8 31.2 (+1.4) +2.8
Spanish ’6 25.3 26.2 (+0.9) 31.7 32.4 (+0.7) 31.6 32.3 (+0.8) 31.9 32.3 (+0.5) +0.8
Swedish ’6 31.0 31.5 (+0.6) 44.1 45.2 (+1.1) 45.6 46.1 (+0.5) 46.1 46.4 (+0.3) +0.8
Turkish ’6 22.3 22.9 (+0.6) 39.1 39.5 (+0.4) 39.9 39.9 (+0.1) 40.6 40.9 (+0.3) +1.0

’7 22.7 23.3 (+0.6) 41.7 42.3 (+0.6) 41.9 42.1 (+0.2) 41.6 42.0 (+0.4) +0.1
Average: 23.4 24.0 (+0.7) 31.9 32.9 (+1.0) 31.9 32.6 (+0.7) 32.6 33.2 (+0.5) +1.3

Table 7.7: Multilingual evaluation for CoNLL sets, measured at all three stages of training,
with and without constraints.

7.9 Related Work

Punctuation has been used to improve parsing since rule-based systems [157]. Statisti-

cal parsers reap dramatic gains from punctuation [98, 266, 51, 154, 69,inter alia]. And

it is even known to help inunsupervisedconstituent parsing [283]. But fordependency

grammar induction, prior to the research described in this chapter, punctuation remained

unexploited.

Parsing Techniques Most-Similar to Constraints

A “divide-and-rule” strategy that relies on punctuation has been used in supervised con-

stituent parsing of long Chinese sentences [187]. For English, there has been interest in

balancedpunctuation [39], more recently using rule-based filters [336] in a combinatory

categorial grammar (CCG). This chapter’s focus was specifically on unsupervisedlearn-

ing of dependencygrammars and is similar, in spirit, to Eisner and Smith’s [92] “vine

grammar” formalism. An important difference is that instead of imposing static limits on
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allowed dependency lengths, the restrictions are dynamic —they disallow some long (and

some short) arcs that would have otherwise crossed nearby punctuation.

Incorporating partial bracketings into grammar inductionis an idea tracing back to

Pereira and Schabes [245]. It inspired the previous chapter: mining parsing constraints

from the web. In that same vein, this chapter prospected a more abundant and natural

language-resource — punctuation, using constraint-basedtechniques developed for web

markup.

Modern Unsupervised Dependency Parsing

State-of-the-art in unsupervised dependency parsing [33]uses tree substitution grammars.

These are powerful models, capable of learning large dependency fragments. To help pre-

vent overfitting, a non-parametric Bayesian prior, defined by a hierarchical Pitman-Yor

process [252], is trusted to nudge training towards fewer and smaller grammatical produc-

tions. This chapter pursued a complementary strategy: using the much simpler DMV, but

persistently steering training away from certain constructions, as guided by punctuation, to

help preventunderfitting.

Various Other Uses of Punctuation in NLP

Punctuation is hard to predict,5 partly because it can signal long-range dependencies [195].

It often provides valuable cues to NLP tasks such as part-of-speech tagging and named-

entity recognition [136], information extraction [100] and machine translation [185, 206].

Other applications have included Japanese sentence analysis [241], genre detection [313],

bilingual sentence alignment [343], semantic role labeling [255], Chinese creation-title

recognition [56] and word segmentation [188], plus, more recently, automatic vandalism

detection in Wikipedia [333].

5Punctuation has high semantic entropy [216]; for an analysis of the many roles played in the WSJ by the
comma — the most frequent and unpredictable punctuation mark in that data set — see Beeferman et al. [20,
Table 2].
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7.10 Conclusions and Future Work

Punctuation improves dependency grammar induction. Many unsupervised (and super-

vised) parsers could be easily modified to usesprawl-constrained decoding in inference. It

applies to pre-trained models and, so far, helped every dataset and language.

Tightly interwoven into the fabric of writing systems, punctuation frames most unanno-

tated plain-text. This chapter showed that rules for converting markup into accurate parsing

constraints are still optimal for inter-punctuation fragments. Punctuation marks are more

ubiquitous and natural than web markup: what little punctuation-induced constraints lack

in precision, they more than make up in recall — perhaps both types of constraints would

work better yet in tandem. For language acquisition, a natural question is whether prosody

could similarly aid grammar induction from speech [159].

The results in this chapter underscore the power of simple models and algorithms, com-

bined with common-sense constraints. They reinforce insights fromjoint modeling insu-

pervisedlearning, where simplified, independent models, Viterbi decoding and expressive

constraints excel at sequence labeling tasks [269]. Such evidence is particularly welcome

in unsupervisedsettings [257], where it is crucial that systems scale gracefully to volumes

of data, on top of the usual desiderata — ease of implementation, extension, understanding

and debugging. Future work could explore softening constraints [132, 47], perhaps using

features [92, 24] or by learning to associate different settings with various marks: Simply

adding a hidden tag for “ordinary” versus “divide” types of punctuation [187] may already

usefully extend the models covered in this chapter.



Chapter 8

Capitalization

The purpose of this chapter is to test the applicability of constraints also to capitalization

changes in text for languages that use cased alphabets. Supporting peer-reviewed publica-

tion isCapitalization Cues Improve Dependency Grammar Inductionin WILS 2012 [306].

8.1 Introduction

Since sentence structure is underdetermined by raw text, there have been efforts to sim-

plify the task, via (i) pooling features of syntax across languages [64, 213, 66]; as well as

(ii) identifying universal rules [228] — such as verbo-centricity [119] — that need not be

learned at all. Unfortunately most of these techniques do not apply to plain text, because

they require knowing, for example, which words are verbs. Asstandard practice in gram-

mar induction shifts away from relying on gold part-of-speech (POS) tags [283, 253, 297,

inter alia] (see also next chapter), lighter cues to inducing linguistic structure become more

important. Examples of useful POS-agnostic clues include punctuation boundaries and var-

ious other kinds of bracketing constraints, from previous chapters. This chapter proposes

adding capitalization to this growing list of sources of partial bracketings. The intuition

here stems from English, where (maximal) spans of capitalized words — such asApple II,

World War I, Mayor William H. Hudnut III, International Business Machines Corp.and

Alexandria, Va— tend to demarcate proper nouns.

Consider a motivating example (all of the examples in this chapter are also from WSJ)

106
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without punctuation, in which all (eight) capitalized wordclumps and uncased numerals

match base noun phrase constituent boundaries:

[NP Jay Stevens] of [NP Dean Witter] actually cut his per-share earnings estimate to[NP $9] from

[NP $9.50] for [NP 1989] and to[NP $9.50] from [NP $10.35] in [NP 1990] because he decided sales would be

even weaker than he had expected.

and another (whose first word happens to be a leaf), where capitalization complements

punctuation cues:

[NP Jurors] in [NP U.S. District Court] in [NP Miami] cleared[NP Harold Hershhenson], a former ex-

ecutive vice president;[NP John Pagones], a former vice president; and[NP Stephen Vadas] and[NP Dean

Ciporkin], who had been engineers with[NP Cordis].

Could such chunks help bootstrap grammar induction and/or improve the accuracy of

already-trained unsupervised parsers? In answering thesequestions, this chapter will focus

predominantly on sentence-internal capitalization. But it will also show that first words —

those capitalized by convention — and uncased segments — whose characters are not even

drawn from an alphabet — could play a useful role as well.

8.2 English Capitalization from a Treebank

As in the two previous chapters, this study begins by consulting the 51,558 parsed sentences

of the WSJ corpus: 30,691 (59.5%) of them contain non-trivially capitalizedfragments—

maximal (non-empty and not sentence-initial) consecutivesequences of words that each

differs from its own lower-cased form. Nearly all — 59,388 (96.2%) — of the 61,731 frag-

ments are dominated by noun phrases; slightly less than half— 27,005 (43.8%) — perfectly

align with constituent boundaries in the treebank; and about as many — 27,230 (44.1%)

are multi-token. Table 8.1 shows the top POS sequences comprising fragments.

8.3 Analytical Experiments with Gold Trees

The suitability of capitalization-induced fragments for guiding dependency grammar induc-

tion can be gauged by assessing accuracy, in WSJ, of parsing constraints derived from their
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Count POS Sequence Frac Cum
1 27,524 NNP 44.6%
2 17,222 NNP NNP 27.9 72.5
3 4,598 NNP NNP NNP 7.5 79.9
4 2,973 JJ 4.8 84.8
5 1,716 NNP NNP NNP NNP 2.8 87.5
6 1,037 NN 1.7 89.2
7 932 PRP 1.5 90.7
8 846 NNPS 1.4 92.1
9 604 NNP NNPS 1.0 93.1

10 526 NNP NNP NNP NNP NNP 0.9 93.9
WSJ +3,753 more with Count≤ 498 6.1%

Table 8.1: Top 10 fragments of POS tag sequences in WSJ.

end-points. Several such heuristics are tested, followingthe suite of increasingly-restrictive

constraints on how dependencies may interact with fragments introduced in previous chap-

ters. The most lenient constraint,thread, only asks that no dependency path from the root

to a leaf enter the fragment twice;tear requires any incoming arcs to come from the same

side of the fragment;sprawldemands that there be exactly one incoming arc;loosefurther

constrains any outgoing arcs to be from the fragment’s head;andstrict — the most strin-

gent constraint — bans external dependents. Since onlystrict is binding for single words,

this chapter experiments also withstrict′: applyingstrict solely to multi-token fragments

(ignoring singletons). In sum, it explores six ways in whichdependency parse trees can be

constrained by fragments whose end-points could be defined by capitalization (or in other

various ways, e.g., semantic annotations [227], punctuation or HTML tags in web pages).

For example, in the sentence about Cordis, thestrict hypothesis would be wrong about

five of the eight fragments:Jurors attachesin; Court takes the secondin; Hershhenson

andPagonesderive their titles,president; and (at least in one reference)Vadasattaches

and, Ciporkin andwho. Based on this,strict would be considered 37.5%-accurate. But

loose— and the rest of the more relaxed constraints — would get perfect scores. (And

strict′ would retract the mistake aboutJurors but also the correct guesses aboutMiami

andCordis, scoring only 20%.) Table 8.2 (capital) shows scores averaged over the entire

treebank. Columnsmarkupandpunct indicate that capitalization yields across-the-board
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markup punct. capital initial uncased
thread 98.5 95.0 99.5 98.4 99.2

tear 97.9 94.7 98.6 98.4 98.5
sprawl 95.1 92.9 98.2 97.9 96.4

loose 87.5 74.0 97.9 96.9 96.4
strict′ 32.7 35.6 38.7 40.3 55.6
strict 35.6 39.2 59.3 66.9 61.1

Table 8.2: Several sources of fragments’ end-points and %-correctness of their derived
constraints (for English).

more accurate constraints (for English) compared with fragments derived from punctuation

or markup (i.e., anchor text, bold, italics and underline tags in HTML), for which such

constraints were originally intended.

8.4 Pilot Experiments on Supervised Parsing

To further test the potential of capitalization-induced constraints, they were applied in the

Viterbi-decoding phase of a simple (unlexicalized) supervised dependency parser — an

instance of DBM-1 (Ch. 10), trained on WSJ sentences with up to 45 words (excluding

Section 23). Table 8.3 shows evaluation results on held-outdata (all sentences), using “add-

one” smoothing. All constraints other thanstrict improve accuracy by about a half-a-point,

punct.: thread tear sprawl loose
none:71.8 74.3 74.4 74.5 73.3

capital:thread 72.3 74.6 74.7 74.9 73.6
tear 72.4 74.7 74.7 74.9 73.6

sprawl 72.4 74.7 74.7 74.9 73.4
loose 72.4 74.8 74.7 74.9 73.3
strict′ 71.4 73.7 73.7 73.9 72.7
strict 71.0 73.1 73.1 73.2 72.1

Table 8.3: Supervised (directed) accuracy on Section 23 of WSJ using capitalization-
induced constraints (vertical) jointly with punctuation (horizontal) in Viterbi-decoding.
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CoNLL Year Filtered Training Directed Accuracies with Initial Constraints Fragments
& Language Tokens/ Sentences none thread tear sprawl loose strict′ strict Multi Single

German 2006 139,333 12,296 36.3 36.3 36.3 39.1 36.2 36.3 30.1 3,287 30,435
Czech ’6 187,505 20,378 51.3 51.3 51.3 51.352.5 52.5 51.4 1,831 6,722
English ’7 74,023 5,087 29.2 28.5 28.3 29.0 29.3 28.3 27.7 1,135 2,218
Bulgarian ’6 46,599 5,241 59.4 59.3 59.3 59.4 59.1 59.3 59.5 184 1,506
Danish ’6 14,150 1,599 21.3 17.7 22.7 21.5 21.4 31.4 27.9 113 317
Greek ’7 11,943 842 28.1 46.1 46.3 46.3 46.4 31.1 31.0 113 456
Dutch ’6 72,043 7,107 45.9 45.8 45.9 45.8 45.8 45.7 29.6 89 4,335
Italian ’7 9,142 921 41.7 52.6 52.7 52.6 44.2 52.6 45.8 41 296
Catalan ’7 62,811 4,082 61.3 61.3 61.3 61.3 61.3 61.3 36.5 28 2,828
Turkish ’6 17,610 2,835 32.9 32.9 32.2 33.0 33.0 33.6 33.9 27 590
Portuguese ’6 24,494 2,042 68.9 67.1 69.1 69.2 68.9 68.9 38.5 9 953
Hungarian ’7 10,343 1,258 43.2 43.2 43.1 43.2 43.2 43.7 25.5 7 277
Swedish ’6 41,918 4,105 48.6 48.6 48.6 48.5 48.5 48.5 48.8 3 296
Slovenian ’6 3,627 477 30.4 30.5 30.5 30.4 30.5 30.530.8 1 63

Median: 42.5 46.0 46.1 46.0 45.0 44.7 32.5
Mean: 42.8 44.4 44.8 45.0 44.3 44.6 36.9

Table 8.4: Parsing performance for grammar inducers trained with capitalization-based
initial constraints, tested against 14 held-out sets from 2006/7 CoNLL shared tasks, and
ordered by number of multi-token fragments in training data.

from 71.8 to 72.4%, suggesting that capitalization is informative of certain regularities not

captured by DBM grammars; moreover, it still continues to beuseful when punctuation-

based constraints are also enforced, boosting accuracy from 74.5 to 74.9%.

8.5 Multi-Lingual Grammar Induction

So far, this chapter showed only that capitalization information can be helpful in parsing a

very specific genre of English. Its ability to generally aid dependency grammar induction

is tested next, focusing on situations when other bracketing cues are unavailable. These

experiments cover 14 CoNLL languages, excluding Arabic, Chinese and Japanese (which

lack case), as well as Basque and Spanish (which are pre-processed in a way that loses rel-

evant capitalization information). For all remaining languages training was only on simple

sentences — those lacking sentence-internal punctuation —from the relevant training sets

(for blind evaluation). Restricting attention to a subset of the available training data serves

a dual purpose. First, it allows estimation of capitalization’s impact where no other (known

or obvious) cues could also be used. Otherwise, unconstrained baselines would not yield

the strongest possible alternative, and hence not the most interesting comparison. Second,



8.6. CAPITALIZING ON PUNCTUATION IN INFERENCE 111

to the extent that presence of punctuation may correlate with sentence complexity [107],

there are benefits to “starting small” [95]: e.g., relegating full data to later stages helps

training, as in many of the previous chapters.

The base systems induced DBM-1, starting from uniformly-at-random chosen parse

trees [67] of each sentence, followed by inside-outside re-estimation [14] with “add-one”

smoothing.1 Capitalization-constrained systems differed from controls in exactly one way:

each learner got a slight nudge towards more promising structures by choosing initial seed

trees satisfying an appropriate constraint (but otherwisestill uniformly). Table 8.4 contains

the stats for all 14 training sets, ordered by number of multi-token fragments. Final ac-

curacies on respective (disjoint, full) evaluation sets are improved by all constraints other

thanstrict, with the highest average performance resulting fromsprawl: 45.0% directed de-

pendency accuracy,2 on average. This increase of about two points over the base system’s

42.8% is driven primarily by improvements in two languages (Greek and Italian).

8.6 Capitalizing on Punctuation in Inference

Until now this chapter avoided using punctuation in grammarinduction, except to filter

data. Yet the pilot experiments indicated that both kinds ofinformation are helpful in the

decoding stage of a supervised system. Indeed, this is also the case in unsupervised parsing.

Taking the trained models obtained using thesprawlnudge (from§8.5) and proceeding

to again apply constraints in inference (as in§8.4), capitalization alone increased parsing

accuracy only slightly, from 45.0 to 45.1%, on average. Using punctuation constraints

instead led to more improved performance: 46.5%. Combiningboth types of constraints

again resulted in slightly higher accuracies: 46.7%. Table8.5 breaks down this last average

performance number by language and shows the combined approach to be competitive with

the previous state-of-the-art. Further improvements could be attained by also incorporating

both constraints in training and with full data.

1Using “early-stopping lateen EM” (Ch. 5) instead of thresholding or waiting for convergence.
2Starting from five parse trees for each sentence (using constraintsthreadthroughstrict′) was no better,

at 44.8% accuracy.
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CoNLL Year this State-of-the-Art Systems: POS-
& Language Chapter (i) Agnostic (ii) Identified

Bulgarian 2006 64.5 44.3 L5 70.3 Spt

Catalan ’7 61.5 63.8 L5 56.3 MZNR

Czech ’6 53.5 50.5 L5 33.3∗ MZNR

Danish ’6 20.6 46.0 RF 56.5 Sar

Dutch ’6 46.7 32.5 L5 62.1 MPHel

English ’7 29.2 50.3 P 45.7 MPHel

German ’6 42.6 33.5 L5 55.8 MPHnl

Greek ’7 49.3 39.0 MZ 63.9 MPHen

Hungarian ’7 53.7 48.0 MZ 48.1 MZNR

Italian ’7 50.5 57.5 MZ 69.1 MPHpt

Portuguese ’6 72.4 43.2 MZ 76.9 Sbg

Slovenian ’6 34.8 33.6 L5 34.6 MZNR

Swedish ’6 50.5 50.0 L6 66.8 MPHpt

Turkish ’6 34.4 40.9 P 61.3 RFH1

Median: 48.5 45.2 58.9
Mean: 46.7 45.2 57.2∗

Table 8.5: Unsupervised parsing with both capitalization-and punctuation-induced con-
straints in inference, tested against the 14 held-out sets from 2006/7 CoNLL shared tasks,
and state-of-the-art results (all sentence lengths) for systems that: (i) are also POS-agnostic
and monolingual, including L (Lateen EM, Tables 5.5–5.6) and P (Punctuation, Ch. 7); and
(ii) rely on gold POS-tag identities to (a) discourage noun roots [202, MZ], (b) encourage
verbs [259, RF], or (c) transfer delexicalized parsers [296, S] from resource-rich languages
with parallel translations [213, MPH].

8.7 Discussion and A Few Post-Hoc Analyses

The discussion, thus far, has been English-centric. Nevertheless, languages differ in how

they use capitalization (and even the rules governing a given language tend to change over

time — generally towards having fewer capitalized terms). For instance, adjectives derived

from proper nouns are not capitalized in French, German, Polish, Spanish or Swedish,

unlike in English (see Table 8.1:JJ). And while English forces capitalization of the first-

person pronoun in the nominative case,I (see Table 8.1:PRP), in Danish it is the plural

second-person pronoun (alsoI) that is capitalized; further, formal pronouns (and their case-

forms) are capitalized in German (Sieand Ihre, Ihres...), Italian, Slovenian, Russian and
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CoNLL Year Capitalization-Induced Constraints Punctuation-Induced Constraints
& Language thread tear sprawl loose strict′ strict thread tear sprawl loose strict′ strict
Arabic 2006 — — — — — — 89.6 89.5 81.9 61.2 29.7 33.4

’7 — — — — — — 90.9 90.6 83.1 61.2 29.5 35.2
Basque ’7 — — — — — — 96.2 95.7 92.3 81.9 42.8 50.6
Bulgarian ’6 99.8 99.5 96.6 96.4 51.8 81.0 97.6 97.2 96.1 74.7 36.7 41.2
Catalan ’7 100 99.5 95.0 94.6 15.8 57.9 96.1 95.5 94.6 73.7 36.0 42.6
Chinese ’6 — — — — — — — — — — — —

’7 — — — — — — — — — — — —
Czech ’6 99.7 98.3 96.2 95.4 42.4 68.0 89.4 89.2 87.7 68.9 37.2 41.7

’7 99.7 98.3 96.1 95.4 42.6 67.6 89.5 89.3 87.8 69.3 37.4 41.9
Danish ’6 99.9 99.4 98.3 97.0 59.0 69.7 96.9 96.9 95.2 68.3 39.6 40.9
Dutch ’6 99.9 99.1 98.4 96.6 16.6 46.3 89.6 89.5 86.4 69.6 42.546.2
English ’7 99.3 98.7 98.0 96.0 17.5 24.8 91.5 91.4 90.6 76.5 39.6 42.3
German ’6 99.6 98.0 96.7 96.4 41.7 57.1 94.5 93.9 90.7 71.1 37.2 40.7
Greek ’7 99.9 99.3 98.5 96.6 13.6 50.1 91.3 91.0 89.8 75.7 43.747.0
Hungarian ’7 99.9 98.1 95.7 94.4 46.6 62.0 96.1 94.0 89.0 77.128.9 32.6
Italian ’7 99.9 99.6 99.0 98.8 12.8 68.2 97.1 96.8 96.0 77.8 44.7 47.9
Japanese ’6 — — — — — — 100 100 95.4 89.0 48.9 63.5
Portuguese ’6 100 99.0 97.6 97.0 14.4 37.7 96.0 95.8 94.9 74.540.3 45.0
Slovenian ’6 100 99.8 98.9 98.9 52.0 84.7 93.3 93.3 92.6 72.7 42.7 45.8
Spanish ’6 — — — — — — 96.5 96.0 95.2 75.4 33.4 40.9
Swedish ’6 99.8 99.6 99.0 97.0 24.7 58.4 90.8 90.4 87.4 66.8 31.1 33.9
Turkish ’6 100 99.8 96.2 94.0 22.8 42.8 99.8 99.7 95.1 76.9 37.7 42.0

’7 100 99.9 96.1 94.2 21.6 42.9 99.8 99.7 94.6 76.7 38.2 42.8
Max: 100 99.9 99.0 98.9 59.0 84.7 100 100 96.1 89.0 48.9 63.5

Mean: 99.8 99.1 97.4 96.4 30.8 57.7 94.6 94.2 91.7 74.0 38.5 43.3
Min: 99.3 98.0 95.0 94.0 12.8 24.8 89.4 89.2 81.9 61.2 28.9 32.6

Table 8.6: Accuracies for capitalization- and punctuation-induced constraints on all (full)
2006/7 CoNLL training sets.

Bulgarian.

In contrast to pronouns, single-word proper nouns — including personal names — are

capitalized in nearly all European languages. Such shortest bracketings are not particularly

useful for constraining sets of possible parse trees in grammar induction, however, com-

pared to multi-word expressions; from this perspective, German appears less helpful than

most cased languages, because of noun compounding, despiteprescribing capitalization of

all nouns. Another problem with longer word-strings in manylanguages is that, e.g., in

French (as in English) lower-case prepositions may be mixedin with contiguous groups of

proper nouns: even in surnames, the German particlevon is not capitalized, although the

Dutchvan is, unless preceded by a given name or initial — henceVan Gogh, yet Vincent

van Gogh.
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8.7.1 Constraint Accuracies Across Languages

Since even related languages (e.g., Flemish, Dutch, Germanand English) can have quite

different conventions regarding capitalization, one would not expect the same simple strat-

egy to be uniformly useful — or useful in the same way — across disparate languages.

To get a better sense of how universal our constraints may be,their accuracies were tabu-

lated for the full training sets of the CoNLL data,after all grammar induction experiments

had been executed. Table 8.6 shows that the less-strict capitalization-induced constraints

all fall within narrow (yet high) bands of accuracies of justa few percentage points: 99–

100% in the case ofthread, 98–100% fortear, 95–99% forsprawland 94–99% forloose.

By contrast, the ranges for punctuation-induced constraints are all at least 10%. Nothing

seems particularly special about Greek or Italian in these summaries that could explain

their substantial improvements (18 and 11%, respectively —see Table 8.4), though Ital-

ian does appear to mesh best with thesprawl constraint (not by much, closely followed

by Swedish). And English — the language from which the inspiration for this chapter

was drawn — barely improved with capitalization-induced constraints (see Table 8.4) and

caused the lowest accuracies ofthreadandstrict.

These outcomes are not entirely surprising: some best- and worst-performing results are

due to noise, since learning via non-convex optimization can be chaotic: e.g., in the case of

Greek, applying 113 constraints to initial parse trees could have a significant impact on the

first grammar estimated in training — and consequently also on a learner’s final, converged

model instance. Averages (i.e., means and medians) — computed over many data sets —

could be expected to be more stable and meaningful than the outliers.

8.7.2 Immediate Impact from Capitalization

Next, consider two settings that are less affected by training noise: grammar inducers

immediately after an initial step of constrained Viterbi EMand supervised DBM parsers

(trained on sentences with up to 45 words), for various languages in the CoNLL sets. Ta-

ble 8.7 shows effects of capitalization to be exceedingly mild, both if applied alone and

in tandem with punctuation. Exploring better ways of incorporating this informative re-

source — perhaps as soft features, rather than as hard constraints — and in combination
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CoNLL Year Bracketings Unsupervised Training Supervised Parsing
& Language capital. punct. init. 1-step constrained none capital. punct. both
Arabic 2006 — 101 18.4 20.6 — — 59.8 — — —

’7 — 311 19.0 23.5 — — 63.5 — — —
Basque ’7 — 547 17.4 22.4 — — 58.4 — — —
Bulgarian ’6 44 552 19.4 28.9 28.4 -0.5 76.7 76.8 78.1 78.2
Catalan ’7 24 398 18.0 25.1 25.4 +0.3 78.1 78.3 78.6 78.9
Chinese ’6 — — 23.5 27.2 — — 83.7 — — —

’7 — — 19.4 25.0 — — 81.0 — — —
Czech ’6 48 549 18.6 19.7 19.8 +0.1 64.9 64.8 67.0 66.9

’7 57 466 18.0 21.7 — — 62.8 — — —
Danish ’6 85 590 19.5 27.4 26.0 -1.3 71.9 72.0 74.2 74.3
Dutch ’6 28 318 18.7 17.9 17.7 -0.1 60.9 60.9 62.7 62.8
English ’7 151 423 17.6 24.0 21.9 -2.1 65.2 65.6 68.5 68.4
German ’6 135 523 16.4 23.0 23.7 +0.7 70.7 70.7 71.5 71.4
Greek ’7 47 372 17.1 17.1 16.6 -0.5 71.3 71.6 73.5 73.7
Hungarian ’7 28 893 17.1 18.5 18.6 +0.1 67.3 67.2 69.8 69.6
Italian ’7 71 505 18.6 32.5 34.2 +1.7 66.0 65.9 67.0 66.8
Japanese ’6 — 0 26.5 36.8 — — 85.1 — — —
Portuguese ’6 29 559 19.3 24.2 24.0 -0.180.5 80.5 81.6 81.6
Slovenian ’6 7 785 18.3 22.5 22.4 -0.1 67.5 67.4 70.9 70.9
Spanish ’6 — 453 18.0 19.3 — — 69.5 — — —
Swedish ’6 14 417 20.2 31.4 31.4 +0.0 74.9 74.9 74.7 74.6
Turkish ’6 18 683 20.4 26.4 26.7 +0.3 66.1 66.0 66.9 66.7

’7 4 305 20.3 24.8 — — 67.3 — — —
Max: 20.4 32.5 34.2 +1.7 80.5 80.5 81.6 81.6

Mean: 18.5 24.2 24.1 -0.1 70.1 70.2 71.8 71.8
Min: 16.4 17.1 16.6 -2.1 60.9 60.9 62.7 62.8

Table 8.7: Unsupervised accuracies for uniform-at-randomprojective parse trees (init), also
after a step of Viterbi EM, and supervised performance with induced constraints, on 2006/7
CoNLL evaluation sets (sentences under 145 tokens).

with punctuation- and markup-induced bracketings could bea fruitful direction.

8.7.3 Odds and Ends

Earlier analyses in this chapter excluded sentence-initial words because their capitalization

is, in a way, trivial. But for completeness, constraints derived from this source were also

tested, separately (see Table 8.2:initials). As expected, the new constraints scored worse

(despite many automatically-correct single-word fragments) except forstrict, whose bind-

ing constraints over singletons droveup accuracy. It turns out, most first words in WSJ are
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leaves — possibly due to a dearth of imperatives (or just English’s determiners).

The investigation of the “first leaf” phenomenon was broadened, discovering that in

16 of the 19 CoNLL languages first words are more likely to be leaves than other words

without dependents on the left;3 last words, by contrast, aremorelikely to take dependents

than expected. These propensities may be related to the functional tendency of languages

to place old information before new [334] and could also helpbias grammar induction.

Lastly, capitalization points to yet another class of words: those with identical upper-

and lower-case forms. Their constraints too tend to be accurate (see Table 8.2:uncased),

but the underlying text is not particularly interesting. InWSJ, caseless multi-token frag-

ments are almost exclusively percentages (e.g., the two tokens of10%), fractions (e.g.,

1 1/4) or both. Such boundaries could be useful in dealing with financial data, as well as for

breaking up text in languages without capitalization (e.g., Arabic, Chinese and Japanese).

More generally, transitions between different fonts and scripts should be informative too.

8.8 Conclusion

Orthography provides valuable syntactic cues. This chapter showed that bounding boxes

signaled by capitalization changes can help guide grammar induction and boost unsuper-

vised parsing performance. As with punctuation-delimitedsegments and tags from web

markup, it is profitable to assume only that a single word derives the rest, in such text frag-

ments, without further restricting relations to external words — possibly a useful feature

for supervised parsing models. The results in this chapter should be regarded with some

caution, however, since improvements due to capitalization in grammar induction exper-

iments came mainly from two languages, Greek and Italian. Further research is clearly

needed to understand the ways that capitalization can continue to improve parsing.

3Arabic, Basque, Bulgarian, Catalan, Chinese, Danish, Dutch, English, German, Greek, Hungarian, Ital-
ian, Japanese, Portuguese, Spanish, Swedishvs. Czech, Slovenian, Turkish.
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Chapter 9

Unsupervised Word Categories

The purpose of this chapter is to understand which properties of syntactic categories an-

notated by linguists, used up until now, make them particularly suitable as word classes

for English grammar induction, and to construct a tagger, based on unsupervised word

clustering algorithms, that eliminates this blatant source of supervision. Supporting peer-

reviewed publication isUnsupervised Dependency Parsing without Gold Part-of-Speech

Tagsin EMNLP 2011 [310].

9.1 Introduction

Not all research on grammar induction has been fully unsupervised. For example, every

new state-of-the-art dependency grammar inducer since theDMV relied on gold part-of-

speech tags. For some time, multi-point performance degradations caused by switching

to automatically induced word categories have been interpreted as indications that “good

enough” parts-of-speech induction methods exist, justifying the focus on grammar induc-

tion with supervised part-of-speech tags [34], pace [75]. One of several drawbacks of this

practice is that it weakens any conclusions that could be drawn about how computers (and

possibly humans) learn in the absence of explicit feedback [213].

In turn, not all unsupervised taggers actually induce word categories: Many systems —

known as part-of-speechdisambiguators[219] — rely on external dictionaries of possible

118
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tags. The work in this chapter builds on two older part-of-speechinducers— word cluster-

ing algorithms of Clark [61] and Brown et al. [41] — that were recently shown to be more

robust than other well-known fully unsupervised techniques [60].

This chapter investigates which properties of gold part-of-speech tags are useful in

grammar induction and parsing, and how these properties could be introduced into induced

tags. It also explores the number of word classes that is goodfor grammar induction: in

particular, whether categorization is needed at all. By removing the “unrealistic simplifi-

cation” of using gold tags [249,§3.2, Footnote 4], it goes on to demonstrate why grammar

induction from plain text is no longer “still too difficult.”

9.2 Methodology

All experiments model the English grammar, via the DMV, induced from subsets of not-

too-long sentences of WSJ. This chapter imitates Klein’s [170] set-up, initializing from

an “ad-hoc harmonic” completion, followed by training with40 steps of EM. Most of its

experiments (#1–4,§9.3–9.4) also iterate without actually verifying convergence — but

using more data (WSJ15 instead of WSJ10) — and are evaluated against the training set.

Experiments #5–6 (§9.5) employ a state-of-the-art grammar inducer (from Ch. 7), which

uses constrained Viterbi EM (details in§9.5). The final experiments (#5–6,§9.5) employ a

simple scaffolding strategy (as in Ch. 3) that follows up initial training at WSJ15 (“less is

more”) with an additional training run (“leapfrog”) that incorporates most sentences of the

data set, at WSJ45. For a meaningful comparison with previous work, some of the models

from earlier experiments (#1,3) — and both models from final experiments (#5,6) — are

tested against Section 23 of WSJ∞, after applying Laplace (a.k.a. “add one”) smoothing.

9.3 Motivation and Ablative Analyses

The concepts of polysemy and synonymy are of fundamental importance in linguistics. For

words that can take on multiple parts of speech, knowing the gold tag can reduce ambigu-

ity, improving parsing by limiting the search space. Furthermore, pooling the statistics of

words that play similar syntactic roles, as signaled by shared gold part-of-speech tags, can
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Accuracy Viable
1. manual tags Unsupervised Sky Groups

gold 50.7 78.0 36
mfc 47.2 74.5 34
mfp 40.4 76.4 160

ua 44.3 78.4 328
2. taglesslexicalizedmodels

full 25.8 97.3 49,180
partial 29.3 60.5 176

none 30.7 24.5 1

3. tags from aflat [61] clustering
47.8 83.8 197

4. prefixes of ahierarchical [41] clustering
first 7 bits 46.4 73.9 96

8 bits 48.0 77.8 165
9 bits 46.8 82.3 262

Table 9.1: Directed accuracies for the “less is more” DMV, trained on WSJ15 (after 40
steps of EM) and evaluated also against WSJ15, using variouslexical categories in place of
gold part-of-speech tags. For each tag-set, its effective number of (non-empty) categories
in WSJ15 and the oracle skylines (supervised performance) are also reported.

simplify the learning task, improving generalization by reducing sparsity. This chapter be-

gins with two sets of experiments that explore the impact that each of these factors has on

grammar induction with the DMV.

9.3.1 Experiment #1: Human-Annotated Tags

The first set of experiments attempts to isolate the effect that replacing gold POS tags with

deterministicone class per wordmappings has on performance, quantifying the cost of

switching to a monosemous clustering (see Table 9.1: manual; and Table 9.4). Grammar

induction with gold tags scores 50.7%, while the oracle skyline (an ideal, supervised in-

stance of the DMV) could attain 78.0% accuracy. It may be worth noting that only 6,620

(13.5%) of 49,180 unique tokens in WSJ appear with multiple POS tags. Most words, like
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token mfc mfp ua
it {PRP} {PRP} {PRP}

gains {NNS} {VBZ, NNS} {VBZ, NNS}
the {DT} {JJ, DT} {VBP, NNP, NN, JJ, DT, CD}

Table 9.2: Example most frequent class, most frequent pair and union all reassignments for
tokensit, theandgains.

it, are always tagged the same way (5,768 timesPRP). Some words, likegains, usually

serve as one part of speech (227 timesNNS, as inthe gains) but are occasionally used dif-

ferently (5 timesVBZ, as inhe gains). Only 1,322 tokens (2.7%) appear with three or more

different gold tags. However, this minority includes the most frequent word —the(50,959

timesDT, 7 timesJJ, 6 timesNNP and once as each ofCD, NN andVBP).1

This chapter experiments with three natural reassignmentsof POS categories (see Ta-

ble 9.2). The first,most frequent class(mfc), simply maps each token to its most common

gold tag in the entire WSJ (with ties resolved lexicographically). This approach discards

two gold tags (typesPDT andRBR are not most common for any of the tokens in WSJ15)

and costs about three-and-a-half points of accuracy, in both supervised and unsupervised

regimes. Another reassignment,union all (ua), maps each token to thesetof all of its ob-

served gold tags, again in the entire WSJ. This inflates the number of groupings by nearly

a factor of ten (effectively lexicalizing the most ambiguous words),2 yet improves the or-

acle skyline by half-a-point over actual gold tags; however, learning is harder with this

tag-set, losing more than six points in unsupervised training. The last reassignment,most

frequent pair(mfp), allows up to two of the most common tags into a token’s label set (with

ties, once again, resolved lexicographically). This intermediate approach performs strictly

worse thanunion all, in both regimes.

1Some of these are annotation errors in the treebank [16, Figure 2]: such (mis)taggings can severely
degrade the accuracy of part-of-speech disambiguators, without additional supervision [16,§5, Table 1].

2Kupiec [177] found that the 50,000-word vocabulary of the Brown corpus similarly reduces to∼400
ambiguity classes.
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9.3.2 Experiment #2: Lexicalization Baselines

The next set of experiments assesses the benefits of categorization, turning to lexicalized

baselines that avoid grouping words altogether. All three models discussed below estimated

the DMV withoutusing the gold tags in any way (see Table 9.1: lexicalized).

First, not surprisingly, a fully-lexicalized model over nearly 50,000 unique words is

able to essentially memorize the training set, supervised.(Without smoothing, it is pos-

sible to deterministically attach most rare words in a dependency tree correctly, etc.) Of

course, local search is unlikely to find good instantiationsfor so many parameters, causing

unsupervised accuracy for this model to drop in half.

The next experiment is an intermediate, partially-lexicalized approach. It mapped fre-

quent words — those seen at least 100 times in the training corpus [133] — to their own

individual categories, lumping the rest into a single “unknown” cluster, for a total of under

200 groups. This model is significantly worse for supervisedlearning, compared even with

the monosemous clusters derived from gold tags; yet it is only slightly more learnable than

the broken fully-lexicalized variant.

Finally, for completeness, a model that maps every token to the same one “unknown”

category was trained. As expected, such a trivial “clustering” is ineffective in supervised

training; however, it outperforms both lexicalized variants unsupervised,3 strongly suggest-

ing that lexicalization alone may be insufficient for the DMVand hinting that some degree

of categorization is essential to its learnability.

9.4 Grammars over Induced Word Clusters

So far, this chapter has demonstrated the need for grouping similar words and estimated

a bound on performance losses due to monosemous clusterings, in preparation for experi-

menting with induced POS tags. Two sets of established, publicly-available hard clustering

assignments, each computed from a much larger data set than WSJ (approximately a mil-

lion words) are used. The first is a flat mapping (200 clusters)constructed by training

Clark’s [61] distributional similarity model over severalhundred million words from the

3Note that it also beats supervised training; this isn’t a bug(Ch. 4 explain this paradox in the DMV).
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Cluster #173 Cluster #188
1. open 1. get
2. free 2. make
3. further 3. take
4. higher 4. find
5. lower 5. give
6. similar 6. keep
7. leading 7. pay
8. present 8. buy
9. growing 9. win

10. increased 10. sell
...

...
37. cool 42. improve

...
...

1,688. up-wind 2,105. zero-out

Table 9.3: Representative members for two of the flat word groupings: cluster #173 (left)
contains adjectives, especially ones that take comparative (or other) complements; cluster
#188 comprises bare-stem verbs (infinitive stems). (Of course, many of the words have
other syntactic uses.)

British National and the English Gigaword corpora.4 The second is a hierarchical cluster-

ing — binary strings up to eighteen bits long — constructed byrunning Brown et al.’s [41]

algorithm over 43 million words from the BLLIP corpus, minusWSJ.5

9.4.1 Experiment #3: A Flat Word Clustering

This chapter’s main purely unsupervised results are with a flat clustering [61],4 that groups

words having similar context distributions, according to Kullback-Leibler divergence. (A

word’s context is an ordered pair: its left- and right-adjacent neighboring words.) To avoid

overfitting, an implementation from previous literature [103] was employed. The number

of clusters (200) and the sufficient amount of training data (several hundred-million words)

were tuned to a task (NER) that is not directly related to dependency parsing. (Table 9.3

4http://nlp.stanford.edu/software/stanford-postagger-2008-09-28.tar.gz:
models/egw.bnc.200

5http://people.csail.mit.edu/maestro/papers/bllip-clusters.gz
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1 4 16 64 256 1,024 (# of clusters) 49,180
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gold
mfc

mfp
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full
partial

none
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k = 1 2 3 4 5 6 7 8 9 10 11 12–18 bits

Figure 9.1: Parsing performance (accuracy on WSJ15) as a “function” of the number of
syntactic categories, for all prefix lengths —k ∈ {1, . . . , 18}— of a hierarchical [41] clus-
tering, connected by solid lines (dependency grammar induction in blue; supervised oracle
skylines in red, above). Tagless lexicalized models (full, partial andnone) connected by
dashed lines. Models based ongold part-of-speech tags, and derived monosemous clus-
ters (mfc, mfp andua), shown as vertices of gold polygons. Models based on aflat [61]
clustering indicated by squares.

shows representative entries for two of the clusters.)

One more category (#0) was added for unknown words. Now everytoken in WSJ could

again be replaced by a coarse identifier (one of at most 201, instead of just 36), in both

supervised and unsupervised training. (The training code did not change.) The resulting

supervised model, though not as good as the fully-lexicalized DMV, was more than five

points more accurate than with gold part-of-speech tags (see Table 9.1: flat). Unsupervised

accuracy was lower than with gold tags (see also Table 9.4) but higher than withall three

derived hard assignments. This suggests that polysemy (i.e., ability to tag a word differently

in context) may be the primary advantage of manually constructed categorizations.
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System Description Accuracy
#1 (§9.3.1) “less is more” (Ch. 3) 44.0
#3 (§9.4.1) “less is more” with monosemous induced tags 41.4 (-2.6)

Table 9.4: Directed accuracies on Section 23 of WSJ (all sentences) for two experiments
with the base system.

9.4.2 Experiment #4: A Hierarchical Clustering

The purpose of this batch of experiments is to show that Clark’s [61] algorithm isn’t unique

in its suitability for grammar induction. Brown et al.’s [41] older information-theoretic

approach, which does not explicitly address the problems ofrare and ambiguous words [61]

and was designed to induce large numbers of plausible syntactic andsemantic clusters, can

perform just as well, as it turns out (despite using less data).6 Once again, the sufficient

amount of text (43 million words) was tuned in earlier work [174]. Koo’s task of interest

was, in fact, dependency parsing. But since the algorithm ishierarchical (i.e., there isn’t

a parameter for the number of categories), it is doubtful that there was a strong risk of

overfitting to question the clustering’s unsupervised nature.

As there isn’t a set number of categories, binary prefixes of lengthk from each word’s

address in the computed hierarchy were used as cluster labels. Results for7 ≤ k ≤ 9

bits (approximately 100–250 non-empty clusters, close to the 200 used before) are simi-

lar to those of flat clusters (see Table 9.1: hierarchical). Outside of this range, however,

performance can be substantially worse (see Figure 9.1), consistent with earlier findings:

Headden et al. [134] demonstrated that (constituent) grammar induction, using the singular-

value decomposition (SVD-based) tagger of Schütze [281],also works best with 100–200

clusters. Important future research directions may include learning to automatically select

a good number of word categories (in the case of flat clusterings) and ways of using mul-

tiple clustering assignments, perhaps of different granularities/resolutions, in tandem (e.g.,

in the case of a hierarchical clustering).

6One issue with traditional bigram class HMM objective functions, articulated by Martin et al. [204,§5.4],
is that resulting clustering processes are dominated by themost frequent words, which are pushed towards a
uniform distribution over the word classes. As a result, without a morphological component [62], there will
not be a homogenous class of numbers or function words, in theend, because some such words appear often.
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System Description Accuracy
(§9.5) “punctuation” (Ch. 7) 58.4

#5 (§9.5.1) “punctuation” with monosemous induced tags 58.2 (-0.2)
#6 (§9.5.2) “punctuation” withcontext-sensitiveinduced tags 59.1 (+0.7)

Table 9.5: Directed accuracies on Section 23 of WSJ (all sentences) for experiments with
the state-of-the-art system.

9.4.3 Further Evaluation

It is important to enable easy comparison with previous and future work. Since WSJ15

is not a standard test set, two key experiments — “less is more” with gold part-of-speech

tags (#1, Table 9.1: gold) and with Clark’s [61] clusters (#3, Table 9.1: flat) — were re-

evaluated on all sentences (not just length fifteen and shorter, which required smoothing

both final models), in Section 23 of WSJ (see Table 9.4). This chapter thus showed that

two classic unsupervised word clusterings — one flat and one hierarchical — can be better

for dependency grammar induction than monosemous syntactic categories derived from

gold part-of-speech tags. And it confirmed that the unsupervised tags are worse than the

actual gold tags, in a simple dependency grammar induction system.

9.5 State-of-the-Art without Gold Tags

Until now, this chapter’s experimental methods have been deliberately kept simple and

nearly identical to the early work based on the DMV, for clarity. Next, let’s explore how its

main findings generalize beyond this toy setting. A preliminary test will simply quantify

the effect of replacing gold part-of-speech tags with the monosemous flat clustering (as in

experiment #3,§9.4.1) on a more modern grammar inducer. And the last experiment will

gauge the impact of using a polysemous (but still unsupervised) clustering instead, obtained

by executing standard sequence labeling techniques to introduce context-sensitivity into the

original (independent) assignment of words to categories.

These final experiments are with a later state-of-the-art system (Ch. 7) — a partially

lexicalized extension of the DMV that uses constrained Viterbi EM to train on nearly all
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of the data available in WSJ, at WSJ45. The key contribution that differentiates this model

from its predecessors is that it incorporates punctuation into grammar induction (by turning

it into parsing constraints, instead of ignoring punctuation marks altogether). In training,

the model makes a simplifying assumption — that sentences can be split at punctuation and

that the resulting fragments of text could be parsed independently of one another (these

parsed fragments are then reassembled into full sentence trees, by parsing the sequence

of their own head words). Furthermore, the model continues to take punctuation marks

into account in inference (using weaker, more accurate constraints, than in training). This

system scores 58.4% on Section 23 of WSJ∞ (see Table 9.5).

9.5.1 Experiment #5: A Monosemous Clustering

As in experiment #3 (§9.4.1), the base system was modified in exactly one way: gold POS

tags were swapped out and replaced them with a flat distributional similarity clustering. In

contrast to simpler models, which suffer multi-point dropsin accuracy from switching to

unsupervised tags (e.g., 2.6%), the newer system’s performance degrades only slightly, by

0.2% (see Tables 9.4 and 9.5). This result improves over substantial performance degra-

dations previously observed for unsupervised dependency parsing with induced word cate-

gories [172, 134,inter alia].

One risk that arises from using gold tags is that newer systems could be finding cleverer

ways to exploit manual labels (i.e., developing an over-reliance on gold tags) instead of

actually learning to acquire language. Part-of-speech tags areknownto contain significant

amounts of information for unlabeled dependency parsing [213, §3.1], so it is reassuring

that this latest grammar inducer islessdependent on gold tags than its predecessors.

9.5.2 Experiment #6: A Polysemous Clustering

Results of experiments #1 and 3 (§9.3.1, 9.4.1) suggest that grammar induction stands to

gain from relaxing theone class per wordassumption. This conjecture is tested next, by

inducing a polysemous unsupervised word clustering, then using it to induce a grammar.

Previous work [134,§4] found that simple bitag hidden Markov models, classically
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trained using the Baum-Welch [19] variant of EM (HMM-EM), perform quite well,7 on

average, across different grammar induction tasks. Such sequence models incorporate a

sensitivity to context via state transition probabilitiesPTRAN(ti | ti−1), capturing the like-

lihood that a tagti immediately follows the tagti−1; emission probabilitiesPEMIT(wi | ti)
capture the likelihood that a word of typeti iswi.

A context-sensitive tagger is needed here, and HMM models are good — relative to

other tag-inducers. However, they are not better than gold tags, at least when trained using

a modest amount of data.8 For this reason, the monosemous flat clustering will be relaxed,

plugging it in as an initializer for the HMM [123]. The main problem with this approach is

that, at least without smoothing, every monosemous labeling is trivially at a local optimum,

sinceP(ti | wi) is deterministic. To escape the initial assignment, a “noise injection” tech-

nique [285] will be used, inspired by the contexts of [61, new]. First, the MLE statistics for

PR(ti+1 | ti) andPL(ti | ti+1) will be collected from WSJ, using the flat monosemous tags.

Next, WSJ text will be replicated 100-fold. Finally, this larger data set will be retagged, as

follows: with probability 80%, a word keeps its monosemous tag; with probability 10%, a

new tag is sampled from the left context (PL) associated with the original (monosemous)

tag of its rightmost neighbor; and with probability 10%, a tag is drawn from the right con-

text (PR) of its leftmost neighbor.9 Given that the initializer — and later the input to the

grammar inducer — are hard assignments of tags to words, (thefaster and simpler) Viterbi

training will be used to estimate this HMM’s parameters.

In the spirit of reproducibility, again, an off-the-shelf component was used for tagging-

related work.10 Viterbi training converged after just 17 steps, replacing the original monose-

mous tags for 22,280 (of 1,028,348 non-punctuation) tokensin WSJ. For example, the first

changed sentence is #3 (of 49,208):

Some “circuit breakers” installed after the October 1987 crash failed their first
7They are also competitive with Bayesian estimators, on larger data sets, with cross-validation [110].
8All of Headden et al.’s [134] grammar induction experimentswith induced POS were worse than their

best results with gold tags, most likely because of a very small corpus (half of WSJ10) used to cluster words.
9The sampling split (80:10:10) and replication parameter (100) were chosen somewhat arbitrarily, so

better results could likely be obtained with tuning. However, the real gains would likely come from using
soft clustering techniques [137, 246,inter alia] and propagating (joint) estimates of tag distributions into a
parser. The ad-hoc approach presented here is intended to serve solely as a proof of concept.

10David Elworthy’sC+ tagger, with options-i t -G -l, available fromhttp://friendly-moose.
appspot.com/code/NewCpTag.zip.



9.6. RELATED WORK 129

test, traders say, unable tocool the selling panic in both stocks and futures.

Above, the wordcoolgets relabeled as #188 (from #173 — see Table 9.3), since its context

is more suggestive of an infinitive verb than of its usual grouping with adjectives.11 Using

this new context-sensitive hard assignment of tokens to unsupervised categories the latest

grammar inducer attained a directed accuracy of 59.1%, nearly a full point better than with

the monosemous hard assignment (see Table 9.5). To the best of my knowledge, it is also

the first state-of-the-art unsupervised dependency parserto perform better with induced

categories than with gold part-of-speech tags.

9.6 Related Work

Early work in dependency grammar induction already relied on gold part-of-speech tags [44].

Some later models [345, 244,inter alia] attempted full lexicalization. However, Klein and

Manning [172] demonstrated that effort to be worse at recovering dependency arcs than

choosing parse structures at random, leading them to incorporate gold tags into the DMV.

Klein and Manning [172,§5, Figure 6] had also tested their own models with induced

word classes, constructed using a distributional similarity clustering method [281]. With-

out gold POS tags, their combined DMV+CCM model was about fivepoints worse, both in

(directed) unlabeled dependency accuracy (42.3% vs. 47.5%)12 and unlabeled bracketing

F1 (72.9% vs. 77.6%), on WSJ10. In constituent parsing, earlier Seginer [283,§6, Table 1]

built a fully-lexicalized grammar inducer that was competitive with DMV+CCM despite

not using gold tags. His CCL parser has since been improved via a “zoomed learning”

technique [263]. Moreover, Abend et al. [1] reused CCL’s internal distributional repre-

sentation of words in a cognitively-motivated part-of-speech inducer. Unfortunately their

tagger did not make it into Christodoulopoulos et al.’s [60]excellent and otherwise com-

prehensive evaluation.

11A proper analysis of all changes, however, is beyond the scope of this work.
12On the same evaluation set (WSJ10), the context-sensitive system without gold tags (Experiment #6,

§9.5.2) scores 66.8%.
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Outside monolingual grammar induction, fully-lexicalized statistical dependency trans-

duction models have been trained from unannotated parallelbitexts for machine transla-

tion [9]. More recently, McDonald et al. [213] demonstratedan impressive alternative

to grammar induction by projecting reference parse trees from languages that have annota-

tions to ones that are resource-poor.13 It uses graph-based label propagation over a bilingual

similarity graph for a sentence-aligned parallel corpus [77], inducing part-of-speech tags

from a universal tag-set [249]. Even in supervised parsing there are signs of a shift away

from using gold tags. For example, Alshawi et al. [10] demonstrated good results for map-

ping text to underspecified semantics via dependencies without resorting to gold tags. And

Petrov et al. [248,§4.4, Table 4] observed only a small performance loss “going POS-less”

in question parsing.

I am not aware of any systems that induce both syntactic treesand their part-of-speech

categories. However, aside from the many systems that induce trees from gold tags, there

are also unsupervised methods for inducing syntactic categories from gold trees [102, 246],

as well as for inducing dependencies from gold constituent annotations [274, 58]. Con-

sidering that Headden et al.’s [134] study of part-of-speech taggers found no correlation

between standard tagging metrics and the quality of inducedgrammars, it may be time for

a unified treatment of these very related syntax tasks.

9.7 Discussion and Conclusions

Unsupervised word clustering techniques of Brown et al. [41] and Clark [61] are well-suited

to dependency parsing with the DMV. Both methods outperformgold parts-of-speech in su-

pervised modes. And both can do better than monosemous clusters derived from gold tags

in unsupervised training. This chapter showed how Clark’s [61] flat tags can be relaxed,

using context, with the resulting polysemous clustering outperforming gold part-of-speech

tags for the English dependency grammar induction task.

13When the target language is English, however, their best accuracy (projected from Greek) is low:
45.7% [213,§4, Table 2]; tested on the same CoNLL 2007 evaluation set [236], this chapter’s “punctuation”
system with context-sensitive induced tags (trained on WSJ45, without gold tags) performs substantially bet-
ter, scoring 51.6%. Note that this is also an improvement over the same system trained on the CoNLL set
using gold tags: 50.3% (see Table 7.7).
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Monolingual evaluation is a significant flaw in this chapter’s methodology, however.

One (of many) take-home points made in Christodoulopoulos et al.’s [60] study is that

results on one language do not necessarily correlate with other languages.14 Assuming

that the results do generalize, it will still remain to remove the present reliance on gold

tokenization and sentence boundary labels. Nevertheless,eliminating gold tags has been

an important step towards the goal of fully-unsupervised dependency parsing.

This chapter has cast the utility of a categorization schemeas a combination of two

effects on parsing accuracy: a synonymy effect and a polysemy effect. Results of its ex-

periments with both full and partial lexicalization suggest that grouping similar words (i.e.,

synonymy) is vital to grammar induction with the DMV. This isconsistent with an estab-

lished view-point, that simple tabulation of frequencies of words participating in certain

configurations cannot be reliably used for comparing their likelihoods [246,§4.2]: “The

statistics of natural languages is inherently ill defined. Because of Zipf’s law, there is

never enough data for a reasonable estimation of joint object distributions.” Seginer’s [284,

§1.4.4] argument, however, is that the Zipfian distribution —a property of words, not parts-

of-speech — should allow frequent words to successfully guide parsing and learning: “A

relatively small number of frequent words appears almost everywhere and most words are

never too far from such a frequent word (this is also the principle behind successful part-

of-speech induction).” It is important to thoroughly understand how to reconcile these only

seemingly conflicting insights, balancing them both in theory and in practice. A useful

starting point may be to incorporate frequency informationin the parsing models directly

— in particular, capturing the relationships between wordsof various frequencies.

The polysemy effect appears smaller but is less controversial: This chapter’s experi-

mental results suggest that the primary drawback of the classic clustering schemes stems

from theirone class per wordnature — and not a lack of supervision, as may be widely be-

lieved. Monosemous groupings, even if they are themselves derived from human-annotated

syntactic categories, simply cannot disambiguate words the way gold tags can. By relaxing

14Furthermore, it would be interesting to know how sensitive different head-percolation schemes [339, 152]
would be to gold versus unsupervised tags, since the Magerman-Collins rules [199, 70] agree with gold
dependency annotations only 85% of the time, even for WSJ [274]. Proper intrinsic evaluation of dependency
grammar inducers is not yet a solved problem [282].
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Clark’s [61] flat clustering, using contextual cues, dependency grammar induction was im-

proved: directed accuracy on Section 23 (all sentences) of the WSJ benchmark increased

from 58.2% to 59.1% — from slightly worse to better than with gold tags (58.4%, previous

state-of-the-art).

Finally, since Clark’s [61] word clustering algorithm is already context-sensitive in

training, it is likely possible to do better simply by preserving the polysemous nature of

its internal representation. Importing the relevant distributions into a sequence tagger di-

rectly would make more sense than going through an intermediate monosemous summary.

And exploring other uses ofsoft clustering algorithms — perhaps as inputs to part-of-

speech disambiguators — may be another fruitful research direction. A joint treatment of

grammar and parts-of-speech induction could fuel major advances in both tasks.



Chapter 10

Dependency-and-Boundary Models

The purpose of this chapter is to introduce a new family of models for unsupervised depen-

dency parsing, which is specifically designed to exploit thevarious informative cues that are

observable at sentence and punctuation boundaries. Supporting peer-reviewed publication

is Three Dependency-and-Boundary Models for Grammar Induction in EMNLP-CoNLL

2012 [307].

10.1 Introduction

Natural language is ripe with all manner of boundaries at thesurface level that align with hi-

erarchical syntactic structure. From the significance of function words [23] and punctuation

marks [284, 253] as separators between constituents in longer sentences — to the impor-

tance of isolated words in children’s early vocabulary acquisition [37] — word boundaries

play a crucial role in language learning. This chapter will show that boundary information

can also be useful in dependency grammar induction models, which traditionally focus on

head rather than fringe words [44].

Consider again the example in Figure 1.1:The check is in the mail. Because the de-

terminer (DT) appears at the left edge of the sentence, it should be possible to learn that

determiners may generally be present at left edges of phrases. This information could then

be used to correctly parse the sentence-internal determiner in the mail. Similarly, the fact

that the noun head (NN) of the objectthe mailappears at the right edge of the sentence

133
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could help identify the nouncheckas the right edge of the subjectNP. As with jigsaw puz-

zles, working inwards from boundaries helps determine sentence-internal structures of both

noun phrases, neither of which would be quite so clear if viewed separately.

Furthermore, properties of noun-phrase edges are partially shared with prepositional-

and verb-phrase units that contain these nouns. Because typical head-driven grammars

model valency separately for each class of head, however, they cannot grasp that the left

fringe boundary,The check, of the verb-phrase is shared with its daughter’s,check. Neither

of these insights is available to traditional dependency formulations, which could learn

from the boundaries of this sentence only that determiners might have no left- and that

nouns might have no right-dependents.

This chapter proposes a family of dependency parsing modelsthat are capable of induc-

ing longer-range implications from sentence edges than just fertilities of their fringe words.

Its ideas conveniently lend themselves to implementationsthat can reuse much of the stan-

dard grammar induction machinery, including efficient dynamic programming routines for

the relevant expectation-maximization algorithms.

10.2 The Dependency and Boundary Models

The new models follow a standard generative story for head-outward automata [7], re-

stricted to the split-head case (see below), over lexical word classes{cw}: first, a sentence

root cr is chosen, with probabilityPATTACH(cr | ⋄; L); ⋄ is a special start symbol that, by

convention [172, 93], produces exactly one child, to its left. Next, the process recurses.

Each (head) wordch generates a left-dependent with probability1 − PSTOP( · | L; · · · ),
where dots represent additional parameterization on whichit may be conditioned. If the

child is indeed generated, its identitycd is chosen with probabilityPATTACH(cd | ch; · · · ),
influenced by the identity of the parentch and possibly other parameters (again represented

by dots). The child then generates its own subtree recursively and the whole process con-

tinues, moving away from the head, untilch fails to generate a left-dependent. At that

point, an analogous procedure is repeated toch’s right, this time using stopping factors

PSTOP( · | R; · · · ). All parse trees derived in this way are guaranteed to be projective and

can be described by split-head grammars.
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Instances of these split-head automata have been heavily used in grammar induction [244,

172, 133,inter alia], in part because they allow for efficient implementations [91,§8] of the

inside-outside re-estimation algorithm [14]. The basic tenet of split-head grammars is that

every head word generates its left-dependents independently of its right-dependents. This

assumption implies, for instance, that words’ left- and right-valencies — their numbers of

children to each side — are also independent. But it doesnot imply that descendants that

are closer to the head cannot influence the generation of farther dependents on the same

side. Nevertheless, many popular grammars for unsupervised parsing behave as if a word

had to generate all of its children (to one side) — or at least their count —beforeallowing

any of these children themselves to recurse.

For example, the DMV could be implemented as both head-outward and head-inward

automata. (In fact, arbitrary permutations of siblings to agiven side of their parent would

not affect the likelihood of the modified tree, with such models.) This chapter proposes to

make fuller use of split-head automata’s head-outward nature by drawing on information

in partially-generated parses, which contain useful predictors that, previously, had not been

exploited even in featurized systems for grammar induction[66, 24].

Some of these predictors, including the identity — or even number [207] — of already-

generated siblings, can be prohibitively expensive in sentences above a short lengthk. For

example, they break certain modularity constraints imposed by the charts used inO(k3)-

optimized algorithms [243, 89]. However, in bottom-up parsing and training from text,

everything about the yield — i.e., the ordered sequence of all already-generated descen-

dants, on the side of the head that is in the process of spawning off an additional child — is

not only known but also readily accessible. This chapter introduces three new models for

dependency grammar induction, designed to take advantage of this availability.

10.2.1 Dependency and Boundary Model One

DBM-1 conditions all stopping decisions on adjacency and the identity of the fringe word

ce — the currently-farthest descendant (edge) derived by headch in the given head-outward

direction (dir ∈ {L, R}):
PSTOP( · | dir; adj, ce).
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DT NN VBZ IN DT NN ♦
The check is in the mail .

P = (1−
0

︷ ︸︸ ︷

PSTOP(⋄ | L; T)) × PATTACH(VBZ | ⋄; L)
× (1− PSTOP( · | L; T, VBZ)) × PATTACH(NN | VBZ; L)
× (1− PSTOP( · | R; T, VBZ)) × PATTACH(IN | VBZ; R)
× PSTOP( · | L; F, DT) // VBZ × PSTOP( · | R; F, NN) // VBZ
× (1− PSTOP( · | L; T, NN))2 × P

2
ATTACH

(DT | NN; L)
× (1− PSTOP( · | R; T, IN)) × PATTACH(NN | IN; R)
× P

2
STOP

( · | R; T, NN) × P
2
STOP

( · | L; F, DT) // NN

× PSTOP( · | L; T, IN) × PSTOP( · | R; F, NN) // IN

× P
2
STOP

( · | L; T, DT) × P
2
STOP

( · | R; T, DT)
× PSTOP(⋄ | L; F)

︸ ︷︷ ︸

1

× PSTOP(⋄ | R; T)
︸ ︷︷ ︸

1

.

Figure 10.1: The running example — a simple sentence and its unlabeled dependency
parse structure’s probability, as factored by DBM-1; highlighted comments specify heads
associated to non-adjacent stopping probability factors.

In the adjacent case (adj = T), ch is deciding whether to have any children on a given

side: a first child’s subtree would be right next to the head, so the head and the fringe

words coincide (ch = ce). In the non-adjacent case (adj = F), these will be different words

and their classes will, in general, not be the same.1 Thus, non-adjacent stopping decisions

will be made independently of a head word’s identity. Therefore, all word classes will be

equally likely to continue to grow or not, for a specific proposed fringe boundary.

For example, production ofThe check isinvolves two non-adjacent stopping decisions

on the left: one by the nouncheckand one by the verbis, both of which stop after generating

a first child. In DBM-1, this outcome is captured by squaring ashared parameter belonging

to the left-fringe determinerThe: PSTOP( · | L; F, DT)2 — instead of by a product of two

factors, such asPSTOP( · | L; F, NN) · PSTOP( · | L; F, VBZ). In DBM grammars, dependents’

attachment probabilities, given heads, are additionally conditioned only on their relative

positions — as in traditional models [172, 244]:PATTACH(cd | ch; dir).
Figure 10.1 shows a completely factored example.

1Fringe words differ also from standard dependency features[93,§2.3]: parse siblings and adjacent words.
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10.2.2 Dependency and Boundary Model Two

DBM-2 allows different but related grammars to coexist in a single model. Specifically, it

presupposes that all sentences are assigned to one of two classes: complete and incomplete

(comp ∈ {T, F}, for now taken as exogenous). This model assumes that word-word (i.e.,

head-dependent) interactions in the two domains are the same. However, sentence lengths

— for which stopping probabilities are responsible — and distributions of root words may

be different. Consequently, an additionalcomp parameter is added to the context of two

relevant types of factors:

PSTOP( · | dir; adj, ce, comp);

andPATTACH(cr | ⋄; L, comp).

For example, the new stopping factors could capture the factthat incomplete fragments

— such as the noun-phrasesGeorge Morton, headlinesEnergyandOdds and Ends, a line

item c - Domestic car, dollar quantityRevenue:$3.57 billion, the time1:11am, and the

like — tend to be much shorter than complete sentences. The new root-attachment factors

could further track that incomplete sentences generally lack verbs, in contrast to other short

sentences, e.g.,Excerpts follow:, Are you kidding?, Yes, he did., It’s huge., Indeed it is., I

said, ‘NOW?’, “Absolutely,” he said., I am waiting., Mrs. Yeargin declined., McGraw-Hill

was outraged., “It happens.”, I’m OK, Jack., Who cares?, Never mind.and so on.

All other attachment probabilitiesPATTACH(cd | ch; dir) remain unchanged, as in DBM-1.

In practice,comp can indicate presence of sentence-final punctuation.

10.2.3 Dependency and Boundary Model Three

DBM-3 adds further conditioning on punctuation context. Itintroduces another boolean

parameter,cross, which indicates the presence of intervening punctuation between a pro-

posed head wordch and its dependentcd. Using this information, longer-distance punctuation-

crossing arcs can be modeled separately from other, lower-level dependencies, via

PATTACH(cd | ch; dir, cross).
For instance, inContinentals believe thatthe strongest growth area willbe southern Eu-

rope., four words appear betweenthat andwill . Conditioning on (the absence of) inter-

vening punctuation could help tell true long-distance relations from impostors. All other
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Split-Head Dependency Grammar PATTACH (head-root) PATTACH (dependent-head) PSTOP (adjacent and not)
GB [244] 1 / |{w}| d | h; dir 1 / 2
DMV [172] cr | ⋄; L cd | ch; dir · | dir; adj, ch
EVG [133] cr | ⋄; L cd | ch; dir, adj · | dir; adj, ch
DBM-1 (§10.2.1) cr | ⋄; L cd | ch; dir · | dir; adj, ce
DBM-2 (§10.2.2) cr | ⋄; L, comp cd | ch; dir · | dir; adj, ce, comp
DBM-3 (§10.2.3) cr | ⋄; L, comp cd | ch; dir, cross · | dir; adj, ce, comp

Table 10.1: Parameterizations of the split-head-outward generative process used by DBMs
and in previous models.

probabilities,PSTOP( · | dir; adj, ce, comp) andPATTACH(cr | ⋄; L, comp), remain the same

as in DBM-2.

10.2.4 Summary of DBMs and Related Models

Head-outward automata [7, 8, 9] played a central part as generative models for proba-

bilistic grammars, starting with their early adoption in supervised split-head constituent

parsers [69, 71]. Table 10.1 lists some parameterizations that have since been used by

unsupervised dependency grammar inducers sharing their backbone split-head process.

10.3 Experimental Set-Up and Methodology

Let’s first motivate each model by analyzing WSJ text, beforedelving into grammar in-

duction experiments. Although motivating solely from thistreebank biases the discussion

towards a very specific genre of just one language, it has the advantage of allowing one to

make concrete claims that are backed up by significant statistics.2

In the grammar induction experiments that follow, each model’s incremental contribu-

tion to accuracies will be tested empirically, across many disparate languages. For each

CoNLL data set, a baseline grammar will be induced using the DMV. Sentences with

more than 15 tokens will be excluded, to create a conservative bias, because in this set-

up the baseline is known to excel. All grammar inducers were initialized using (the same)

uniformly-at-random chosen parse trees of training sentences [67]; thereafter, “add one”

smoothing was applied at every training step.

2A kind of bias-variance trade-off, if you will...
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To fairly compare the models under consideration — which could have quite differ-

ent starting perplexities and ensuing consecutive relative likelihoods — two termination

strategies where employed. In one case, each learner was blindly run through 40 steps of

inside-outside re-estimation, ignoring any convergence criteria; in the other case, learners

were run until numerical convergence of soft EM’s objectivefunction or until the likelihood

of resulting Viterbi parse trees suffered — an “early-stopping lateen EM” strategy (Ch. 5).

Table 10.2 shows experimental results, averaged over all 19CoNLL languages, for the

DMV baselines and DBM-1 and 2. DBM-3 was not tested in this set-up because most

sentence-internal punctuation occurs in longer sentences; instead, DBM-3 will be tested

later (see§10.7), using most sentences,3 in the final training step of a curriculum strat-

egy [22] that will be proposed for DBMs. For the three models tested on shorter inputs

(up to 15 tokens) both terminating criteria exhibited the same trend; lateen EM consistently

scored slightly higher than 40 EM iterations.

Termination Criterion DMV DBM-1 DBM-2
40 steps of EM 33.5 38.8 40.7

early-stopping lateen EM 34.0 39.0 40.9

Table 10.2: Directed dependency accuracies, averaged overall 2006/7 CoNLL evaluation
sets (all sentences), for the DMV and two new dependency-and-boundary grammar induc-
ers (DBM-1 and 2) — using two termination strategies.

10.4 Dependency and Boundary Model One

The primary difference between DBM-1 and traditional models, such as the DMV, is that

DBM-1 conditions non-adjacent stopping decisions on the identities of fringe words in

partial yields (see§10.2.1).

3Results for DBM-3, given only standard input (up to length 15), would be nearly identical to DBM-2’s.
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Non-Adjacent Stop Predictor R2
adj AICc

(dir) 0.0149 1,120,200
(n, dir) 0.0726 1,049,175
(ch, dir) 0.0728 1,047,157
(ce, dir) 0.2361 904,102.4

(ch, ce, dir) 0.3320 789,594.3

Table 10.3: Coefficients of determination (R2) and Akaike information criteria (AIC), both
adjusted for the number of parameters, for several single-predictor logistic models of non-
adjacent stops, given directiondir; ch is the class of the head,n is its number of descendants
(so far) to that side, andce represents the farthest descendant (the edge).

10.4.1 Analytical Motivation

Treebank data suggests that the class of the fringe word — itspart-of-speech,ce — is

a better predictor of (non-adjacent) stopping decisions, in a given directiondir, than the

head’s own classch. A statistical analysis of logistic regressions fitted to the data shows that

the(ch, dir) predictor explains only about 7% of the total variation (seeTable 10.3). This

seems low, although it is much better compared to direction alone (which explains less than

2%) and slightly better than using the (current) number of the head’s descendants on that

side,n, instead of the head’s class. In contrast, usingce in place ofch boosts explanatory

power to 24%, keeping the number of parameters the same. If one were willing to roughly

square the size of the model, explanatory power could be improved further, to 33% (see

Table 10.3), using bothce andch.

Fringe boundaries thus appear to be informative even in the supervised case, which

is not surprising, since using just one probability factor (and its complement) to generate

very short (geometric coin-flip) sequences is a recipe for high entropy. But as suggested

earlier, fringes should be extra attractive in unsupervised settings because yields are ob-

servable, whereas heads almost always remain hidden. Moreover, every sentence exposes

two true edges [131]: integrated over many sample sentence beginnings and ends, cumula-

tive knowledge about such markers can guide a grammar inducer inside long inputs, where

structure is murky. Table 10.4 shows distributions of all POS tags in the treebank versus
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% of All First Last Sent. Frag.
POS Tokens Tokens Tokens Roots Roots
NN 15.94 4.31 36.67 0.10 23.40
IN 11.85 13.54 0.57 0.24 4.33
NNP 11.09 20.49 12.85 0.02 32.02
DT 9.84 23.34 0.34 0.00 0.04
JJ 7.32 4.33 3.74 0.01 1.15
NNS 7.19 4.49 20.64 0.15 17.12
CD 4.37 1.29 6.92 0.00 3.27
RB 3.71 5.96 3.88 0.00 1.50
VBD 3.65 0.09 3.52 46.65 0.93
VB 3.17 0.44 1.67 0.48 6.81
CC 2.86 5.93 0.00 0.00 0.00
TO 2.67 0.37 0.05 0.02 0.44
VBZ 2.57 0.17 1.65 28.31 0.93
VBN 2.42 0.61 2.57 0.65 1.28
PRP 2.08 9.04 1.34 0.00 0.00
VBG 1.77 1.26 0.64 0.10 0.97
VBP 1.50 0.05 0.61 14.33 0.71
MD 1.17 0.07 0.05 8.88 0.57
POS 1.05 0.00 0.11 0.01 0.04
PRP$ 1.00 0.90 0.00 0.00 0.00
WDT 0.52 0.08 0.00 0.01 0.13
JJR 0.39 0.18 0.43 0.00 0.09
RP 0.32 0.00 0.42 0.00 0.00
NNPS 0.30 0.20 0.56 0.00 2.96
WP 0.28 0.42 0.01 0.01 0.04
WRB 0.26 0.78 0.02 0.01 0.31
JJS 0.23 0.27 0.06 0.00 0.00
RBR 0.21 0.20 0.54 0.00 0.04
EX 0.10 0.75 0.00 0.00 0.00
RBS 0.05 0.06 0.01 0.00 0.00
PDT 0.04 0.08 0.00 0.00 0.00
FW 0.03 0.01 0.05 0.00 0.09
WP$ 0.02 0.00 0.00 0.00 0.00
UH 0.01 0.08 0.05 0.00 0.62
SYM 0.01 0.11 0.01 0.00 0.18
LS 0.01 0.09 0.00 0.00 0.00

Table 10.4: Empirical distributions for non-punctuation POS tags in WSJ, ordered by over-
all frequency, as well as distributions for sentence boundaries and for the roots of complete
and incomplete sentences. (A uniform distribution would have1/36 = 2.7% for all tags.)

in sentence-initial, sentence-final and sentence-root positions. WSJ often leads with deter-

miners, proper nouns, prepositions and pronouns — all good candidates for starting English
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√
1−∑

x

√
pxqx All First Last Sent. Frag.

Uniform 0.48 0.58 0.64 0.79 0.65
All 0.35 0.40 0.79 0.42

First 0.59 0.94 0.57
Last 0.83 0.29
Sent. 0.86

Table 10.5: A distance matrix for all pairs of probability distributions over POS-tags shown
in Table 10.4 and the uniform distribution; the BC- (or Hellinger) distance [28, 235] be-
tween discrete distributionsp andq (overx ∈ X ) ranges from zero (iffp = q) to one (iff
p · q = 0, i.e., when they do not overlap at all).

phrases; and its sentences usually end with various noun types, again consistent with the

running example.

10.4.2 Experimental Results

Table 10.2 shows DBM-1 to be substantially more accurate than the DMV, on average: 38.8

versus 33.5% after 40 steps of EM.4 Lateen termination improved both models’ accuracies

slightly, to 39.0 and 34.0%, respectively, with DBM-1 scoring five points higher.

10.5 Dependency and Boundary Model Two

DBM-2 adapts DBM-1 grammars to two classes of inputs (complete sentences and in-

complete fragments) by forking off new, separate multinomials for stopping decisions and

root-distributions (see§10.2.2).

10.5.1 Analytical Motivation

Unrepresentative short sentences — such as headlines and titles — are common in news-

style data and pose a known nuisance to grammar inducers. Previous research sometimes

4DBM-1’s 39% average accuracy with uniform-at-random initialization is two points above DMV’s scores
with the “ad-hoc harmonic” strategy, 37% (see Table 5.5).
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Figure 10.2: Histograms of lengths (in tokens) for 2,261 non-clausal fragments (red) and
other sentences (blue) in WSJ.

took radical measures to combat the problem: for example, Gillenwater et al. [118] ex-

cluded all sentences with three or fewer tokens from their experiments; and Mareček and

Žabokrtský [202] enforced an “anti-noun-root” policy to steer their Gibbs sampler away

from the undercurrents caused by the many short noun-phrasefragments (among sentences

up to length 15, in Czech data). This chapter will refer to such snippets of text as “incom-

plete sentences” and focus its study of WSJ on non-clausal data (as signaled by top-level

constituent annotations whose first character is notS).5

Table 10.4 shows that roots of incomplete sentences, which are dominated by nouns,

barely resemble the other roots, drawn from more traditional verb and modal (MD) types. In

fact, these two empirical root distributions are more distant from one another than either is

from the uniform distribution, in the space of discrete probability distributions over POS-

tags (see Table 10.5). Of the distributions under consideration, only sentence boundaries

are as or more different from (complete) roots, suggesting that heads of fragments too may

warrant their own multinomial in a model.

Further, incomplete sentences are uncharacteristically short (see Figure 10.2). It is this

property that makes them particularly treacherous to grammar inducers, since by offering

few options of root positions they increase the chances thata learner will incorrectly induce

5I.e., separating top-level types{S, SINV, SBARQ, SQ, SBAR} from the rest (ordered by frequency):
{NP, FRAG, X, PP, . . .}.
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nouns to be heads. Given that expected lengths are directly related to stopping decisions, it

makes sense to also model the stopping probabilities of incomplete sentences separately.

10.5.2 Experimental Results

Since it is not possible to consult parse trees during grammar induction (to check whether

an input sentence is clausal), a simple proxy was used instead: presence of sentence-final

punctuation. Using punctuation to divide input sentences into two groups, DBM-2 scored

higher: 40.9, up from 39.0% accuracy (see Table 10.2).

After evaluating these multilingual experiments, the quality of the proxy’s correspon-

dence to actual clausal sentences in WSJ was examined. Table10.6 shows the binary

confusion matrix having a fairly low (but positive) Pearsoncorrelation coefficient. False

positives include parenthesized expressions that are marked as noun-phrases, such as(See

related story: “Fed Ready to Inject Big Funds”: WSJ Oct. 16, 1989); false negatives can be

headlines having a main verb, e.g.,Population Drain Ends For Midwestern States. Thus,

the proxy is not perfect but seems to be tolerable in practice. Identities of punctuation

marks [71, Footnote 13] — both sentence-final and sentence-initial — could be of extra

assistance in grammar induction, for grouping imperatives, questions, and so forth.

rφ ≈ 0.31 Clausal non-Clausal Total
Punctuation 46,829 1,936 48,765

no Punctuation 118 325 443
Total 46,947 2,261 49,208

Table 10.6: A contingency table for clausal sentences and trailing punctuation in WSJ; the
mean square contingency coefficientrφ signifies a low degree of correlation. (For two bi-
nary variables,rφ is equivalent to Karl Pearson’s better-known product-moment correlation
coefficient,ρ.)
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10.6 Dependency and Boundary Model Three

DBM-3 exploits sentence-internal punctuation contexts bymodeling punctuation-crossing

dependency arcs separately from other attachments (see§10.2.3).

10.6.1 Analytical Motivation

Many common syntactic relations, such as between a determiner and a noun, are unlikely to

hold over long distances. (In fact, 45% of all head-percolated dependencies in WSJ are be-

tween adjacent words.) However, some common constructionsare more remote: e.g., sub-

ordinating conjunctions are, on average, 4.8 tokens away from their dependent modal verbs.

Sometimes longer-distance dependencies can be vetted using sentence-internal punctuation

marks.

It happens that the presence of punctuation between such conjunction (IN) and verb (MD)

types serves as a clue that they are not connected (see Table 10.7a); by contrast, a simpler

cue — whether these words are adjacent — is, in this case, hardly of any use (see Ta-

ble 10.7b). Conditioning on crossing punctuation could be of help then, playing a role

similar to that of comma-counting [69,§2.1] — and “verb intervening” [29,§5.1] — in

early head-outward models for supervised parsing.

a) rφ ≈ −0.40 Attached not Attached Total
Punctuation 337 7,645 7,982

no Punctuation 2,144 4,040 6,184
Total 2,481 11,685 14,166

non-Adjacent 2,478 11,673 14,151
Adjacent 3 12 15

b) rφ ≈ +0.00 Attached not Attached Total

Table 10.7: Contingency tables forIN right-attachingMD, among closest ordered pairs of
these tokens in WSJ sentences with punctuation, versus: (a)presence of intervening punc-
tuation; and (b) presence of intermediate words.
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10.6.2 Experimental Results Postponed

As mentioned earlier (see§10.3), there is little point in testing DBM-3 with shorter sen-

tences, since most sentence-internal punctuation occurs in longer inputs. Instead, this

model will be tested in a final step of a staged training strategy, with more data (see§10.7.3).

10.7 A Curriculum Strategy for DBMs

The proposal is to train up to DBM-3 iteratively — by beginning with DBM-1 and gradu-

ally increasing model complexity through DBM-2, drawing onthe intuitions of IBM trans-

lation models 1–4 [40]. Instead of using sentences of up to 15tokens, as in all previous

experiments (§10.4–10.5), nearly all available training data will now be used: up to length

45 (out of concern for efficiency), during later stages. In the first stage, however, DBM-1

will make use of only a subset of the data, in a process sometimes calledcurriculum learn-

ing [22, 175,inter alia]. The grammar inducers will thus be “starting small” in bothsenses

suggested by Elman [95]: simultaneously scaffolding on model- anddata-complexity.

10.7.1 Scaffolding Stage #1: DBM-1

DBM-1 training begins from sentences without sentence-internal punctuation but with at

least one trailing punctuation mark. The goal here is to avoid, when possible, overly specific

arbitrary parameters like the “15 tokens or less” thresholdused to select training sentences.

Unlike DBM-2 and 3, DBM-1 does not model punctuation or sentence fragments, so it

makes sense to instead explicitly restrict its attention tothis cleaner subset of the training

data, which takes advantage of the fact that punctuation maygenerally correlate with sen-

tence complexity [107]. (Next chapters cover even more incremental training strategies.)

Aside from input sentence selection, the experimental set-up here remained identical

to previous training of DBMs (§10.4–10.5). Using this new input data, DBM-1 averaged

40.7% accuracy (see Table 10.8). This is slightly higher than the 39.0% when using sen-

tences up to length 15, suggesting that the proposed heuristic for clean, simple sentences

may be a useful one.
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Directed Dependency Accuracies for: Best of State-of-the-Art Systems
CoNLL Year this Work (@10) Monolingual; POS- Crosslingual
& Language DMV DBM-1 DBM-2 DBM-3 +inference (i) Agnostic (ii) Identified (iii) Transfer

Arabic 2006 12.9 10.6 11.0 11.1 10.9(34.5) 33.4 L6 — 50.2 Sbg
’7 36.6 43.9 44.0 44.4 44.9(48.8) 55.6 RF 54.6 RFH1 —

Basque ’7 32.7 34.1 33.0 32.7 33.3(36.5) 43.6 L5 34.7 MZNR —
Bulgarian ’7 24.7 59.4 63.6 64.6 65.2 (70.4) 44.3 L5 53.9 RFH1&2 70.3 Spt
Catalan ’7 41.1 61.3 61.1 61.1 62.1(78.1) 63.8 L5 56.3 MZNR —
Chinese ’6 50.4 63.1 63.0 63.2 63.2(65.7) 63.6 L6 — —

’7 55.3 56.8 57.0 57.1 57.0(59.8) 58.5 L6 34.6 MZNR —
Czech ’6 31.5 51.3 52.8 53.0 55.1 (61.8) 50.5 L5 — —

’7 34.5 50.5 51.2 53.3 54.2 (67.3) 49.8 L5 42.4 RFH1&2 —
Danish ’6 22.4 21.3 19.9 21.8 22.2(27.4) 46.0 RF 53.1 RFH1&2 56.5 Sar
Dutch ’6 44.9 45.9 46.5 46.0 46.6 (48.6) 32.5 L5 48.8 RFH1&2 65.7 MPHm:p
English ’7 32.3 29.2 28.6 29.0 29.6(51.4) 50.3 P 23.8 MZNR 45.7 MPHel
German ’6 27.7 36.3 37.9 38.4 39.1 (52.1) 33.5 L5 21.8 MZNR 56.7 MPHm:d
Greek ’6 36.3 28.1 26.1 26.1 26.9(36.8) 39.0 MZ 33.4 MZNR 65.1 MPHm:p
Hungarian ’7 23.6 43.2 52.1 57.4 58.2 (68.4) 48.0 MZ 48.1 MZNR —
Italian ’7 25.5 41.7 39.8 39.9 40.7(41.8) 57.5 MZ 60.6 MZNR 69.1 MPHpt
Japanese ’6 42.2 22.8 22.7 22.7 22.7(32.5) 56.6 L5 53.5 MZNR —
Portuguese ’6 37.1 68.9 72.3 71.172.4 (80.6) 43.2 MZ 55.8 RFH1&2 76.9 Sbg
Slovenian ’6 33.4 30.4 33.0 34.1 35.2 (36.8) 33.6 L5 34.6 MZNR —
Spanish ’6 22.0 25.0 26.7 27.1 28.2(51.8) 53.0 MZ 54.6 MZNR 68.4 MPHit
Swedish ’6 30.7 48.6 50.3 50.0 50.7 (63.2) 50.0 L6 34.3 RFH1&2 68.0 MPHm:p
Turkish ’6 43.4 32.9 33.7 33.4 34.4(38.1) 40.9 P 61.3 RFH1 —

’7 58.5 44.6 44.2 43.7 44.8(44.4) 48.8 L6 — —
Average: 33.6 40.7 41.7 42.2 42.9 (51.9) 38.2 L6 (best average, not an average of bests)

Table 10.8: Average accuracies over CoNLL evaluation sets (all sentences), for the DMV
baseline, DBM1–3 trained with a curriculum strategy, and state-of-the-art results for sys-
tems that: (i) are also POS-agnostic and monolingual, including L (Lateen EM, Ta-
bles 5.5–5.6) and P (Punctuation, Ch. 7); (ii) rely on gold tag identities to discourage
noun roots [202, MZ] or to encourage verbs [259, RF]; and (iii) transfer delexicalized
parsers [296, S] from resource-rich languages with translations [213, MPH]. DMV and
DBM-1 were trained on simple sentences, starting from (the same) parse trees chosen
uniformly-at-random; DBM-2 and 3 were trained on most sentences, starting from DBM-1
and 2’s output, respectively;+inferenceis DBM-3 with punctuation constraints.

10.7.2 Scaffolding Stage #2: DBM-2← DBM-1

Next comes training on all sentences up to length 45. Since these inputs are punctuation-

rich, both remaining stages employed the constrained Viterbi EM set-up (Ch. 7) instead

of plain soft EM; also, an early termination strategy was used, quitting hard EM as soon

as soft EM’s objective suffered (Ch. 5). Punctuation was converted into Viterbi-decoding

constraints during training using the so-calledloosemethod, which stipulates that all words

in an inter-punctuation fragment must be dominated by a single (head) word, also from



148 CHAPTER 10. DEPENDENCY-AND-BOUNDARY MODELS

that fragment — with only these head words allowed to attach the head words of other

fragments, across punctuation boundaries. To adapt to fulldata, DBM-2 was initialized

using Viterbi parses from the previous stage (§10.7.1), plus uniformly-at-random chosen

dependency trees for any new complex and incomplete sentences, subject to punctuation-

induced constraints. This approach improved parsing accuracies to 41.7% (see Table 10.8).

10.7.3 Scaffolding Stage #3: DBM-3← DBM-2

Next, the training process of the previous stage (§10.7.2) was repeated using DBM-3. To

initialize this model, the final instance of DBM-2 was combined with uniform multinomials

for punctuation-crossing attachment probabilities (see§10.2.3). As a result, average per-

formance improved to 42.2% (see Table 10.8). Lastly, punctuation constraints were applied

also in inference. Here thesprawl method was used — a more relaxed approach than in

training, allowing arbitrary words to attach inter-punctuation fragments (provided that each

entire fragment still be derived by one of its words). This technique increased DBM-3’s

average accuracy to 42.9% (see Table 10.8). The final result substantially improves over

the baseline’s 33.6% and compares favorably to previous work.6

10.8 Discussion and the State-of-the-Art

DBMs come from a long line of head-outward models for dependency grammar induction

yet their generative processes feature important novelties. One is conditioning on more

observable state — specifically, the left and right end wordsof a phrase being constructed

— than in previous work. Another is allowing multiple grammars — e.g., of complete and

incomplete sentences — to coexist in a single model. These improvements could make

DBMs quick-and-easy to bootstrap directly from any available partial bracketings [245],

for example web markup (Ch. 6) or capitalized phrases (Ch. 8).

The second part of this chapter — the use of a curriculum strategy to train DBM-1

through 3 — eliminates having to know tuned cut-offs, such assentences with up to a pre-

determined number of tokens. Although this approach adds some complexity, choices were

6Note that DBM-1’s 39% average accuracy with standard training (see Table 10.2) was already nearly a
full point higher than that of any single previous best system (L6 — see Table 10.8).
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made conservatively, to avoid overfitting settings of sentence length, convergence criteria,

etc.: stage one’s data is dictated by DBM-1 (which ignores punctuation); subsequent stages

initialize additional pieces uniformly: uniform-at-random parses for new data and uniform

multinomials for new parameters.

Even without curriculum learning — trained with vanilla EM —DBM-2 and 1 are

already strong. Further boosts to accuracy could come from employing more sophisti-

cated optimization algorithms, e.g., better EM [273], constrained Gibbs sampling [202] or

locally-normalized features [24]. Other orthogonal dependency grammar induction tech-

niques — including ones based on universal rules [228] — may also benefit in combination

with DBMs. Direct comparisons to previous work require somecare, however, as there are

several classes of systems that make different assumptionsabout training data (see Ta-

ble 10.8).

10.8.1 Monolingual POS-Agnostic Inducers

The first type of grammar inducers, including this chapter’sapproach, uses standard train-

ing and test data sets for each language, with gold POS tags asanonymized word classes.

For the purposes of this discussion, transductive learnersthat may train on data from the

test sets will also be included in this group. DBM-3 (decodedwith punctuation constraints)

does well among such systems — for which accuracies onall sentence lengths of the evalu-

ation sets are reported — attaining highest scores for 8 of 19languages; the DMV baseline

is still state-of-the-art for one language; and the remaining 10 bests are split among five

other recent systems (see Table 10.8).7 Half of the five came from various lateen EM

strategies (Ch. 5) for escaping and/or avoiding local optima. These heuristics are compati-

ble with how the DBMs were trained and could potentially provide further improvement to

accuracies.

Overall, the final scores of DBM-3 were better, on average, than those of any other

single system: 42.9 versus 38.2% (Ch. 5). The progression ofscores for DBM-1 through 3

without using punctuation constraints in inference — 40.7,41.7 and 42.2% — fell entirely

above this previous state-of-the-art result as well; the DMV baseline — also trained on

7But for Turkish ’06, the “right-attach” baseline performs better, at 65.4% [259, Table 1] (an important
difference between 2006 and 7 CoNLL data has to do with segmentation of morphologically-rich languages).
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sentences without internal but with final punctuation — averaged 33.6%.

10.8.2 Monolingual POS-Identified Inducers

The second class of techniques assumes knowledge about identities of POS tags [228], i.e.,

which word tokens are verbs, which ones are nouns, etc. Such grammar inducers generally

do better than the first kind — e.g., by encouraging verbocentricity [119] — though even

here DBMs’ results appear to be competitive. In fact, perhaps surprisingly, only in 5 of

19 languages a “POS-identified” system performed better than all of the “POS-agnostic”

ones (see Table 10.8).

10.8.3 Multilingual Semi-Supervised Parsers

The final broad class of related algorithms considered here extends beyond monolingual

data and uses both identities of POS-tags and/or parallel bitexts to transfer (supervised)

delexicalized parsers across languages. Parser projection is by far the most successful

approach to date (and it too may stand to gain from this chapter’s modeling improvements).

Of the 10 languages for which results could be found in the literature, transferred parsers

underperformed the grammar inducers in only one case: on English (see Table 10.8). The

unsupervised system that performed better used a special “weighted” initializer (Ch. 4)

that worked well for English (but less so for many other languages). DBMs may be able

to improve initialization. For example, modeling of incomplete sentences could help in

incremental initialization strategies likebaby steps(Ch. 3), which are likely sensitive to the

proverbial “bum steer” from unrepresentative short fragments,paceTu and Honavar [323].

10.8.4 Miscellaneous Systems on Short Sentences

Several recent systems [64, 297, 228, 117, 25,inter alia] are absent from Table 10.8 because

they do not report performance for all sentence lengths. To facilitate comparison with this

body of important previous work, final accuracies for the “up-to-ten words” task were also

tabulated, under heading@10: 51.9%, on average.
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10.9 Conclusion

Although a dependency parse for a sentence can be mapped to a constituency parse [337],

the probabilistic models generating them use different conditioning: dependency grammars

focus on the relationship between arguments and heads, constituency grammars on the co-

herence of chunks covered by non-terminals. Since redundant views of data can make

learning easier [32], integrating aspects of both constituency and dependency ought to be

able to help grammar induction. This chapter showed that this insight is correct: depen-

dency grammar inducers can gain from modeling boundary information that is fundamental

to constituency (i.e., phrase-structure) formalisms. DBMs are a step in the direction to-

wards modeling constituent boundaries jointly with head dependencies. Further steps must

involve more tightly coupling the two frameworks, as well asshowing ways to incorporate

both kinds of information in other state-of-the art grammarinduction paradigms.



Chapter 11

Reduced Models

The purpose of this chapter is to explore strategies that capitalize on the advantages of

DBMs, which track the words at the fringes, as well as sentence completeness status,

by feeding them more and simpler implicitly constrained data (text fragments chopped

up at punctuation boundaries), as well as modeling simplifications that are well suited to

bootstrapping from such artificial input snippets. Supporting peer-reviewed publication is

Bootstrapping Dependency Grammar Inducers from Incomplete Sentence Fragments via

Austere Modelsin ICGI 2012 [305].

11.1 Introduction

“Starting small” strategies [95] that gradually increase complexities of training models [178,

40, 107, 119] and/or input data [37, 22, 175, 323] have long been known to aid various as-

pects of language learning. In dependency grammar induction, pre-training on sentences

up to length 15 before moving on to full data can be particularly effective (Chs. 4, 6, 7, 9).

Focusing on short inputs first yields many benefits: faster training, better chances of guess-

ing larger fractions of correct parse trees, and a preference for more local structures, to

name a few. But there are also drawbacks: notably, unwanted biases, since many short

sentences are not representative, and data sparsity, sincemost typical complete sentences

can be quite long.

This chapter proposes starting with short inter-punctuation fragments of sentences,
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rather than with small whole inputs exclusively. Splittingtext on punctuation allows more

and simpler word sequences to be incorporated earlier in training, alleviating data sparsity

and complexity concerns. Many of the resulting fragments will be phrases and clauses (see

Ch. 7), since punctuation correlates with constituent boundaries [253, 254], and may not

fully exhibit sentence structure. Nevertheless, these andother unrepresentative short inputs

can be accommodated using dependency-and-boundary models(DBMs), which distinguish

complete sentences from incomplete fragments (Ch. 10).

DBMs consist of overlapping grammars that share all information about head-dependent

interactions, while modeling sentence root propensities and head word fertilities separately,

for different types of input. Consequently, they can glean generalizable insights about local

substructures from incomplete fragments without allowingtheir unrepresentative lengths

and root word distributions to corrupt grammars of completesentences. In addition, chop-

ping up data plays into other strengths of DBMs — which learn from phrase boundaries,

such as the first and last words of sentences — by increasing the number of visible edges.

11.2 Methodology

All of the experiments in this chapter make use of DBMs, whichare head-outward [7]

class-based models, to generate projective dependency parse trees for WSJ. They begin by

choosing a class for the root word (cr). Remainders of parse structures, if any, are pro-

duced recursively. Each node spawns off ever more distant left dependents by (i) deciding

whether to have more children, conditioned on direction (left), the class of the (leftmost)

fringe word in the partial parse (initially, itself), and other parameters (such as adjacency of

the would-be child); then (ii) choosing its child’s category, based on direction, the head’s

own class, etc. Right dependents are generated analogously, but using separate factors.

Unlike traditional head-outward models, DBMs condition their generative process on more

observable state: left and right end words of phrases being constructed. Since left and right

child sequences are still generated independently, DBM grammars are split-head.

DBM-2 maintains two related grammars: one for complete sentences (comp = T), ap-

proximated by presence of final punctuation, and another forincomplete fragments. These

grammars communicate through shared estimates of word attachment parameters, making
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Stage I Stage II DDA TA
Baseline (§11.2) DBM-2 constrained DBM-3 59.7 3.4

Experiment #1 (§11.3) split DBM-2 constrained DBM-3 60.2 3.5
Experiment #2 (§11.4) split DBM-i constrained DBM-3 60.5 4.9
Experiment #3 (§11.5) split DBM-0 constrained DBM-3 61.2 5.0

Unsupervised Tags (Ch. 9) constrained DMV constrained L-DMV 59.1 —

Table 11.1: Directed dependency and exact tree accuracies (DDA / TA) for the baseline,
experiments with split data, and previous state-of-the-art on Section 23 of WSJ.

it possible to learn from mixtures of input types without polluting root and stopping fac-

tors. DBM-3 conditions attachments on additional context,distinguishing arcs that cross

punctuation boundaries (cross = T) from lower-level dependencies. Only heads of frag-

ments are allowed to attach other fragments as part of (loose) constrained Viterbi EM; in

inference, entire fragments could be attached by arbitraryexternal words (sprawl).

All missing families of factors (e.g., those of punctuation-crossing arcs) are initialized

as uniform multinomials. Instead of gold parts-of-speech,context-sensitive unsupervised

tags are now used, obtained by relaxing a hard clustering produced by Clark’s [62] algo-

rithm using an HMM [123]. As in the original set-up without gold tags (Ch. 9), training is

split into two stages of Viterbi EM: first on shorter inputs (15 or fewer tokens), then on most

sentences (up to length 45). The baseline system learns DBM-2 in Stage I and DBM-3 (with

punctuation-induced constraints) in Stage II, starting from uniform punctuation-crossing

attachment probabilities. Smoothing and termination of both stages are as in Stage I of

the original system. This strong baseline achieves 59.7% directed dependency accuracy —

somewhat higher than the previous state-of-the-art result(59.1%, obtained with the DMV

— see also Table 11.1). All experiments make changes to StageI’s training only, initialized

from the same exact trees as in the baselines and affecting Stage II only via its initial trees.
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11.3 Experiment #1 (DBM-2):

Learning from Fragmented Data

Punctuation can be viewed as implicit partial bracketing constraints [245]: assuming that

some (head) word from each inter-punctuation fragment derives the entire fragment is a

useful approximation in the unsupervised setting (Ch. 7). With this restriction, splitting

text at punctuation is equivalent to learning partial parseforests — partial because longer

fragments are left unparsed, and forests because even the parsed fragments are left uncon-

nected [224]. Grammar inducers are allowed to focus on modeling lower-level substruc-

tures first,1 before forcing them to learn how these pieces may fit together. Deferring de-

cisions associated with potentially long-distance inter-fragment relations and dependency

arcs from longer fragments to a later training stage is thus avariation on the “easy-first”

strategy [124], which is a fast and powerful heuristic from the supervised dependency pars-

ing setting.

DBM-2 will now be bootstrapped using snippets of text obtained by slicing up all in-

put sentences at punctuation. Splitting data increased thenumber of training tokens from

163,715 to 709,215 (and effective short training inputs from 15,922 to 34,856). Ordi-

narily, tree generation would be conditioned on an exogenous sentence-completeness sta-

tus (comp), using presence of sentence-final punctuation as a binary proxy. This chapter

refines this notion to account for new kinds of fragments: (i)for the purposes of modeling

roots, only unsplit sentences could remain complete; as forstopping decisions, (ii) leftmost

fragments (prefixes of complete original sentences) are left-complete; and, analogously,

(iii) rightmost fragments (suffixes) retain their status vis-à-vis right stopping decisions (see

Figure 11.1). With this set-up, performance improved from 59.7 to 60.2% (from 3.4 to

3.5% for exact trees — see Table 11.1).

Next, let’s make better use of the additional fragmented training data.

1About which thelooseandsprawlpunctuation-induced constraints agree (Ch. 7).
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Odds and Ends
(a) An incomplete fragment.

“It happens.”
(b) A complete sentence that cannot be split on punctuation.

Bach’s “Air” followed.
(c) A complete sentence that can be split into three fragments.

Figure 11.1: Three types of input: (a) fragments lacking sentence-final punctuation are
always considered incomplete; (b) sentences with trailingbut no internal punctuation are
considered complete though unsplittable; and (c) text thatcan be split on punctuation yields
several smaller incomplete fragments, e.g.,Bach’s, Air andfollowed. In modeling stopping
decisions,Bach’sis still considered left-complete — andfollowedright-complete — since
the original input sentence was complete.

11.4 Experiment #2 (DBM-i):

Learning with a Coarse Model

In modeling head word fertilities, DBMs distinguish between the adjacent case (adj = T,

deciding whether or not to have any children in a given direction, dir ∈ {L, R}) and non-

adjacent cases (adj = F, whether to cease spawning additional daughters — seePSTOP

in Table 11.2). This level of detail can be wasteful for shortfragments, however, since

non-adjacency will be exceedingly rare there: most words will not have many children.

Therefore, a model can be reduced by eliding adjacency. On the down side, this leads

to some loss of expressive power; but on the up side, pooled information about phrase

edges could flow more easily inwards from input boundaries, since it will not be quite so

needlessly subcategorized.

DBM-i is implemented by conditioning all stopping decisions onlyon the direction in

which a head word is growing, the input’s completeness status in that direction and the

identity of the head’s farthest descendant on that side (thehead word itself, in the adjacent

case — see Tables 11.2 and 11.7). With this smaller initial model, directed dependency

accuracy on the test set improved only slightly, from 60.2 to60.5%; however, performance
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Model PATTACH (root-head) PATTACH (head-dependent) PSTOP (adjacent/not)
DBM-3 (Ch. 10) (⋄, L, cr, comproot) (ch, dir, cd, cross) (compdir, ce, dir, adj)
DBM-2 (§11.3, Ch. 10) (⋄, L, cr, comproot) (ch, dir, cd) (compdir, ce, dir, adj)
DBM-i (§11.4, 11.7) (⋄, L, cr, comproot) (ch, dir, cd) (compdir, ce, dir)
DBM-0 (§11.5, 11.7) (⋄, L, cr) iff comproot (ch, dir, cd) (compdir, ce, dir)

Table 11.2: Feature-sets parameterizing dependency-and-boundary models three, two,i
and zero: ifcomp is false, then so arecomproot and both ofcompdir; otherwise,comproot
is true for unsplit inputs,compdir for prefixes (ifdir = L) and suffixes (whendir = R).

at the granularities of whole trees increased dramatically, from 3.5 to 4.9% (see Table 11.1).

11.5 Experiment #3 (DBM-0):

Learning with an Ablated Model

DBM-i maintains separate root distributions for complete and incomplete sentences (see

PATTACH for ⋄ in Table 11.2), which can isolate verb and modal types heading typical sen-

tences from the various noun types deriving captions, headlines, titles and other fragments

that tend to be common in news-style data. Heads of inter-punctuation fragments are less

homogeneous than actual sentence roots, however. Therefore, the learning task can be

simplified by approximating what would be a high-entropy distribution with a uniform

multinomial, which is equivalent to updating DBM-i via a “partial” EM variant [229].

DBM-0 is implemented by modifying DBM-i to hardwire the root probabilities as one

over the number of word classes (1/200, in this case), for allincomplete inputs. With

this more compact, asymmetric model, directed dependency accuracy improved substan-

tially, from 60.5 to 61.2% (though only slightly for exact trees, from 4.9 to 5.0% — see

Table 11.1).

11.6 Conclusion

This chapter presented an effective divide-and-conquer strategy for bootstrapping gram-

mar inducers. Its procedure is simple and efficient, achieving state-of-the-art results on

a standard English dependency grammar induction task by simultaneously scaffolding on
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both model and data complexity, using a greatly simplified DBM with inter-punctuation

fragments of sentences. Future work could explore inducingstructure from sentence pre-

fixes and suffixes — or even bootstrapping from intermediaten-grams, perhaps via novel

parsing models that may be better equipped for handling distituent fragments.

11.7 Appendix on Partial DBMs

Since dependency structures are trees, few heads get to spawn multiple dependents on the

same side. High fertilities are especially rare in short fragments, inviting economical mod-

els whose stopping parameters can be lumped together (because in adjacent cases heads

and fringe words coincide:adj = T → h = e, hencech = ce). Eliminating inessential

components, such as the likely-heterogeneous root factorsof incomplete inputs, can also

yield benefits.

Consider the sentencea© z©. It admits two structures:
y

a© z© and
x

a© z©. In theory,

neither should be preferred. In practice, if the first parse occurs100p% of the time, a multi-

component model could re-estimate total probability aspn+(1−p)n, wheren may exceed

its number of independent components. Only root and adjacent stopping factors are non-

deterministic here:PROOT( a©) = PSTOP( z©, L) = p andPROOT( z©) = PSTOP( a©, R) = 1 − p;

attachments are fixed (a© can only attachz© and vice-versa). Tree probabilities are thus

cubes (n = 3): a root and two stopping factors (one for each word, on different sides),

P( a© z©) = P(
y

a© z©) + P(
x

a© z©)

=

p
︷ ︸︸ ︷

PROOT( a©)PSTOP( a©, L)
︸ ︷︷ ︸

1

p
︷ ︸︸ ︷

(1− PSTOP( a©, R))PATTACH( a©, R, z©)
︸ ︷︷ ︸

1

p
︷ ︸︸ ︷

PSTOP( z©, L)PSTOP( z©, R)
︸ ︷︷ ︸

1

+

1−p
︷ ︸︸ ︷

PROOT( z©)PSTOP( z©, R)
︸ ︷︷ ︸

1

1−p
︷ ︸︸ ︷

(1− PSTOP( z©, L))PATTACH( z©, L, a©)
︸ ︷︷ ︸

1

1−p
︷ ︸︸ ︷

PSTOP( a©, R)PSTOP( a©, L)
︸ ︷︷ ︸

1

= p3 + (1− p)3.

For p ∈ [0, 1] andn ∈ Z
+, pn + (1 − p)n ≤ 1, with strict inequality ifp /∈ {0, 1} and
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n > 1. Clearly, asn grows above one, optimizers will more strongly prefer extreme so-

lutionsp ∈ {0, 1}, despite lacking evidence in the data. Since the exponentn is related

to numbers of input words and independent modeling components, a recipe of short inputs

— combined with simpler, partial models — could help alleviate some of this pressure to-

wards arbitrary determinism.



Part IV

Complete System
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Chapter 12

An Integrated Training Strategy

The purpose of this chapter is to integrate the insights fromall previous parts — i.e.,

(i) incremental learning and multiple objectives, (ii) punctuation-induced constraints, and

(iii) staged training with scaffolding on both input data and dependency-and-boundary

model complexity — into a unified grammar induction pipeline. Supporting peer-reviewed

publication isBreaking Out of Local Optima with Count Transforms and ModelRecombi-

nation: A Study in Grammar Inductionin EMNLP 2013 [308], which won the “best paper”

award.

12.1 Introduction

Statistical methods for grammar induction often boil down to solving non-convex opti-

mization problems. Early work attempted to locally maximize the likelihood of a corpus,

using EM to estimate probabilities of dependency arcs between word bigrams [244, 243].

Paskin’s parsing model has since been extended to make unsupervised learning more fea-

sible [172, 133]. But even the latest techniques (Chs. 10–11) can be quite error-prone and

sensitive to initialization, because of approximate, local search.

In theory, global optima can be found by enumerating all parse forests that derive a cor-

pus, though this is usually prohibitively expensive in practice. A preferable brute force ap-

proach is sampling, as in Markov-chain Monte Carlo (MCMC) and random restarts [144],

which hit exact solutions eventually. Restarts can be giantsteps in a parameter space that

161
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undo all previous work. At the other extreme, MCMC may cling to a neighborhood, reject-

ing most proposed moves that would escape a local attractor.Sampling methods thus take

unbounded time to solve a problem (and can’t certify optimality) but are useful for finding

approximate solutions to grammar induction [68, 202, 227].

This chapter proposes an alternative (deterministic) search heuristic that combines lo-

cal optimization via EM withnon-random restarts. Its new starting places are informed by

previously found solutions, unlike conventional restarts, but may not resemble their prede-

cessors, unlike typical MCMC moves. One good way to construct such steps in a parameter

space is by forgetting some aspects of a learned model. Another is by merging promising

solutions, since even simple interpolation [150] of local optima may be superior to all of the

originals. Informed restarts can make it possible to explore a combinatorial search space

more rapidly and thoroughly than with traditional methods alone.

12.2 Abstract Operators

Let C be a collection of counts — the sufficient statistics from which a candidate solution

to an optimization problem could be computed, e.g., by smoothing and normalizing to

yield probabilities. The counts may be fractional and solutions could take the form of

multinomial distributions. A local optimizerL will convert C into C∗ = LD(C) — an

updated collection of counts, resulting in a probabilisticmodel that is no less (and hopefully

more) consistent with a data setD than the originalC:

(1)
LDC C∗

UnlessC∗ is a global optimum, it should be possible to make further improvements. But if

L is idempotent (and ran to convergence) thenL(L(C)) = L(C). Given onlyC andLD,

the single-node optimization network above would be the minimal search pattern worth

considering. However, if another optimizerL′ — or a fresh starting pointC ′ — were

available, then more complicated networks could become useful.
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12.2.1 Transforms (Unary)

New starts could be chosen by perturbing an existing solution, as in MCMC, or indepen-

dently of previous results, as in random restarts. The chapter’s focus is on intermediate

changes toC, without injecting randomness. All of its transforms involve selective forget-

ting or filtering. For example, if the probabilistic model that is being estimated decomposes

into independent constituents (e.g., several multinomials) then a subset of them can be re-

set to uniform distributions, by discarding associated counts fromC. In text classification,

this could correspond to eliminating frequent or rare tokens from bags-of-words. Circular

shapes will be used to represent such model ablation operators:

(2)C

An orthogonal approach might separate out various counts inC by their provenance. For

instance, ifD consisted of several heterogeneous data sources, then the counts from some

of them could be ignored: a classifier might be estimated fromjust news text. Squares will

be used to represent data-set filtering:

(3)C

Finally, if C represents a mixture of possible interpretations overD — e.g., because it

captures the output of a “soft” EM algorithm — contributionsfrom less likely, noisier

completions could also be suppressed (and their weights redistributed to the more likely

ones), as in “hard” EM. Diamonds will represent plain (single) steps of Viterbi training:

(4)C

12.2.2 Joins (Binary)

Starting from different initializers, sayC1 andC2, it may be possible forL to arrive at

distinct local optima,C∗1 6= C∗2 . The better of the two solutions, according to likelihoodLD
of D, could then be selected — as is standard practice when sampling.

The joining techniques presented in this chapter could do better than eitherC∗1 orC∗2 , by

entertaining also a third possibility, which combines the two candidates. A mixture model

can be constructed by adding together all counts fromC∗1 andC∗2 into C+ = C∗1 + C∗2 .
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Original initializersC1, C2 will, this way, have equal pull on the merged model,1 regardless

of nominal size (becauseC∗1 , C
∗
2 will have converged using a shared training set,D). The

best ofC∗1 , C∗2 andC∗+ = L(C+) can then be returned. This approach may uncover more

(and never returns less) likely solutions than choosing amongC∗1 , C
∗
2 alone:

(5)

LD

LD

LD

+
arg

M
A

X
L
D

C1

C∗1 = L(C1)

C2
C∗2 = L(C2)

C∗1 + C∗2 = C+

A short-hand notation will be used to represent the combinernetwork diagrammed above,

less clutter:

(6)
LDC2

C1

12.3 The Task and Methodology

The transform and join paradigms will now be applied to grammar induction, since it is

an important problem of computational linguistics that involves notoriously difficult objec-

tives [245, 82, 119,inter alia]. The goal is to induce grammars capable of parsing unseen

text. Input, in both training and testing, is a sequence of tokens labeled as: (i) a lexical item

and its category,(w, cw); (ii) a punctuation mark; or (iii) a sentence boundary. Output is

unlabeled dependency trees.

12.3.1 Models and Data

All parse structures will be constrained to be projective, via DBMs (Chs. 10–11): DBMs

0 through 3 are head-outward generative parsing models [7] that distinguish complete sen-

tences from incomplete fragments in a corpusD: Dcomp comprises inputs ending with

1If desired, a scaling factor could be used to biasC+ towards eitherC∗i , e.g., based on a likelihood ratio.
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punctuation;Dfrag = D − Dcomp is everything else. The “complete” subset is further par-

titioned into simple sentences,Dsimp ⊆ Dcomp, with no internal punctuation, and others,

which may be complex. As an example, consider the beginning of an article from (simple)

Wikipedia: (i) Linguistics (ii) Linguistics (sometimes called philology) is the science that

studies language.(iii) Scientists who study language are called linguists.Since the title

does not end with punctuation, it would be relegated toDfrag. But two complete sentences

would be inDcomp, with the last also filed underDsimp, as it has only a trailing punctuation

mark. Previous chapters suggested two curriculum learningstrategies: (i) one in which

induction begins with clean, simple data,Dsimp, and a basic model, DBM-1 (Ch. 10);

and (ii) an alternative bootstrapping approach: starting with still more, simpler data —

namely, short inter-punctuation fragments up to lengthl = 15, Dl
split ⊇ Dl

simp — and

a bare-bones model, DBM-0 (Ch. 11). In this example,Dsplit would hold five text snip-

pets: (i)Linguistics; (ii) Linguistics; (iii) sometimes called philology; (iv) is the science

that studies language; and (v)Scientists who study language are called linguists.Only the

last piece of text would still be considered complete, isolating its contribution to sentence

root and boundary word distributions from those of incomplete fragments. The sparser

model, DBM-0, assumes a uniform distribution for roots of incomplete inputs and reduces

conditioning contexts of stopping probabilities, which works well with split data. Both

DBM-0 and the full DBM,2 will be exploited, drawing also on split, simple and raw views

of input text. All experiments prior to final multilingual evaluation will use WSJ as the

underlying tokenized and sentence-broken corpusD. Instead of gold parts-of-speech, 200

context-sensitive unsupervised tags (from Ch. 9) will be plugged in for the word categories.

2This chapter will use the short-hand DBM to refer to DBM-3, which is equivalent to DBM-2 ifD has no
internally-punctuatedsentences (i.e.,D = Dsplit), and DBM-1 if all inputs also have trailing punctuation (i.e.,
D = Dsimp); DBM0 will be the short-hand for DBM-0.
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12.3.2 Smoothing and Lexicalization

All unlexicalized instances of DBMs will be estimated with “add one” (a.k.a. Laplace)

smoothing, using only the word categorycw to represent a token. Fully-lexicalized gram-

mars (L-DBM) are left unsmoothed, and represent each token as both a word and its cate-

gory, i.e., the whole pair(w, cw). To evaluate a lexicalized parsing model, a delexicalized-

and-smoothed instance will always be obtained first.

12.3.3 Optimization and Viterbi Decoding

This chapter uses “early-switching lateen” EM (Ch. 5) to train unlexicalized models, al-

ternating between the objectives of ordinary (soft) and hard EM algorithms, until neither

can improve its own objective without harming the other’s. This approach does not require

tuning termination thresholds, allowing optimizers to runto numerical convergence if nec-

essary, and will handle only the shorter inputs (l ≤ 15), starting with soft EM (L = SL,

for “soft lateen”). Lexicalized models will cover full data(l ≤ 45) and employ “early-

stopping lateen” EM, re-estimating via hard EM until soft EM’s objective suffers. Alternat-

ing EMs would be expensive here, since updates take (at least) O(l3) time, and hard EM’s

objective (L = H) is the one better suited to long inputs (see Ch. 4).

The decoders will always force an inter-punctuation fragment to derive itself (as in

Ch. 7). In evaluation, such (loose) constraints may help attachsometimesandphilologyto

called (and the science...to is). In training, stronger (strict) constraints also disallow at-

tachment of fragments’ heads by non-heads, to connectLinguistics, calledandis (assuming

each piece got parsed correctly), though constraints will not impact training with shorter

inputs, since there is no internal punctuation inDsplit orDsimp.

12.4 Concrete Operators

Let’s now instantiate the operators sketched out in§12.2 specifically for the grammar in-

duction task. Throughout, single steps of Viterbi trainingwill be repeated employed to

transfer information between subnetworks in a model-independent way: when a module’s
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output is a set of (Viterbi) parse trees, it necessarily contains sufficient information required

to estimate an arbitrarily-factored model down-stream.3

12.4.1 Transform #1: A Simple Filter

Given a model that was estimated from (and therefore parses)a data setD, the simple

filter (F ) attempts to extract a cleaner model, based on the simpler complete sentences of

Dsimp. It is implemented as a single (unlexicalized) step of Viterbi training:

(7)C F

The idea here is to focus on sentences that are not too complicated yet grammatical. This

punctuation-sensitive heuristic may steer a learner towards easy but representative training

text and has been shown to aid grammar induction (see Ch. 10).

12.4.2 Transform #2: A Symmetrizer

The symmetrizer (S) reduces input models to sets of word association scores. Itblurs

all details of induced parses in a data setD, except the number of times each (ordered)

word pair participates in a dependency relation. Symmetrization is also implemented as a

single unlexicalized Viterbi training step, but now with proposed parse trees’ scores, for a

sentence inD, proportional to a product over non-root dependency arcs ofone plus how

often the left and right tokens (are expected to) appear connected:

(8)C S

The idea behind the symmetrizer is to glean information fromskeleton parses. Grammar in-

ducers can sometimes make good progress in resolving undirected parse structures despite

being wrong about the polarities of most arcs (see Figure 3.2b: Uninformed). Symmetriza-

tion offers an extra chance to make heads or tails of syntactic relations, after learning which

words tend to go together.

At each instance where a worda© attachesz© on (say) the right, this implementation

attributes half its weight to the intended construction,
y

a© z©, reserving the other half for the

3Klein and Manning [172,§3] advocated a related approach: initializing EM training with an M-step.
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symmetric structure,z© attaching a© to its left:
x

a© z©. For the desired effect, these aggre-

gated counts are left unnormalized, while all other counts (of word fertilities and sentence

roots) get discarded. To see why word attachment scores aren’t turned into probabilities,

consider sentencesa© z© and c© z©. The fact thatz© co-occurs witha© introduces an asym-

metry into z©’s relation with c©: P( z© | c©) = 1 differs fromP( c© | z©) = 1/2. Normalizing

might force the interpretation
y

c© z© (and also
y

a© z©), not because there is evidence in the

data, but as a side-effect of a model’s head-driven nature (i.e., factored with dependents

conditioned on heads). Always branching right would be a mistake, however, for example

if z© is a noun, since either ofa© or c© could be a determiner, with the other a verb.

12.4.3 Join: A Combiner

The combiner must admit arbitrary inputs, including modelsnot estimated fromD, unlike

the transforms. Consequently, as a preliminary step, each inputCi is converted into parse

trees ofD, with countsC ′i, via Viterbi-decoding with a smoothed, unlexicalized version

of the corresponding incoming model. Actual combination isthen performed in a more

precise (unsmoothed) fashion:C∗i are the (lexicalized) solutions starting fromC ′i; andC∗+
is initialized with their sum,

∑

i C
∗
i . Counts of the lexicalized model with lowest cross-

entropy onD become the output:4

(9)
LDC2

C1

12.5 Basic Networks

Let’s now propose a non-trivial subnetwork for grammar induction, based on the transform

and join operators, which will be reused in larger networks.

4In this chapter’s diagrams, lexicalized modules are shadedblack.
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12.5.1 Fork/Join (FJ)

Given a model that parses a base data setD0, the fork/join subnetwork will output an

adaptation of that model forD. It could facilitate a grammar induction process, e.g., by

advancing it from smaller to larger — or possibly more complex — data sets.

First, two variations of the incoming model, based onD0, are forked off: (i) a filtered

view, which focuses on cleaner, simpler data (transform #1); and (ii) a symmetrized view

that backs off to word associations (transform #2). Next is grammar induction overD.

A full DBM instance is optimized starting from the first fork,and a reduced DBM0 is

bootstrapped from the second. Finally, the two new induced sets of parse trees, forD, are

merged (lexicalized join):

(10)

HL·DBM
D

SLDBM
D

SLDBM0

D

C

F

S

D0

C1

C2

C′1

C′2

The idea here is to prepare for two scenarios: an incoming grammar that is either good

or bad forD. If the model is good, DBM should be able to hang on to it and make improve-

ments. But if it is bad, DBM could get stuck fitting noise, whereas DBM0 might be more

likely to ramp up to a good alternative. Since it is impossible to know ahead of time which

is the true case, both optimization paths are pursued simultaneously, allowing a combiner

to make the decision, later.

Note that the forks start (and end) optimizing with soft EM. This is because soft EM

integrates previously unseen tokens into new grammars better than hard EM, as evidenced

by the failed attempt to reproduce the “baby steps” strategywith Viterbi training (see Fig-

ure 4.2b). A combiner then executes hard EM, and since outputs of transforms are trees,

the end-to-end process is a chain of lateen alternations that starts and ends with hard EM.

A “grammar inductor” will be used to represent subnetworks that transition fromDl
split

to Dl+1
split, by taking transformed parse trees of inter-punctuation fragments up to length

l (base data set,D0) to initialize training over fragments up to lengthl + 1:
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(11)C
l+1

The FJ network instantiates a grammar inductor withl = 14, thus training on inter-

punctuation fragments up to length 15, as in previous work, starting from an empty set

of counts,C = ∅. Smoothing causes initial parse trees to be chosen uniformly at random,

as also suggested by Cohen and Smith [67]:

(12)∅
15

12.5.2 Iterated Fork/Join (IFJ)

The second basic network daisy-chains grammar inductors, starting from the single-word

inter-punctuation fragments inD1
split, then retraining onD2

split, and so forth, until finally

stopping atD15
split, as before:

(13)
1 2 14 15

This system is diagrammed as not taking an input, since the first inductor’s output is fully

determined by unique parse trees of single-token strings. This iterative approach to opti-

mization is akin to deterministic annealing [268], and is patterned after “baby steps” (Ch. 3).

Unlike the basic FJ, where symmetrization was a no-op (sincethere were no counts

in C = ∅), IFJ makes use of symmetrizers — e.g., in the third inductor, whose input is

based on strings with up to two tokens. Although it should be easy to learn words that

go together from very short fragments, extracting correct polarities of their relations could

be a challenge: to a large extent, outputs of early inductorsmay be artifacts of how the

generative models factor (see§4.2) or how ties are broken in optimization (see Appendix

of Ch. 11). One might therefore expect symmetrization to be crucial in earlier stages but

to weaken any high quality grammars, nearer the end; it will be up to combiners to handle

any such phase transitions correctly (or gracefully).

12.5.3 Grounded Iterated Fork/Join (GIFJ)

So far, basic networks have been either purely iterative (IFJ) or static (FJ). These two

approaches can also be combined, by injecting FJ’s solutions into IFJ’s more dynamic
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stream. The new transition subnetwork will join outputs of grammar inductors that either

(i) continue a previous solution (as in IFJ); or (ii) start over from scratch (“grounding” to

an FJ). The full GIFJ network can then be obtained by unrolling the template below from

l = 14 back to one:

(14)HL·DBM
Dl+1

split∅

Cl Cl+1l+1

l+1

12.6 Performance of Basic Networks

Basic networks’ performance was compared on their final training sets, WSJ15split (see Ta-

ble 12.1, which also tabulates results for a cleaner subset,WSJ15simp). The first network

starts fromC = ∅, helping establish several straw-man baselines. Its emptyinitializer

corresponds to guessing (projective) parse trees uniformly at random, which has 21.4%

accuracy and sentence string cross-entropy of 8.76bpt.

12.6.1 Fork/Join (FJ)

FJ’s symmetrizer yields random parses of WSJ14
split, which initialize training of DBM0. This

baseline (B) lowers cross-entropy to 6.18bpt and scores 57.0%. FJ’s filter starts from parse

trees of WSJ14simp only, and trains up a full DBM. This choice makes a stronger baseline (A),

with 5.89bpt cross-entropy, at 62.2%.

The join operator uses counts from A and B,C1 andC2, to obtain parse trees whose

own countsC ′1 andC ′2 initialize lexicalized training. From eachC ′i, an optimizer arrives

at C∗i . Grammars corresponding to these counts have higher cross-entropies, because of

vastly larger vocabularies, but also better accuracies: 59.2 and 62.3%. Their mixtureC+

is a simple sum of counts inC∗1 andC∗2 : it is not expected to be an improvement but

happens to be a good move, resulting in a grammar with higher accuracy (64.0%), though

not better Viterbi cross-entropy (7.27 falls between 7.08 and 7.30bpt) than both sources.

The combiner’s third alternative, a locally optimalC∗+, is then obtained by re-optimizing

from C+. This solution performs slightly better (64.2%) and will bethe local optimum

returned by FJ’s join operator, because it attains the lowest cross-entropy (7.04bpt).
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WSJ15split WSJ15simp

Instance Label Model hsents htrees DDA hsents htrees DDA TA Description

DBM 6.54 6.75 83.7 6.05 6.21 85.1 42.7 Supervised (MLE of WSJ45)
∅ = C — 8.76 10.46 21.4 8.58 10.52 20.7 3.9 Random Projective Parses

SL(S(C)) = C2 DBM0 6.18 6.39 57.0 5.90 6.11 57.5 10.4 B
A

}

Unlexicalized
BaselinesSL(F (C)) = C1 DBM 5.89 5.99 62.2 5.79 5.90 60.9 12.0

H(C′

2) = C∗

2 L-DBM 7.28 7.30 59.2 6.87 6.88 58.6 10.4

Fork/Join















Baseline
Combination

H(C′

1) = C∗

1 L-DBM 7.07 7.08 62.3 6.72 6.73 60.8 12.0
C∗

1 + C∗

2 = C+ L-DBM 7.20 7.27 64.0 6.82 6.88 62.5 12.3
H(C+) = C∗

+ L-DBM 7.02 7.04 64.2 6.64 6.65 62.7 12.8
L-DBM 6.95 6.96 70.5 6.55 6.56 68.2 14.9 Iterated Fork/Join (IFJ)
L-DBM 6.91 6.92 71.4 6.52 6.52 69.2 15.6 Grounded Iterated Fork/Join
L-DBM 6.83 6.83 72.3 6.41 6.41 70.2 17.9 Grammar Transformer (GT)
L-DBM 6.92 6.93 71.9 6.53 6.53 69.8 16.7 IFJ

GT

}

w/Iterated
CombinersL-DBM 6.83 6.83 72.9 6.41 6.41 70.6 18.0

Table 12.1: Sentence string and parse tree cross-entropies(in bpt), and accuracies (DDA),
on inter-punctuation fragments up to length 15 (WSJ15

split) and its subset of simple, complete
sentences (WSJ15simp, with exact tree accuracies — TA).

12.6.2 Iterated Fork/Join (IFJ)

IFJ’s iterative approach results in an improvement: 70.5% accuracy and 6.96bpt cross-

entropy. To test how much of this performance could be obtained by a simpler iterated net-

work, several ablated systems that don’t fork or join, i.e.,the classic “baby steps” schema

(chaining together 15 optimizers), were tried, using both DBM and DBM0, with and with-

out a transform in-between. However, all such “linear” networks scored well below 50%.

These results suggest that an ability to branch out into different promising regions of a so-

lution space, and to merge solutions of varying quality intobetter models, are important

properties of FJ subnetworks.

12.6.3 Grounded Iterated Fork/Join (GIFJ)

Grounding improves GIFJ’s performance further, to 71.4% accuracy and 6.92bpt cross-

entropy. This result shows that fresh perspectives from optimizers that start over can make

search efforts more fruitful.
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12.7 Enhanced Subnetworks

Modularity and abstraction allow for compact representations of complex systems.5 An-

other key benefit is that individual components can be understood and improved in isola-

tion, as will be demonstrated next.

12.7.1 An Iterative Combiner (IC)

The basic combiner introduced a third option,C∗+, into a pool of candidate solutions,

{C∗1 , C∗2}. This new entry may not be a simple mixture of the originals, because of non-

linear effects from applyingL to C∗1 + C∗2 , but could most likely still be improved. Rather

than stop atC∗+, when it is better than both originals, one could recombine it with a next

best solution, continuing until no further improvement is made. Iterating can’t harm a given

combiner’s cross-entropy (e.g., it lowers FJ’s from 7.04 to7.00bpt), and its advantages

can be realized more fully in the larger networks (albeit without any end-to-end guaran-

tees): upgrading all 15 combiners in IFJ would improve performance (slightly) more than

grounding (71.5vs.71.4%), and lower cross-entropy (from 6.96 to 6.93bpt). Buteven this

approach is still a bit timid.

A still more greedy way is to proceed so long asC∗+ is not worse thanbothpredecessors.

Let’s now state this chapter’s most general iterative combiner (IC) algorithm: Start with a

solution poolp = {C∗i }ni=1. Next, constructp′ by addingC∗+ = L(
∑n

i=1C
∗
i ) to p and

removing the worst ofn + 1 candidates in the new set. Finally, ifp = p′, return the best

of the solutions inp; otherwise, repeat fromp := p′. At n = 2, one could think of taking

L(C∗1 + C∗2) as performing a kind of bisection search in some (strange) space. With these

new and improved combiners, the IFJ network performs better: 71.9% (up from 70.5 — see

Table 12.1), lowering cross-entropy (down from 6.96 to 6.93bpt). A distinguished notation

will be used for the ICs:

(15)
*

C2

C1

5For instance, the grounded network involves more than one hundred lateen optimizations, not counting
individual Viterbi steps:14 · ((2 · 5) + 3) = 182.
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12.7.2 A Grammar Transformer (GT)

The levels of this chapter’s systems’ performance at grammar induction thus far suggest

that the space of possible networks (say, with up tok components) may itself be worth

exploring more thoroughly. This exercise will be left, mostly, to future work, with the

exception of two relatively straight-forward extensions for grounded systems.

The static bootstrapping mechanism (“ground” of GIFJ) can be improved by pretraining

with simple sentences first — as in the curriculum for learning DBM-1 (Ch. 10), but now

with a variable length cut-offl (much lower than the original 45) — instead of starting from

∅ directly:

(16)SDBM
Dl

simp
∅

l+1







l

The output of this subnetwork can then be refined, by reconciling it with a previous dynamic

solution. A mini-join of a new ground’s counts withCl will be performed, using the filter

transform (single steps oflexicalizedViterbi training on clean, simple data), ahead of the

main join (over more training data):

(17)HL·DBM
Dl+1

split
Cl Cl+1

l+1

F
l

This template can also be unrolled, as before, to obtain the last network (GT), which

achieves 72.9% accuracy and 6.83bpt cross-entropy (slightly less accurate with basic com-

biners, at 72.3% — see Table 12.1).

12.8 Full Training and System Combination

All systems described so far stop training atD15
split. A two-stage adaptor network will be

used to transition their grammars to a full data set,D45:

(18)HL·DBM
D45

split
HL·DBM
D45C
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System DDA(@10)

Concavity and Initialization [119] 53.1(64.3)

Posterior Sparsity [117] 53.3(64.3)

Robust CCGs [30] 53.3(71.5)

Tree Substitution Grammars [33] 55.7(67.7)

Unambiguity Regularization [324] 57.0(71.4)

Punctuation (Ch. 7) 58.4(71.4)

Unsupervised Tags (Ch. 9) 59.1(71.4)

#3 Bootstrapping (Ch. 11) 61.2(71.4)

#2
w/Full Training

{
IFJ
GT

62.7 (70.3)

#1 63.4 (70.3)

#1 + #2 + #3 System Combination CS 64.4 (72.0)

Supervised DBM (also withloosedecoding) 76.3(85.4)

Table 12.2: Directed dependency accuracies (DDA) on Section 23 of WSJ (all sentences
and up to length ten) for recent systems, our full networks (IFJ and GT), and three-way
combination (CS) with the previous state-of-the-art.

The first stage exposes grammar inducers to longer inputs (inter-punctuation fragments

with up to 45 tokens); the second stage, at last, reassemblestext snippets into actual sen-

tences (also up tol = 45).6 After full training, the IFJ and GT systems parse Section 23

of WSJ at 62.7 and 63.4% accuracy, better than the previous state-of-the-art (61.2% — see

Table 12.2). To test the generalized IC algorithm, these three strong grammar induction

pipelines were merged into a combined system (CS). It scoredhighest: 64.4%.

(19)
HL·DBM
D45

(GT) #1
(IFJ) #2

#3
CS

The quality of bracketings corresponding to (non-trivial)spans derived by heads of depen-

dency structures coming out of the combined system is competitive with the state-of-the-art

in unsupervisedconstituentparsing. On the WSJ sentences up to length 40 in Section 23,

CS attains similarF1-measure (54.2vs.54.6, with higher recall) to PRLG [254], which is

6Note that smoothing in the final (unlexicalized) Viterbi step masks the fact that model parts that could not
be properly estimated in the first stage (e.g., probabilities of punctuation-crossing arcs) are being initialized
to uniform multinomials.
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System F1

Binary-Branching Upper Bound 85.7
Left-Branching Baseline 12.0
CCM [171] 33.7
Right-Branching Baseline 40.7
F-CCM [145] 45.1
HMM [254] 46.3
LLCCM [127] 47.6 P R
CCL [283] 52.8 54.6 51.1
PRLG [254] 54.6 60.4 49.8

CS System Combination 54.2 55.6 52.8
Supervised DBM Skyline 59.3 65.7 54.1
Dependency-Based Upper Bound 87.2 100 77.3

Table 12.3: Harmonic mean (F1) of precision (P) and recall (R) for unlabeled constituent
bracketings on Section 23 of WSJ (sentences up to length 40) for the combined sys-
tem (CS), recent state-of-the-art and the baselines.

the strongest system of which I am aware (see Table 12.3).7

12.9 Multilingual Evaluation

The final check is to see how this chapter’s algorithms generalize outside English WSJ, by

testing in 23 more set-ups: all 2006/7 CoNLL test sets. Most recent work evaluates against

this multilingual data, though still with the unrealistic assumption of POS tags. But since

inducing high quality word clusters for many languages would be beyond the scope of this

chapter, here too gold tags are plugged in for word categories (instead of unsupervised tags,

as in§12.3–12.8). A comparison will be made to the two strongest systems available during

the writing of this chapter:8 MZ [203] and SAJ (Ch. 10), which report average accuracies

7These numbers differ from Ponvert et al.’s [254, Table 6] forthe full Section 23 because we restricted
theireval-ps.py script to a maximum length of 40 words, in our evaluation, to match other previous work:
Golland et al.’s [127, Figure 1] for CCM and LLCCM; Huang et al.’s [145, Table 2] for the rest.

8Another high-scoring system [201] of possible interest to the reader recently came out, exploiting prior
knowledge of stopping probabilities (estimated from largePOS-tagged corpora, via reducibility principles).
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Directed Dependency Accuracies (DDA)(@10)

CoNLL Data MZ SAJ IFJ GT CS

Arabic 2006 26.5 10.9 33.3 8.3 9.3 (30.2)

’7 27.9 44.9 26.1 25.6 26.8(45.6)

Basque ’7 26.8 33.3 23.5 24.2 24.4(32.8)

Bulgarian ’7 46.0 65.2 35.8 64.2 63.4(69.1)

Catalan ’7 47.0 62.1 65.0 68.4 68.0 (79.2)

Chinese ’6 — 63.2 56.0 55.8 58.4(60.8)

’7 — 57.0 49.0 48.6 52.5(56.0)

Czech ’6 49.5 55.1 44.5 43.9 44.0(52.3)

’7 48.0 54.2 42.9 24.5 34.3(51.1)

Danish ’6 38.6 22.2 37.8 17.1 21.4(29.8)

Dutch ’6 44.2 46.6 40.8 51.3 48.0 (48.7)

English ’7 49.2 29.6 39.3 57.6 58.2 (75.0)

German ’6 44.8 39.1 34.1 54.5 56.2 (71.2)

Greek ’6 20.2 26.9 23.7 45.0 45.4 (52.2)

Hungarian ’7 51.8 58.2 24.8 52.9 58.3 (67.6)

Italian ’7 43.3 40.7 56.8 31.1 34.9 (44.9)

Japanese ’6 50.8 22.7 32.6 63.7 63.0 (68.9)

Portuguese ’6 50.6 72.4 38.0 72.7 74.5 (81.1)

Slovenian ’6 18.1 35.2 42.1 50.8 50.9 (57.3)

Spanish ’6 51.9 28.2 57.0 61.7 61.4 (73.2)

Swedish ’6 48.2 50.7 46.6 48.6 49.7(62.1)

Turkish ’6 — 34.4 28.0 32.9 29.2(33.2)

’7 15.7 44.8 42.1 41.7 37.9(42.4)

Average: 40.0 42.9 40.0 47.6 48.6 (57.8)

Table 12.4: Blind evaluation on 2006/7 CoNLL test sets (all sentences) for the full net-
works (IFJ and GT), previous state-of-the-art systems of Mareček andŽabokrtský [203],
MZ, and DBMs (from Ch. 10),SAJ, and three-way combination of IFJ, GT andSAJ (CS,
including results up to length ten).

of 40.0 and 42.9% for CoNLL data (see Table 12.4). The new fully-trained IFJ and GT sys-

tems score 40.0 and 47.6%. As before, combining these networks with an implementation

of the best previous state-of-the-art system (SAJ) yields afurther improvement, increasing

final accuracy to 48.6%.
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12.10 Discussion

CoNLL training sets were intended for comparing supervisedsystems, and aren’t all suit-

able for unsupervised learning: 12 languages have under 10,000 sentences (with Arabic,

Basque, Danish, Greek, Italian, Slovenian, Spanish and Turkish particularly small), com-

pared to WSJ’s nearly 50,000. In some treebanks sentences are very short (e.g., Chinese

and Japanese, which appear to have been split on punctuation), and in others extremely

long (e.g., Arabic). Even gold tags aren’t always helpful, as their number is rarely ideal for

grammar induction (e.g., 42vs.200 for English). These factors contribute to high variances

of this chapter’s (and previous) results (see Table 12.4). Nevertheless, looking at the more

stable average accuracies reveals a positive trend, movingfrom a simpler fully-trained sys-

tem (IFJ, 40.0%), to a more complex system (GT, 47.6%), to system combination (CS,

48.6%). Grounding seems to be more important for the CoNLL sets, possibly because of

data sparsity or availability of gold tags.

12.11 Related Work

The surest way to avoid local optima is to craft an objective that doesn’t have them. For

example, Want et al. [331] demonstrated a convex training method for semi-supervised

dependency parsing; Lashkari and Golland [180] introduceda convex reformulation of

likelihood functions for clustering tasks; and Corlett andPenn [73] designed a search algo-

rithm for encoding decipherment problems that guarantees to quickly converge on optimal

solutions. Convexity can be ideal for comparative analyses, by eliminating dependence on

initial conditions. But for many NLP tasks, including grammar induction, the most rele-

vant known objective functions are still riddled with localoptima. Renewed efforts to find

exact solutions [90, 128] may be a good fit for the smaller and simpler, earlier stages of this

chapter’s iterative networks.

Multi-start methods [300] can recover certain global extrema almost surely (i.e., with

probability approaching one). Moreover, random restarts via uniform probability measures

can be optimal, in a worst-case-analysis sense, with parallel processing sometimes leading

to exponential speed-ups [144]. This approach is rarely emphasized in NLP literature. For
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instance, Moore and Quirk [225] demonstrated consistent, substantial gains from random

restarts in statistical machine translation (but also suggested better and faster replacements

— see below); Ravi and Knight [261,§5, Figure 8] found random restarts for EM to be

crucial in parts-of-speech disambiguation. However, other reviews are few and generally

negative [168, 205].9

Iterated local search methods [142, 153,inter alia] escape local basins of attraction by

perturbing candidate solutions, without undoing all previous work. “Large-step” moves can

come from jittering [137], dithering [256, Ch. 2] or smoothing [27]. Non-improving “side-

ways” moves offer substantial help with hard satisfiabilityproblems [286]; and injecting

non-random noise [285], by introducing “uphill” moves via mixtures of random walks and

greedy search strategies, does better than random noise alone or simulated annealing [169].

In NLP, Moore and Quirk’s random walks from previous local optima were faster than uni-

form sampling and also increased BLEU scores; Elsner and Schudy [96] showed that local

search can outperform greedy solutions for document clustering and chat disentanglement

tasks; and Mei et al. [215] incorporated tabu search [120, 121, Ch. 3] into HMM training

for automated speech recognition.

Genetic algorithms are a fusion of what’s best in local search and multi-start meth-

ods [143], exploiting a problem’s structure to combine valid parts of any partial solu-

tions [140, 122]. Evolutionary heuristics proved useful inthe induction of phonotac-

tics [21], text planning [217], factored modeling of morphologically-rich languages [88]

and plot induction for story generation [214]. Multi-objective genetic algorithms [105] can

handle problems with equally important but conflicting criteria [312], using Pareto-optimal

ensembles. They are especially well-suited to language, which evolves under pressures

from competing (e.g., speaker, listener and learner) constraints, and have been used to

model configurations of vowels and tone systems [165].10 This chapter’s transform and

join mechanisms also exhibit some features of genetic search, and make use of competing

objectives: good sets of parse trees must make sense both lexicalized and with word cate-

gories, to rich and impoverished models of grammar, and for both long, complex sentences

and short, simple text fragments.

9A notable recent exception is the application of a million random restarts to decipherment problems [26].
10Following the work on “lateen EM” (Ch. 5), Pareto-optimality has been applied to other multi-metric op-

timization problems that arise in natural language learning, for example statistical machine translation [276].
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This selection of text filters is a specialized case of more general “data perturbation”

techniques — even cycling over randomly chosen mini-batches that partition a data set

helps avoid some local optima [190]. Elidan et al. [94] suggested how example-reweighing

could cause “informed” changes, rather than arbitrary damage, to a hypothesis. Their (ad-

versarial) training scheme guided learning toward improved generalizations, robust against

input fluctuations. Language learning has a rich history of reweighing data via (coop-

erative) “starting small” strategies [95], beginning fromsimpler or more certain cases.

This family of techniques has met with success in semi-supervised named entity classi-

fication [72, 341],11 parts-of-speech induction [61, 62], and language modeling[175, 22],

in addition to unsupervised parsing [44, 301, 68, 323].

12.12 Conclusion

This chapter proposed several simple algorithms for combining grammars and showed their

usefulness in merging the outputs of iterative and static grammar induction systems. Unlike

conventional system combination methods, e.g., in machinetranslation [338], the ones here

do not require incoming models to be of similar quality to make improvements. These

properties of the combiners were exploited to reconcile grammars induced by different

views of data [32]. One such view retains just the simple sentences, making it easier to

recognize root words. Another splits text into many inter-punctuation fragments, helping

learn word associations. The induced dependency trees can themselves also be viewed not

only as directed structures but also as skeleton parses, facilitating the recovery of correct

polarities for unlabeled dependency arcs.

By reusing templates, as in dynamic Bayesian network (DBN) frameworks [173,§6.2.2],

it became possible to specify relatively “deep” learning architectures without sacrificing

(too much) clarity or simplicity. On a still more speculative note, there are two (admittedly,

tenuous) connections to human cognition. First, the benefits of not normalizing proba-

bilities, when symmetrizing, might be related to human language processing through the

11The so-called Yarowsky-cautiousmodification of the original algorithm for unsupervised word-sense
disambiguation.
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base-rate fallacy [17, 162] and the availability heuristic[48, 326], since people are notori-

ously bad at probability [13, 160, 161]. And second, intermittent “unlearning” — though

perhaps not of the kind that takes place inside of our transforms — is an adaptation that

can be essential to cognitive development in general, as evidenced by neuronal pruning in

mammals [74, 193]. “Forgetful EM” strategies that reset subsets of parameters may thus,

possibly, be no less relevant to unsupervised learning thanis “partial EM,” which only sup-

presses updates, other EM variants [229], or “dropout training” [138, 332, 329], which can

be important in supervised settings.

Future parsing models, in grammar induction, may benefit by modeling head-dependent

relations separately from direction. As frequently employed in tasks like semantic role la-

beling [43] and relation extraction [315], it may be easier to first establish existence, before

trying to understand its nature. Other key next steps may include exploring more intelligent

ways of combining systems [317, 247] and automating the operator discovery process. Fur-

thermore, there are reasons to be optimistic that both counttransforms and model recombi-

nation could be usefully incorporated into sampling methods: although symmetrized mod-

els may have higher cross-entropies, hence prone to rejection in vanilla MCMC, they could

work well as seeds in multi-chain designs; existing algorithms, such as MCMCMC [114],

which switch contents of adjacent chains running at different temperatures, may also ben-

efit from introducing the option to combine solutions, in addition to just swapping them.
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Conclusions

Unsupervised parsing and grammar induction are notoriously challenging problems of

computational linguistics. One immediate complication that arises in solving these tasks

stems from the non-convexity of typical likelihood objectives that are to be optimized. An-

other is poor correlation between the likelihoods attainedby these unsupervised objectives

and actual parsing performance. Yet a third is the high degree of disagreement between

different linguistic theories and the arbitrariness of howsome common syntactic construc-

tions are analyzed, which further complicates evaluation.Because of these and many other

issues, such as the fact that hierarchical syntactic structure is underdetermined by raw text,

the MATCHL INGUIST task, as it had been at times (playfully?) called by Smith andEis-

ner [294, 291], exhibits many tell-tale signs of an ill-posed problem. Nonetheless, the work

reported in this dissertation represents a number of contributions — to science, methodol-

ogy and engineering of state-of-the-art systems — spanningthe general fields of linguistics,

non-convex optimization and machine learning, and, of course, unsupervised parsing and

grammar induction specifically. Of these, contributions toimproving unsupervised parsing

performance are the easiest to describe, since they can be quantified, so I will start there.

This dissertation advanced the state-of-the-art in dependency grammar induction from

42.2% accuracy in 2009, measured on all sentences of a standard English news corpus [66],

to 64.4% in 2013, while simultaneously eliminating previously accepted sources of super-

vision, such as biased initializers, manually tuned input length cutoffs, gold part-of-speech

tags, and so forth. This performance jump corresponds to a 2/3 relative reduction in error

182
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towards the “skyline” supervised dependency parsing accuracy, 76.3%, that is attainable

with the dependency-and-boundary models (DBMs) proposed in this thesis;1 the phrase

bracketings associated to dependency parse structures induced by DBMs happen to also be

of state-of-the-art quality, by unsupervised constituentparsing metrics (unlabeledF1), at

52.8% recall and 55.6% precision. Simultaneously, state-of-the-art macro-average of accu-

racies across all 19 CoNLL languages’ complete held-out test sets increased from 32.6%

in 2011, the first such comprehensive evaluation of grammar inducers, to 48.6% in 2013.

In addition to pushing up performance numbers, this thesis covers several methodolog-

ical innovations that, I hope, will be of a more lasting nature. The first broad class of these

contributions has to do with evaluation. To help guard against overfitting, I led by exam-

ple, introducing into the unsupervised parsing community the standard of usingheld-out

test sets, testing againstall sentence lengths, and also evaluating acrossall multilingual

corpora [42, 236], spanning many languages from disparate families. The work described

in this dissertation was the earliest to employ comprehensive blind evaluation of this kind.

The second broad class of contributions to methodology has to do with eliminating many

formerly standard and accepted sources of supervision thathave snuck into grammar induc-

tion over the years. The most prominent of these are relianceon part-of-speech tags, biased

initializers, and manually tuned training subsets and termination criteria for EM. This thesis

contains a collection of empirical proofs, showing that such short-cuts are, in fact, inferior

to using unsupervised word clusters (Ch. 9), uninformed initializers (Chs. 2–4), nearly all

available data (Ch. 11) and multiple objectives that validate proposed moves (Chs. 5, 10).

For the larger field of natural language processing, it also provides: (i) an exposition of fac-

torial experimental designs and multi-hypothesis statistical analyses of results (Chs. 5–7),

which are standard throughout the natural and social sciences; (ii) a new million-plus-word

English text corpus which is novel in overlaying syntactic structure and web markup (Ch. 6);2

and (iii) a fully-unsupervised context-sensitive “part-of-speech” tagger for English (Ch. 9).3

Among the contributions of this dissertation to the scienceof linguistics are several sta-

tistical observations about the structure of natural language, which include the facts that:

1During the same time period,supervised constituentparsing scores on this evaluation set had gone up
from 91.8 to 92.5 [247, 287, 182]: a 0.7 absolute and 8.5% relative reduction inlabeled bracketingF1 error.

2http://nlp.stanford.edu/pubs/markup-data.tar.bz2 : dp.*
3http://nlp.stanford.edu/pubs/goldtags-data.tar.bz2 : untagger.model
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(i) syntactic dependency arc lengths tend to follow log-normal distributions, with the stan-

dard log-normal serving as a good prior for the parameters (Ch. 2); (ii) first words of sen-

tences tend to have no dependents, whereas last words are unlikely to be leaves (Ch. 8); and

(iii) web markup is correlated with syntax, often resultingfrom (optionally) clipping off the

left- and right-most subtrees of a dependency parse, whose root is typically a noun (Ch. 6).

Another key observation is that the very same constraints onsyntactic structure that tend to

hold for web markup are even more accurate if applied to all manner of other types of not-

so-subtly bracketed text, e.g., word sequences demarcatedby capitalization changes (Ch. 8)

and punctuation marks (Ch. 7). Of course, the fact that, for example, punctuation correlates

with syntactic structure is not new [240, 39, 157, 85]. What is new in this thesis, however,

is a set of clear, simple and general rules, in the form of accurate parsing constraints, that

usually govern such relations. Universal tendencies in syntactic structure are important for

many aspects of computational linguistics — such as in semi-supervised parsing, where a

supervised parser might be self-trained [208] on vast amounts of web data, subject to these

regularities — in addition to constraining unsupervised parsing and grammar induction.

Aside from showing how to exploit markup, punctuation and capitalization as partial

bracketing constraints [245] to improve dependency grammar induction (Part II), a core

contribution of this dissertation to unsupervised parsingis the family of dependency-and-

boundary models (Chs. 10–11). Unlike the EVG, DMV or grammatical bigrams before

them, DBMs implement a truly head-outward generative process that is specifically tai-

lored for unsupervised learning, taking advantage of more observable state, like words at

fringes of phrases, as if solving a jigsaw puzzle. Moreover,DBMs are uniquely equipped to

handle different classes of input, such as complete sentences and incomplete fragments. By

maintaining distinct but overlapping grammars, DBM-2 and up can learn sentence lengths

and root words where it is easy, from simple complete sentences, and local head-dependent

relations from the unrepresentative short text fragments,enjoying the best of both worlds.

It is precisely this flexibility that allows for bootstrapping of grammar inducers using nearly

all available training data, by learning from inter-punctuation fragments, chopping up even

the toughest sentences to extract simple, manageable pieces and expose more of the fringes.

Most of the remaining contributions in this thesis are aimedat general machine learning

and non-convex optimization. They include several novel design patterns for avoiding and
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escaping local optima (Chs. 3, 5, 12) by exploiting multipleviews of data [32]. In addition

to showing how ubiquitous alternative unsupervised objectives [166] can be used to termi-

nate or resume local search, this dissertation illustrateshow intelligent non-random restarts,

informed by generic transforms of previously found solutions, can be incorporated in com-

prehensive search networks, helping optimization algorithms like EM find good solutions

despite a prevalence of local optima (Part IV). Many of thesetechniques generalize beyond

local search with hill-climbers to global optimization viasampling methods. For example,

unary transforms provide informed restarts — medium-size moves in a parameter space

that are not so big as to undo all previous work, like conventional random restarts, but not

so small at to be typically proposed and accepted in MCMC — which would work well for

seeding multi-chain samplers; in turn, binary and higher transforms offer ways to combine

systems, reconciling solutions to find improvements and potentially speeding up algorithms

like MCMCMC [114], which ordinarily just swap the contents of two adjacent chains.

Turning to future directions, to anyone silly enough to commit a non-trivial fraction of

their life to such a venture, my advice is to stop interpreting the grammar induction prob-

lem statement in the most strict sense of unsupervised learning, i.e., withoutany labeled

examples. This approach, “unsupervised learning for the sake of unsupervised learning,”

makes the task needlessly difficult (though also more challenging and interesting). Fully

unsupervised settings are artificial from multiple perspectives, e.g.: (i) having little to do

with the science of human language acquisition, since people learn languages not in a vac-

uum but rather through grounded interactions with the real world; and (ii) imposing an

unrealistic constraint on engineering applications of parsing, since it is not too difficult to

manually annotate a handful of sentences of a desired language or genre, which might have

to be done in any case for rudimentary quality control purposes. Instead, I propose a very

lightly supervised approach to parsing, with minimal expenditures of annotation effort, as

also suggested by Smith and Eisner [294] and recently demonstrated for part-of-speech

tagging [111]. For example, starting with a single (say, median-length) annotated sentence

would help with evaluation. Without a single example parse tree, grammar inducers are left

having to guess many idiosyncratic, stylistic choices of a reference treebank [282, 322],

such as whether modal or main verbs are heads of sentences, which not only understates

their performance but also makes identifying potential algorithmic improvements harder,
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thereby retarding progress. By introducing a constraint, e.g., that a sample sentence be

parsed correctly, it should be possible to resolve most of the major issues that complicate

fully unsupervised grammar induction, due to a disconnect with actual parsing accuracies.

If we extended the task to the more general, mixed case, whereboth a bit of labeled and

lots of unlabeled data are available, many of the problems that plague grammar induction

might go away, and much of the work put forward in this dissertation could be expanded

to address any remaining issues, most notably local optima.Thus, the fact that DBMs

also uncover good constituent parse trees suggests yet another view that could be leveraged

to make progress: alternating learning of dependency and phrase-structure representations,

whenever non-convex optimization with respect to the otheris stuck. Perhaps an even more

interesting, third direction might include a reclusteringof words into categories based on

new and improved parse trees. Combined with an incremental training strategy like “baby

steps,” such an approach might well learn low-level categories of individual words jointly

with their relations in a higher-level hierarchy. A holistic treatment of unsupervised pars-

ing and part-of-speech tagging seems both appropriate and long overdue, since these two

intertwined challenges of syntactic structure discovery are intimately related [113], while

their intrinsic objectives are not [134]. Due to the limitedscope of a Ph.D. program, I did

not get a chance to explore these and many other promising research avenues myself. But I

believe that I have provided the field with the tools that ought to make next steps relatively

painless, should a future cohort of grammar induction researchers choose to pursue them.
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[236] Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian

Riedel, and Deniz Yuret. The CoNLL 2007 shared task on dependency parsing. In

EMNLP-CoNLL, 2007.



BIBLIOGRAPHY 207

[237] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryiǧit, Sandra
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