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Abstract

Efficiency is a prime concern in syntactic MT de-
coding, yet significant developments in statisti-
cal parsing with respect to asymptotic efficiency
haven’t yet been explored in MT. Recently,
McDonald et al. (2005b) formalized dependency
parsing as a maximum spanning tree (MST) prob-
lem, which can be solved in quadratic time relative
to the length of the sentence. They show that MST
parsing is almost as accurate as cubic-time depen-
dency parsing in the case of English, and that it
is more accurate with free word order languages.
This paper applies MST parsing to MT, and de-
scribes how it can be integrated into a phrase-based
decoder to compute dependency language model
scores. Our results show that augmenting a state-of-
the-art phrase-based system with this dependency
language model leads to significant improvements
in TER (0.92%) and BLEU (0.45%) scores on five
NIST Chinese-English evaluation test sets.

1 Introduction

Hierarchical approaches to machine translation
have proven increasingly successful in recent
years (Chiang, 2005; Marcu et al., 2006; Shen
et al., 2008), and often outperform phrase-based
systems (Och and Ney, 2004; Koehn et al., 2003)
on target-language fluency and adequacy. How-
ever, their benefits generally come with high com-
putational costs, particularly when chart parsing,
such as CKY, is integrated with language models
of high orders (Wu, 1996). Indeed, synchronous
CFG parsing with m-grams runs in O(n3m) time,
where n is the length of the sentence.1

Furthermore, synchronous CFG approaches of-
ten only marginally outperform the most com-

1The algorithmic complexity of (Wu, 1996) is
O(n3+4(m−1)), though Huang et al. (2005) present a
more efficient factorization inspired by (Eisner and Satta,
1999) that yields an overall complexity of O(n3+3(m−1)),
i.e., O(n3m). In comparison, phrase-based decoding can run
in linear time if a distortion limit is imposed. Of course, this
comparison holds only for approximate algorithms. Since
exact MT decoding is NP complete (Knight, 1999), there is
no exact search algorithm for either phrase-based or syntactic
MT that runs in polynomial time (unless P = NP).

petitive phrase-based systems in large-scale ex-
periments such as NIST evaluations.2 This lack
of significant difference may not be completely
surprising. Indeed, researchers have shown that
gigantic language models are key to state-of-
the-art performance (Brants et al., 2007), and
the ability of phrase-based decoders to handle
large-size, high-order language models with no
consequence on asymptotic running time during
decoding presents a compelling advantage over
CKY decoders, whose time complexity grows pro-
hibitively large with higher-order language mod-
els.

While context-free decoding algorithms (CKY,
Earley, etc.) may sometimes appear too computa-
tionally expensive for high-end statistical machine
translation, there are many alternative parsing al-
gorithms that have seldom been explored in the
machine translation literature. The parsing liter-
ature presents faster alternatives for both phrase-
structure and dependency trees, e.g., O(n) shift-
reduce parsers and variants ((Ratnaparkhi, 1997;
Nivre, 2003), inter alia). While deterministic
parsers are often deemed inadequate for dealing
with ambiguities of natural language, highly accu-
rate O(n2) algorithms exist in the case of depen-
dency parsing. Building upon the theoretical work
of (Chu and Liu, 1965; Edmonds, 1967), McDon-
ald et al. (2005b) present a quadratic-time depen-
dency parsing algorithm that is just 0.7% less ac-
curate than “full-fledged” chart parsing (which, in
the case of dependency parsing, runs in time O(n3)
(Eisner, 1996)).

In this paper, we show how to exploit syn-
tactic dependency structure for better machine
translation, under the constraint that the depen-

2Results of the 2008 NIST Open MT evaluation
(http://www.itl.nist.gov/iad/mig/tests/mt/2008/doc/
mt08_official_results_v0.html) reveal that, while many of
the best systems in the Chinese-English and Arabic-English
tasks incorporate synchronous CFG models, score differ-
ences with the best phrase-based system were insignificantly
small.



dency structure is built as a by-product of phrase-
based decoding, without reliance on a dynamic-
programming or chart parsing algorithm such as
CKY or Earley. Adapting the approach of Mc-
Donald et al. (2005b) for machine translation, we
incrementally build dependency structure left-to-
right in time O(n2) during decoding. Most in-
terestingly, the time complexity of non-projective
dependency parsing remains quadratic as the or-
der of the language model increases. This pro-
vides a compelling advantage over previous de-
pendency language models for MT (Shen et al.,
2008), which use a 5-gram LM only during rerank-
ing. In our experiments, we build a competi-
tive baseline (Koehn et al., 2007) incorporating a
5-gram LM trained on a large part of Gigaword
and show that our dependency language model
provides improvements on five different test sets,
with an overall gain of 0.92 in TER and 0.45 in
BLEU scores. These results are found to be statis-
tically very significant (p≤ .01).

2 Dependency parsing for machine
translation

In this section, we review dependency parsing for-
mulated as a maximum spanning tree problem
(McDonald et al., 2005b), which can be solved in
quadratic time, and then present its adaptation and
novel application to phrase-based decoding.

Dependency models have recently gained con-
siderable interest in many NLP applications, in-
cluding machine translation (Ding and Palmer,
2005; Quirk et al., 2005; Shen et al., 2008). De-
pendency structure provides several compelling
advantages compared to other syntactic represen-
tations. First, dependency links are close to the se-
mantic relationships, which are more likely to be
consistent across languages. Indeed, Fox (2002)
found inter-lingual phrasal cohesion to be greater
than for a CFG when using a dependency rep-
resentation, for which she found only 12.6% of
head crossings and 9.2% modifier crossings. Sec-
ond, dependency trees contain exactly one node
per word, which contributes to cutting down the
search space during parsing: indeed, the task of
the parser is merely to connect existing nodes
rather than hypothesizing new ones. Finally, de-
pendency models are more flexible and account
for (non-projective) head-modifier relations that
CFG models fail to represent adequately, which
is problematic with certain types of grammatical
constructions and with free word order languages,

who do you think they hired ? 
WP VB PRP VB PRP VBD . 

1 2 3 4 5 6 7 

<root> 
<root> 

0 

Figure 1: A dependency tree with directed edges going from
heads to modifiers. The edge between who and hired causes
this tree to be non-projective. Such a head-modifier relation-
ship is difficult to represent with a CFG, since all words di-
rectly or indirectly headed by hired (i.e., who, think, they, and
hired) do not constitute a contiguous sequence of words.

as we will see later in this section.
The most standardly used algorithm for parsing

with dependency grammars is presented in (Eis-
ner, 1996; Eisner and Satta, 1999). It runs in time
O(n3), where n is the length of the sentence. Their
algorithm exploits the special properties of depen-
dency trees to reduce the worst-case complexity of
bilexical parsing, which otherwise requires O(n4)
for bilexical constituency-based parsing. While it
seems difficult to improve the asymptotic running
time of the Eisner algorithm beyond what is pre-
sented in (Eisner and Satta, 1999), McDonald et
al. (2005b) show O(n2)-time parsing is possible if
trees are not required to be projective. This re-
laxation entails that dependencies may cross each
other rather than being required to be nested, as
shown in Fig. 1. More formally, a non-projective
tree is any tree that does not satisfy the following
definition of a projective tree:

Definition. Let x = x1 · · ·xn be an input sentence,
and let y be a rooted tree represented as a set
in which each element (i, j) ∈ y is an ordered
pair of word indices of x that defines a depen-
dency relation between a head xi and a modifier
x j. By definition, the tree y is said to be projec-
tive if each dependency (i, j) satisfies the follow-
ing property: each word in xi+1 · · ·x j−1 (if i < j)
or in x j+1 · · ·xi−1 (if j < i) is a descendent of head
word xi.

This relaxation is key to computational effi-
ciency, since the parser does not need to keep
track of whether dependencies assemble into con-
tiguous spans. It is also linguistically desirable
in the case of free word order languages such as
Czech, Dutch, and German. Non-projective de-
pendency structures are sometimes even needed
for languages like English, e.g., in the case of the
wh-movement shown in Fig. 1. For languages



with relatively rigid word order such as English,
there may be some concern that searching the
space of non-projective dependency trees, which
is considerably larger than the space of projective
dependency trees, would yield poor performance.
That is not the case: dependency accuracy for non-
projective parsing is 90.2% for English (McDon-
ald et al., 2005b), only 0.7% lower than a projec-
tive parser (McDonald et al., 2005a) that uses the
same set of features and learning algorithm. In the
case of dependency parsing for Czech, (McDonald
et al., 2005b) even outperforms projective parsing,
and was one of the top systems in the CoNLL-06
shared task in multilingual dependency parsing.

2.1 O(n2)-time dependency parsing for MT

We now formalize weighted non-projective de-
pendency parsing similarly to (McDonald et al.,
2005b) and then describe a modified and more ef-
ficient version that can be integrated into a phrase-
based decoder.

Given the single-head constraint, parsing an in-
put sentence x = (x0,x1, · · · ,xn) is reduced to la-
beling each word x j with an index i identifying its
head word xi. We include the dummy root symbol
x0 = 〈root〉 so that each word can be a modifier.
We score each dependency relation using a stan-
dard linear model

s(i, j) = λ · f(i, j) (1)

whose weight vector λ is trained using
MIRA (Crammer and Singer, 2003) to opti-
mize dependency parsing accuracy (McDonald et
al., 2005a). As is commonly the case in statistical
parsing, the score of the full tree is decomposed
as the sum of the score of all edges:

s(x,y) = ∑
(i, j)∈y

λ · f(i, j) (2)

When there is no need to ensure projectivity, one
can independently select the highest scoring edge
(i, j) for each modifier x j, yet we generally want to
ensure that the resulting structure is a tree, i.e., that
it does not contain any circular dependencies. This
optimization problem is a known instance of the
maximum spanning tree (MST) problem. In our
case, the graph is directed—indeed, the equality
s(i, j) = s( j, i) is generally not true and would be
linguistically aberrant—so the problem constitutes
an instance of the less-known MST problem for
directed graphs. This problem is solved with the

Chu-Liu-Edmonds (CLE) algorithm (Chu and Liu,
1965; Edmonds, 1967).

Formally, we represent the graph G = (V,E)
with a vertex set V = x = {x0, · · · ,xn} and a set
of directed edges E = [0,n]× [1,n], in which each
edge (i, j), representing the dependency xi → x j,
is assigned a score s(i, j). Finding the spanning
tree y ⊂ E rooted at x0 that maximizes s(x,y) as
defined in Equation 2 has a straightforward solu-
tion in O(n2 log(n)) time for dense graphs such as
G, though Tarjan (1977) shows that the problem
can be solved in O(n2). Hence, non-projective
dependency parsing is solved in quadratic time.
The main idea behind the CLE algorithm is to
first greedily select for each word x j the incom-
ing edge (i, j) with highest score, then to succes-
sively repeat the following two steps: (a) identify
a loop in the graph, and if there is none, halt; (b)
contract the loop into a single vertex, and update
scores for edges coming in and out of the loop.
Once all loops have been eliminated, the algorithm
maps back the maximum spanning tree of the con-
tracted graph onto the original graph G, and it can
be shown that this yields a spanning tree that is op-
timal with respect to G and s (Georgiadis, 2003).

The greedy approach of selecting the highest
scoring edge (i, j) for each modifier x j can
easily be applied left-to-right during phrase-based
decoding, which proceeds in the same order.
For each hypothesis expansion, our decoder
generates the following information for the new
hypothesis h:

• a partial translation x;
• a coverage set of input words c;
• a translation score σ .

In the case of non-projective dependency parsing,
we need to maintain additional information for
each word x j of the partial translation x:

• a predicted POS tag t j;
• a dependency score s j.

Dependency scores s j are initialized to −∞.
Each time a new word is added to a partial hy-
pothesis, the decoder executes the routine shown
in Table 1. To avoid cluttering the pseudo-code,
we make here the simplifying assumption that
each hypothesis expansion adds exactly one word,
though the real implementation supports the case
of phrases of any length. Line 3 determines
whether the translation hypothesis is complete, in
which case it explicitly builds the graph G and



Decoding: hypothesis expansion step.

1. Inferer generates new hypothesis h = (x,c,σ)
2. j← |x|−1
3. t j← tagger(x j−3, · · · ,x j)
4. if complete(c)
5. Chu-Liu-Edmonds(h)
6. else
7. for i = 1 to j
8. s j = max(s j,s(i, j))
9. si = max(si,s( j, i))

Table 1: Hypothesis expansion with dependency scoring.

finds the maximum spanning tree. Note that it is
impractical to identify loops each time a new word
is added to a translation hypothesis, since this re-
quires explicitly storing the dense graph G, which
would require an O(n2) copy operation during
each hypothesis expansion; this would of course
increase time and space complexity (the max op-
eration in lines 8 and 9 only keeps the current best
scoring edges). If there is any loop, the depen-
dency score is adjusted in the last hypothesis ex-
pansion. In practice, we delay the computation of
dependency scores involving word x j until tag t j+1
is generated, since dependency parsing accuracy is
particularly low (−0.8%) when the next tag is un-
known.

We found that dependency scores with or with-
out loop elimination are generally close and highly
correlated, and that MT performance without fi-
nal loop removal was about the same (generally
less than 0.2% BLEU). While it seems that loopy
graphs are undesirable when the goal is to obtain a
syntactic analysis, that is not necessarily the case
when one just needs a language modeling score.

2.2 Features for dependency parsing

In our experiments, we use sets of features that are
similar to the ones used in the McDonald parser,
though we make a key modification that yields an
asymptotic speedup that ensures a genuine O(n2)
running time.

The three feature sets that were used in our ex-
periments are shown in Table 2. We write h-word,
h-pos, m-word, m-pos to refer to head and modi-
fier words and POS tags, and append a numerical
value to shift the word offset either to the left or to
the right (e.g., h-pos+1 is the POS to the right of
the head word). We use the symbol ∧ to represent
feature conjunctions. Each feature in the table has
a distinct identifier, so that, e.g., the POS features

Unigram features:
h-word, h-pos, h-word ∧ h-pos,
m-word, m-pos, m-word ∧ m-pos
Bigram features:
h-word ∧ m-word, h-pos ∧ m-pos,
h-word ∧ h-pos ∧ m-word, h-word ∧ h-pos ∧ m-pos,
m-word ∧ m-pos ∧ h-word, m-word ∧ m-pos ∧ h-pos,
h-word ∧ h-pos ∧ m-word ∧ m-pos
Adjacent POS features:
h-pos ∧ h-pos+1 ∧ m-pos−1 ∧ m-pos,
h-pos ∧ h-pos+1 ∧ m-pos ∧ m-pos+1,
h-pos−1 ∧ h-pos ∧ m-pos−1 ∧ m-pos,
h-pos−1 ∧ h-pos ∧ m-pos ∧ m-pos+1
In-between POS features:
if i < j:

h-pos ∧ h-pos+k ∧ m-pos k ∈ [ i,min(i+5, j) ]
h-pos ∧ m-pos−k ∧ m-pos k ∈ [max(i, j−5), j ]

if i > j:
m-pos ∧ m-pos+k ∧ h-pos k ∈ [ j,min( j +5, i) ]
m-pos ∧ h-pos−k ∧ h-pos k ∈ [max( j, i−5), i ]

Table 2: Features for dependency parsing. It is quite similar
to the McDonald (2005a) feature set, except that it does not
include the set of all POS tags that appear between each can-
didate head-modifier pair (i, j). This modification is essential
in order to make our parser run in true O(n2) time, as opposed
to (McDonald et al., 2005b).

SOURCE IDS GENRE SENTENCES

English CTB 050–325 newswire 3027
English ATB all newswire 13628
OntoNotes all broadcast news 14056
WSJ 02–21 financial news 39832
Total 70543

Table 3: Characteristics of our training data. The second col-
umn identifies documents and sections selected for training.

h-pos are all distinct from m-pos features.3

The primary difference between our feature sets
and the ones of McDonald et al. is that their set of
“in between POS features” includes the set of all
tags appearing between each pair of words. Ex-
tracting all these tags takes time O(n) for any arbi-
trary pair (i, j). Since i and j are both free vari-
ables, feature computation in (McDonald et al.,
2005b) takes time O(n3), even though parsing it-
self takes O(n2) time. To make our parser gen-
uinely O(n2), we modified the set of in-between
POS features in two ways. First, we restrict ex-
traction of in-between POS tags to those words
that appear within a window of five words rel-
ative to either the head or the modifier. While
this change alone ensures that feature extraction is
now O(1) for each word pair, this causes a fairly
high drop of performance (dependency accuracy

3In addition to these basic features, we follow McDonald
in conjoining most features with two extra pieces of infor-
mation: a boolean variable indicating whether the modifier
attaches to the left or to the right, and the binned distance
between the two words.



ALGORITHM TIME SETUP TRAINING TESTING ACCURACY

Projective O(n3) Parsing WSJ(02-21) WSJ(23) 90.60
Chu-Liu-Edmonds O(n3) Parsing WSJ(02-21) WSJ(23) 89.64
Chu-Liu-Edmonds O(n2) Parsing WSJ(02-21) WSJ(23) 89.32
Local classifier O(n2) Parsing WSJ(02-21) WSJ(23) 89.15
Projective O(n3) MT CTB(050-325) CTB(001-049) 86.33
Chu-Liu-Edmonds O(n3) MT CTB(050-325) CTB(001-049) 85.68
Chu-Liu-Edmonds O(n2) MT CTB(050-325) CTB(001-049) 85.43
Local classifier O(n2) MT CTB(050-325) CTB(001-049) 85.22
Projective O(n3) MT CTB(050-325), WSJ(02-21), ATB, OntoNotes CTB(001-049) 87.40(**)
Chu-Liu-Edmonds O(n3) MT CTB(050-325), WSJ(02-21), ATB, OntoNotes CTB(001-049) 86.79
Chu-Liu-Edmonds O(n2) MT CTB(050-325), WSJ(02-21), ATB, OntoNotes CTB(001-049) 86.45(*)
Local classifier O(n2) MT CTB(050-325), WSJ(02-21), ATB, OntoNotes CTB(001-049) 86.29

Table 4: Dependency parsing experiments on test sentences of any length. The projective parsing algorithm is the one imple-
mented as in (McDonald et al., 2005a), which is known as one of the top performing dependency parsers for English. The O(n3)
non-projective parser of (McDonald et al., 2005b) is slightly more accurate than our version, though ours runs in O(n2) time.
“Local classifier” refers to non-projective dependency parsing without removing loops as a post-processing step. The result
marked with (*) identifies the parser used for our MT experiments, which is only about 1% less accurate than a state-of-the-art
dependency parser (**).

on our test was down 0.9%). To make our gen-
uinely O(n2) parser almost as accurate as the non-
projective parser of McDonald et al., we conjoin
each in-between POS with its position relative to
(i, j). This relatively simple change reduces the
drop in accuracy to only 0.34%.4

3 Dependency parsing experiments

In this section, we compare the performance of
our parsing model to the ones of McDonald et al.
Since our MT test sets include newswire, web, and
audio, we trained our parser on different genres.
Our training data includes newswire from the En-
glish translation treebank (LDC2007T02) and the
English-Arabic Treebank (LDC2006T10), which
are respectively translations of sections of the Chi-
nese treebank (CTB) and Arabic treebank (ATB).
We also trained the parser on the broadcast-
news treebank available in the OntoNotes corpus
(LDC2008T04), and added sections 02-21 of the
WSJ Penn treebank. Documents 001-040 of the
English CTB data were set aside to constitute a
test set for newswire texts. Our other test set is
the standard Section 23 of the Penn treebank. The
splits and amounts of data used for training are dis-
played in Table 3.

Parsing experiments are shown in Table 4. We

4We need to mention some practical considerations that
make feature computation fast enough for MT. Most features
are precomputed before actual decoding. All target-language
words to appear during beam search can be determined in ad-
vance, and all their unigram feature scores are precomputed.
For features conditioned on both head and modifier, scores
are cached whenever possible. The only features that are not
cached are the ones that include contextual POS tags, since
their miss rate is relatively high.

distinguish two experimental conditions: Parsing
and MT. For Parsing, sentences are cased and tok-
enization abides to the PTB segmentation as used
in the Penn treebank version 3. For the MT set-
ting, texts are all lower case, and tokenization
was changed to improve machine translation (e.g.,
most hyphenated words were split). For this set-
ting, we also had to harmonize the four treebanks.
The most crucial modification was to add NP in-
ternal bracketing to the WSJ (Vadas and Curran,
2007), since the three other treebanks contain that
information. Treebanks were also transformed to
be consistent with MT tokenization. We evaluate
MT parsing models on CTB rather than on WSJ,
since CTB contains newswire and is thus more
representative of MT evaluation conditions.

To obtain part-of-speech tags, we use a
state-of-the-art maximum-entropy (CMM) tagger
(Toutanova et al., 2003). In the Parsing setting, we
use its best configuration, which reaches a tagging
accuracy of 97.25% on standard WSJ test data. In
the MT setting, we need to use a less effective tag-
ger, since we cannot afford to perform Viterbi in-
ference as a by-product of phrase-based decoding.
Hence, we use a simpler tagging model that as-
signs tag ti to word xi by only using features of
words xi−3 · · ·xi, and that does not condition any
decision based on any preceding or next tags (ti−1,
etc.). Its performance is 95.02% on the WSJ, and
95.30% on the English CTB. Additional experi-
ments reveal two main contributing factors to this
drop on WSJ: tagging uncased texts reduces tag-
ging accuracy by about 1%, and using only word-
based features further reduces it by 0.6%.

Table 4 shows that the accuracy of our truly



O(n2) parser is only .25% to .34% worse than
the O(n3) implementation of (McDonald et al.,
2005b).5 Compared to the state-of-the-art projec-
tive parser as implemented in (McDonald et al.,
2005a), performance is 1.28% lower on WSJ, but
only 0.95% when training on all our available data
and using the MT setting. Overall, we believe that
the drop of performance is a reasonable price to
pay considering the computational constraints im-
posed by integrating the dependency parser into an
MT decoder.

The table also shows a gain of more than 1% in
dependency accuracy by adding ATB, OntoNotes,
and WSJ to the English CTB training set. The
four sources were assigned non-uniform weights:
we set the weight of the CTB data to be 10 times
larger than the other corpora, which seems to work
best in our parsing experiments. While this im-
provement of 1% may seem relatively small con-
sidering that the amount of training data is more
than 20 times larger in the latter case, it is quite
consistent with previous findings in domain adap-
tation, which is known to be a difficult task. For
example, (Daume III, 2007) shows that training a
learning algorithm on the weighted union of dif-
ferent data sets (which is basically what we did)
performs almost as well as more involved domain
adaptation approaches.

4 Machine translation experiments

In our experiments, we use a re-implementation
of the Moses phrase-based decoder (Koehn et
al., 2007). We use the standard features imple-
mented almost exactly as in Moses: four trans-
lation features (phrase-based translation probabil-
ities and lexically-weighted probabilities), word
penalty, phrase penalty, linear distortion, and lan-
guage model score. We also incorporated the lex-
icalized reordering features of Moses, in order to
experiment with a baseline that is stronger than the
default Moses configuration.

The language pair for our experiments is
Chinese-to-English. The training data consists of
about 28 million English words and 23.3 million

5Note that our results on WSJ are not exactly the same
as those reported in (McDonald et al., 2005b), since we used
slightly different head finding rules. To extract dependencies
from treebanks, we used the LTH Penn Converter (http://
nlp.cs.lth.se/pennconverter/), which extracts
dependencies that are almost identical to those used for the
CoNLL-2008 Shared Task. We constrain the converter not to
use functional tags found in the treebanks, in order to make it
possible to use automatically parsed texts (i.e., perform self-
training) in future work.

Chinese words drawn from various news parallel
corpora distributed by the Linguistic Data Con-
sortium (LDC). In order to provide experiments
comparable to previous work, we used the same
corpora as (Wang et al., 2007): LDC2002E18,
LDC2003E07, LDC2003E14, LDC2005E83,
LDC2005T06, LDC2006E26, LDC2006E8, and
LDC2006G05. Chinese words were automatically
segmented with a conditional random field (CRF)
classifier (Chang et al., 2008) that conforms to the
Chinese Treebank (CTB) standard.

In order to train a competitive baseline given our
computational resources, we built a large 5-gram
language model using the Xinhua and AFP sec-
tions of the Gigaword corpus (LDC2007T40) in
addition to the target side of the parallel data.
This data represents a total of about 700 mil-
lion words. We manually removed documents of
Gigaword that were released during periods that
overlap with those of our development and test
sets. The language model was smoothed with the
modified Kneser-Ney algorithm as implemented
in (Stolcke, 2002), and we only kept 4-grams and
5-grams that occurred at least three times in the
training data.6

For tuning and testing, we use the official NIST
MT evaluation data for Chinese from 2002 to 2008
(MT02 to MT08), which all have four English ref-
erences for each input sentence. We used the 1082
sentences of MT05 for tuning and all other sets for
testing. Parameter tuning was done with minimum
error rate training (Och, 2003), which was used
to maximize BLEU (Papineni et al., 2001). Since
MERT is prone to search errors, especially with
large numbers of parameters, we ran each tuning
experiment three times with different initial condi-
tions. We used n-best lists of size 200 and a beam
size of 200. In the final evaluations, we report re-
sults using both TER (Snover et al., 2006) and the
original BLEU metric as described in (Papineni et
al., 2001). All our evaluations are performed on
uncased texts.

The results for our translation experiments are
shown in Table 5. We compared two systems: one
with the set of features described earlier in this
section. The second system incorporates one ad-
ditional feature, which is the dependency language

6We found that sections of Gigaword other than Xinhua
and AFP provide almost no improvement in our experiments.
By leaving aside the other sections, we were able to increase
the order of the language model to 5-gram and perform rela-
tively little pruning. This LM required 16GB of RAM during
training.



BLEU[%]
DEP. LM MT05 (tune) MT02 MT03 MT04 MT06 MT08
no 33.42 33.38 33.13 36.21 32.16 24.83
yes 34.19 (+.77**) 33.85 (+.47) 33.73 (+.6*) 36.67 (+.46*) 32.84 (+.68**) 24.91 (+.08)

TER[%]
DEP. LM MT05 (tune) MT02 MT03 MT04 MT06 MT08
no 57.41 58.07 57.32 56.09 57.24 61.96
yes 56.27 (−1.14**) 57.15 (−.92**) 56.09 (−1.23**) 55.30 (−.79**) 56.05 (−1.19**) 61.41 (−.55*)

MT05 (tune) MT02 MT03 MT04 MT06 MT08
Sentences 1082 878 919 1788 1664 1357

Table 5: MT experiments with and without a dependency language model. We use randomization tests (Riezler and Maxwell,
2005) to determine significance: differences marked with a (*) are significant at the p≤ .05 level, and those marked as (**) are
significant at the p≤ .01 level.

model score computed with the dependency pars-
ing algorithm described in Section 2. We used
the dependency model trained on the English CTB
and ATB treebank, WSJ, and OntoNotes.

We see that the Moses decoder with integrated
dependency language model systematically out-
performs the Moses baseline. For BLEU evalu-
ations, differences are significant in four out of
six cases, and in the case of TER, all differences
are significant. Regarding the small difference in
BLEU scores on MT08, we would like to point
out that tuning on MT05 and testing on MT08
had a rather adverse effect with respect to trans-
lation length: while the two systems are rela-
tively close in terms of BLEU scores (24.83 and
24.91, respectively), the dependency LM provides
a much bigger gain when evaluated with BLEU
precision (27.73 vs. 28.79), i.e., by ignoring the
brevity penalty. On the other hand, the difference
on MT08 is significant in terms of TER.

Table 6 provides experimental results on the
NIST test data (excluding the tuning set MT05) for
each of the three genres: newswire, web data, and
speech (broadcast news and conversation). The
last column displays results for all test sets com-
bined. Results do not suggest any noticeable dif-
ference between genres, and the dependency lan-
guage model provides significant gains on all gen-
res, despite the fact that this model was primarily
trained on news data.

We wish to emphasize that our positive re-
sults are particularly noteworthy because they are
achieved over a baseline incorporating a compet-
itive 5-gram language model. As is widely ac-
knowledged in the speech community, it can be
difficult to outperform high-order n-gram models
in large-scale experiments. Finally, we quantified
the effective running time of our phrase-based de-
coder with and without our dependency language

BLEU[%]
DEP. LM newswire web speech all
no 32.86 21.75 36.88 32.29
yes 33.19 22.64 37.51 32.74

(+0.33) (+0.89) (+0.63) (+0.45)
TER[%]

DEP. LM newswire web speech all
no 57.73 62.64 55.16 58.02
yes 56.73 61.97 54.26 57.10

(−1) (−0.67) (−0.9) (−0.92)
newswire web speech all

Sentences 4006 1149 1451 6606

Table 6: Test set performances on MT02-MT04 and MT06-
MT08, where the data was broken down by genre. Given
the large amount of test data involved in this table, all these
results are statistically highly significant (p≤ .01).
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Figure 2: Running time of our phrase-based decoder with and
without quadratic-time dependency LM scoring.

model using MT05 (Fig. 2). In both settings, we
selected the best tuned model, which yield the per-
formance shown in the first column of Table 5.
Our decoder was run on an AMD Opteron Proces-
sor 2216 with 16GB of memory, and without re-
sorting to any rescoring method such as cube prun-
ing. In the case of English translations of 40 words
and shorter, the baseline system took 6.5 seconds
per sentence, whereas the dependency LM system
spent 15.6 seconds per sentence, i.e., 2.4 times the
baseline running time. In the case of translations



longer than 40 words, average speeds were respec-
tively 17.5 and 59.5 seconds per sentence, i.e., the
dependency was only 3.4 times slower.7

5 Related work

Perhaps due to the high computational cost of syn-
chronous CFG decoding, there have been various
attempts to exploit syntactic knowledge and hier-
archical structure in other machine translation ex-
periments that do not require chart parsing. Using
a reranking framework, Och et al. (2004) found
that various types of syntactic features provided
only minor gains in performance, suggesting that
phrase-based systems (Och and Ney, 2004) should
exploit such information during rather than after
decoding. Wang et al. (2007) sidestep the need to
operate large-scale word order changes during de-
coding (and thus lessening the need for syntactic
decoding) by rearranging input words in the train-
ing data to match the syntactic structure of the
target language. Finally, Birch et al. (2007) ex-
ploit factored phrase-based translation models to
associate each word with a supertag, which con-
tains most of the information needed to build a full
parse. When combined with a supertag n-gram
language model, it helps enforce grammatical con-
straints on the target side.

There have been various attempts to reduce the
computational expense of syntactic decoding, in-
cluding multi-pass decoding approaches (Zhang
and Gildea, 2008; Petrov et al., 2008) and rescor-
ing approaches (Huang and Chiang, 2007). In the
latter paper, Huang and Chiang introduce rescor-
ing methods named “cube pruning” and “cube
growing”, which first use a baseline decoder (ei-
ther synchronous CFG or a phrase-based sys-
tem) and no LM to generate a hypergraph, and
then rescoring this hypergraph with a language
model. Huang and Chiang show significant speed
increases with little impact on translation quality.
We believe that their approach is orthogonal (and
possibly complementary) to our work, since our
paper proposes a new model for fully-integrated
decoding that increases MT performance, and
does not rely on rescoring.

7We note that our Java-based decoder is research rather
than industrial-strength code and that it could be substantially
optimized. Hence, we think the reader should pay more at-
tention to relative speed differences between the two systems
rather than absolute timings.

6 Conclusion and future work

In this paper, we presented a non-projective de-
pendency parser whose time-complexity of O(n2)
improves upon the cubic time implementation of
(McDonald et al., 2005b), and does so with lit-
tle loss in dependency accuracy (.25% to .34%).
Since this parser does not need to enforce projec-
tivity constraints, it can easily be integrated into
a phrase-based decoder during search (rather than
during rescoring). We use dependency scores as
an extra feature in our MT experiments, and found
that our dependency model provides significant
gains over a competitive baseline that incorporates
a large 5-gram language model (0.92% TER and
0.45% BLEU absolute improvements).

We plan to pursue other research directions us-
ing dependency models discussed in this paper.
While we use a dependency language model to
exemplify the use of hierarchical structure within
phrase based decoders, we could extend this work
to incorporate dependency features of both source-
and target side. Since parsing of the source is rel-
atively inexpensive compared to the target side,
it would be relatively easy to condition head-
modifier dependencies not only on the two tar-
get words, but also on their corresponding Chi-
nese words and their relative positions in the Chi-
nese tree. This would enable the decoder to cap-
ture syntactic reordering without requiring trees to
be isomorphic or even projective. It would also
be interesting to apply these models to target lan-
guages that have free word order, which would
presumably benefit more from the flexibility of
non-projective dependency models.
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