
NUMERICAL SOLUTION of MARKOV CHAINS, p. 31–44

Adaptive Methods for the Computation of PageRank

∗ Sepandar Kamvar1, Taher Haveliwala2, Gene Golub3

1Scientific Computing and Computational Mathematics, Stanford University Stanford, CA 94305 sdkamvar@stanford.edu
2 Department of Computer Science, Stanford University Stanford, CA 94305 taherh@stanford.edu

3Scientific Computing and Computational Mathematics, Stanford University Stanford, CA 94305 golub@stanford.edu

ABSTRACT

We observe that the convergence patterns of pages in the PageRank algorithm have a nonuniform distribution.
Specifically, many pages converge to their true PageRank quickly, while relatively few pages take a much longer
time to converge. Furthermore, we observe that these slow-converging pages are generally those pages with high
PageRank. We use this observation to devise a simple algorithm to speed up the computation of PageRank, in
which the PageRank of pages that have converged are not recomputed at each iteration after convergence. This
algorithm, which we call Adaptive PageRank, speeds up the computation of PageRank by nearly 30%.

1. Introduction

One of the best-known algorithms in web search is Google’s PageRank algorithm [15]. PageRank
computes the principal eigenvector of the matrix describing the hyperlinks in the web using the famous
Power Method [5]. Due to the sheer size of the web (over 3 billion pages), this computation can take
several days. Speeding up this computation is important fortwo reasons. First, computing PageRank
quickly is necessary to reduce the lag time from when a new crawl is completed to when that crawl
can be made available for searching. Secondly, recent approaches to personalized and topic-sensitive
PageRank schemes [8, 17, 11] require computingmanyPageRank vectors, each biased towards certain
types of pages. These approaches intensify the need for faster methods for computing PageRank.

Accelerating the PageRank algorithm poses many challenges. First, the convergence rate of the
Power Method is very fast (generally,|λ2|/|λ1| = 0.85 [9]) due to the structure of the Google
matrix [9]. The Power Method on a web data set of over 80 million pages converges in about 50
iterations. Improving on this already fast convergence rate is a difficult problem. Further, many other
fast eigensolvers (e.g. inverse iteration) are not feasible for this problem because the size and sparsity
of the web matrix makes inversion or factorization prohibitively expensive.

In this paper, we make the following simple observation: theconvergence rates of the PageRank
values of individual pages during application of the Power Method is nonuniform. That is, many
pages converge quickly, with a few pages taking much longer to converge. Furthermore, the pages
that converge slowly are generally those pages with high PageRank.

We devise a simple algorithm that exploits this observationto speed up the computation of
PageRank, called Adaptive PageRank. In this algorithm, thePageRank of pages that have converged
are not recomputed at each iteration after convergence. In large-scale empirical studies, this algorithm
speeds up the computation of PageRank by nearly 30%.

32 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

2. Preliminaries

In this section we summarize the definition of PageRank [15] and review some of the mathematical
tools we will use in analyzing and improving the standard iterative algorithm for computing PageRank.

Underlying the definition of PageRank is the following basicassumption. A link from a page
u ∈ Web to a pagev ∈ Web can be viewed as evidence thatv is an “important” page. In particular,
the amount of importance conferred onv by u is proportional to the importance ofu and inversely
proportional to the number of pagesu points to. Since the importance ofu is itself not known,
determining the importance for every pagei ∈ Web requires an iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary computation, we next describe an equivalent
formulation in terms of a random walk on the directed Web graph G. Let u → v denote the existence
of an edge fromu to v in G. Let deg(u) be the outdegree of pageu in G. Consider a random surfer
visiting pageu at timek. In the next time step, the surfer chooses a nodevi from amongu’s out-
neighbors{v|u → v} uniformly at random. In other words, at timek + 1, the surfer lands at node
vi ∈ {v|u → v} with probability1/ deg(u).

The PageRank of a pagei is defined as the probability that at some particular time step k > K,
the surfer is at pagei. For sufficiently largeK, and with minor modifications to the random walk, this
probability is unique, illustrated as follows. Consider the Markov chain induced by the random walk
onG, where the states are given by the nodes inG, and the stochastic transition matrix describing the
transition fromi to j is given byP with Pij = 1/ deg(i).

ForP to be a valid transition probability matrix, every node musthave at least 1 outgoing transition;
i.e., P should have no rows consisting of all zeros. This holds ifG does not have any pages with
outdegree0, which does not hold for the Web graph.P can be converted into a valid transition matrix
by adding a complete set of outgoing transitions to pages with outdegree0. In other words, we can
define the new matrixP ′ where all states have at least one outgoing transition in thefollowing way.
Let n be the number of nodes (pages) in the Web graph. Let~v be then-dimensional column vector
representing a uniform probability distribution over all nodes:

~v = [
1

n
]n×1. (1)

Let~e be then-dimensional column vector where every elementei = 1:

~e = [1]n×1. (2)

Let ~d be then-dimensional column vector identifying the nodes with outdegree0:

di =

{

1 if deg(i) = 0,

0 otherwise

Then we constructP ′ as follows:

D = ~d · ~v T

P ′ = P + D.

In terms of the random walk, the effect ofD is to modify the transition probabilities so that a surfer
visiting a dangling page (i.e., a page with no outlinks) randomly jumps to another page in the next time
step, using the distribution given by~v.

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 33

~y = cPT ~x;
w = ||~x||1 − ||~y||1;
~y = ~y + w~v;

Algorithm 1: Computing~y = A~x

By the Ergodic Theorem for Markov chains [6], the Markov chain defined byP ′ has a unique
stationary probability distribution ifP ′ is aperiodic and irreducible; the former holds for the Markov
chain induced by the Web graph. The latter holds iffG is strongly connected, which is generallynot
the case for the Web graph. In the context of computing PageRank, the standard way of ensuring this
property is to add a new set of complete outgoing transitions, with small transition probabilities, to
all nodes, creating a complete (and thus strongly connected) transition graph. In matrix notation, we
construct the irreducible Markov matrixP ′′ as follows:

E = ~e · ~v T

P ′′ = cP ′ + (1 − c)E

In terms of the random walk, the effect ofE is as follows. At each time step, with probability(1 − c),
a surfer visiting any node will jump to a random Web page (rather than following an outlink). The
destination of the random jump is chosen according to the probability distribution given in~v. Artificial
jumps taken because ofE are referred to asteleportation.

By redefining the vector~v given in Equation 1 to be nonuniform, so thatD andE add artificial
transitions with nonuniform probabilities, the resultantPageRank vector can be biased to prefer certain
kinds of pages. For this reason, we refer to~v as thepersonalizationvector.

For simplicity and consistency with prior work, the remainder of the discussion will be in terms of
the transpose matrix,A = (P ′′)T ; i.e., the transition probability distribution for a surfer at nodei is
given by rowi of P ′′, and columni of A.

Note that the edges artificially introduced byD andE never need to be explicitly materialized, so
this construction has no impact on efficiency or the sparsityof the matrices used in the computations. In
particular, the matrix-vector multiplication~y = A~x can be implemented efficiently using Algorithm 1.
In the algorithms presented in this paper, all matrix multiplications are assumed to use Algorithm 1.

Assuming that the probability distribution over the surfer’s location at time0 is given by~x(0),
the probability distribution for the surfer’s location at time k is given by ~x(k) = Ak~x(0). The
unique stationary distribution of the Markov chain is defined as limk→∞ ~x(k), which is equivalent
to limk→∞ Ak~x(0), and is independent of the initial distribution~x(0). This is simply the principal
eigenvector of the matrixA = (P ′′)T , which is exactly the PageRank vector we would like to compute.

The standard PageRank algorithm computes the principal eigenvector using the Power Method
(Algorithm 2). That is, it begins with the uniform distribution ~x(0) = ~v and computes successive
iterates~x(k) = A~x(k−1) until convergence. Haveliwala and Kamvar show in [9] that the convergence
rate of the Power Method, in terms of number of iterations, isfast for this problem (generally,
|λ2|/|λ1| = .85). However, it is still important to accelerate the computation, since each matrix
multiplication is so expensive (on the order of 10 billion flops).

While many algorithms have been developed for fast eigenvector computations, many of them are
unsuitable for this problem because of the size and sparsityof the Web matrix (see Section?? for a
discussion of this).

34 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

functionpageRank(A, ~x(0), ~v) {
repeat

~x(k+1) = A~x(k);
δ = ||~x(k+1) − ~x(k)||1;

until δ < ε;
return ~x(k+1);
}

Algorithm 2: PageRank

3. Experimental Setup

In the following sections, we will be describing experiments run on the following data sets. The
STANFORD.EDU link graph was generated from a crawl of thestanford.edu domain created
in September 2002 by the Stanford WebBase project. This linkgraph contains roughly 280,000 nodes,
with 3 million links, and requires 12MB of storage. We used STANFORD.EDU while developing
the Adaptive PageRank algorithm, to get a sense for its performance. For real-world, Web-scale
performance measurements, we used the LARGEWEB link graph, generated from a large crawl of
the Web that had been created by the Stanford WebBase projectin January 2001 [10]. LARGEWEB

contains roughly 80M nodes, with close to a billion links, and requires 3.6GB of storage. Both link
graphs had dangling nodes removed as described in [15]. The graphs are stored using an adjacency
list representation, with pages represented by 4-byte integer identifiers. On an AMD Athlon 1533MHz
machine with a 6-way RAID-5 disk volume and 2GB of main memory, each application of Algorithm 1
on the 80M page LARGEWEB dataset takes roughly 10 minutes. Given that computing PageRank
generally requires anywhere from 30-100 applications of Algorithm 1, depending on the desired error,
the need for fast methods for graphs with billions of nodes isclear.

We measured the rates of convergence of the PageRank and Adaptive PageRank using the L1 norm
of the residual vector; i.e.,

||Ax(k) − x(k)||1.

We describe why the L1 residual is an appropriate measure in [13].

4. Distribution of Convergence Rates

Table I and Figure 1 show convergence statistics for the pages in the STANFORD.EDU dataset. We say
that the PageRankxi of pagei has converged when

|x
(k+1)
i − x

(k)
i |/|x

(k)|
i < 10−3.

Table I shows the number of pages and average PageRanks of those pages that converge in less than
15 iterations, and those pages that converge in more than 15 iterations. Notice that most pages converge
in less than 15 iterations, and their average PageRank is farlower than those pages that converge in
more than 15 iterations.

Figure 1(a) shows the profile of the bar graph, where each bar represents a pagei and the height
of the bar is the convergence timeti of that pagei. The pages are sorted from left to right in order of

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 35

NUMBER OF PAGES AVERAGE PAGERANK

ti ≤ 15 227597 2.6642e-06
ti > 15 54306 7.2487e-06
Total 281903 3.5473e-06

Table I. Statistics about pages in the STANFORD.EDU dataset whose convergence times are quick (ti ≤ 15) and
pages whose convergence times are long (ti > 15).

convergence times. Notice that most pages converge in under15 iterations, but there are some pages
that require over 40 iterations to converge.

Figure 1(b) shows a bar graph where the height of each bar represents the number of pages that
converge at a given convergence time. Again, notice that most pages converge in under 15 iterations,
but there are some pages that over 40 iterations to converge.

Figure 1(c) shows a bar graph where the height of each bar represents the average PageRank of the
pages that converge in a given convergence time. Notice thatthose pages which converge in less than
15 iterations generally have a lower PageRank than those pages who converge in over 40 iterations.
This is illustrated in Figure 1(d) as well, where the height of each bar represents the average PageRank
of those pages that converge within a certain interval (i.e., the bar labeled “7” represents the pages
that converge in anywhere from 1 to 7 iterations, and the bar labeled “42” represents the pages that
converge in anywhere from 36 to 42 iterations.)

Figures 2 and 3 show some statistics for the LARGEWEB dataset. Figure 2(a) shows the proportion
of pages whose ranks converge to a relative tolerance of.001 in each iteration. Figure 2(b) shows the
cumulative version of the same data; i.e., it shows the percentage of pages that have converged up
through a particular iteration. We see that in 16 iterations, the ranks for over two-thirds of pages have
converged. Figure 3 shows the average PageRanks of pages that converge in various iterations. Notice
that those pages that are slow to converge tend to have higherPageRank.

5. Adaptive PageRank Algorithm

The skewed distribution of convergence times shown in the previous section suggests that the running
time of the PageRank algorithm can be significantly reduced by eliminating redundant computation. In
particular, we do not need to recompute the PageRanks of the pages that have already converged, and
we do not need to recompute the contribution of PageRank frompages that have converged to other
pages. We discuss in this section how each of these redundancies can be eliminated.

5.1. Algorithm Intuition

We begin by describing the intuition behind the Adaptive PageRank algorithm. We consider next a
single iteration of the Power Method, and show how we can reduce the cost.

Consider that we have completedk iterations of the power method. Using the iterate~x(k), we now
wish to generate the iterate~x(k+1). Let C be the set of pages that have converged to a given tolerance,
andN be the set of pages that have not yet converged,.

We can split the matrixA defined in Section 2 into two submatrices. LetAN be them×n submatrix
corresponding to the inlinks of thosem pages whose PageRanks have not yet converged, andAC be
the(n − m) × n submatrix corresponding to the inlinks of those pages that have already converged.

36 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

0 0.5 1 1.5 2 2.5 3

x 10
5

0

10

20

30

40

50

Pages

C
on

ve
rg

en
ce

 T
im

e

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Convergence Time

N
um

be
r

of
 P

ag
es

(a) (b)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9
x 10

−5

Convergence Times

P
ag

eR
an

k

7 14 21 28 35 42 49
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−5

Convergence Times

P
ag

eR
an

k

(c) (d)

Figure 1. Experiments on STANFORD.EDU dataset. (a) Profile of bar graph where each bar represents a pagei,
and its height represents its convergence timeti. (b) Bar graph where x axis represents the discrete convergence
time t, and the height ofti represents the number of pages that have convergence timet. (c) Bar graph where the
height of each bar represents the average PageRank of the pages that converge in a given convergence time. (d)
Bar graph where the height of each bar represents the averagePageRank of the pages that converge in a given

interval.

Let us likewise split the current iterate of the PageRank vector ~x(k) into the m-vector ~x
(k)
N

corresponding to the components of~x(k) that have not yet converged, and the(n − m)-vector~x(k)
C

corresponding to the components of~x(k) that have already converged.

We may orderA and~x(k) as follows:

~x(k) =

(

~x
(k)
N

~x
(k)
C

)

(3)

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 37

0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Convergence Time

P
ro

po
rt

io
n

of
 P

ag
es

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence Time

P
ro

po
rt

io
n

of
 P

ag
es

 (
C

um
ul

at
iv

e)

(a) (b)

Figure 2. Experiments on the LARGEWEB dataset. (a) Bar graph wherex-axis represents the convergence timet

in number of iterations, and the height of barti represents the proportion of pages that have convergence time t.
(b) Cumulative plot of convergence times. Thex-axis gives the timet in number of iterations, and they-axis gives

the proportion of pages that have a convergence time≤ t.

0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 10

−8

Figure 3. Average PageRank vs. Convergence time (in number of iterations) for the LARGEWEB dataset. Note
that pages that are slower to converge to a relative tolerance of .001 tend to have high PageRank.

and

A =

(

AN

AC

)

. (4)

We may now write the next iteration of the Power Method as:
(

~x
(k+1)
N

~x
(k+1)
C

)

=

(

AN

AC

)

·

(

~x
(k)
N

~x
(k)
C

)

.

However, since the elements of~x
(k)
C have already converged, we do not need to recompute~x

(k+1)
C .

Therefore, we may simplify each iteration of the computation to be:

~x
(k+1)
N = AN~x(k) (5)

~x
(k+1)
C = ~x

(k)
C . (6)

38 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

functionadaptivePR(A, ~x(0), ~v) {
repeat

~x
(k+1)
N = AN~x(k);

~x
(k+1)
C = ~x

(k)
C ;

[N, C] = detectConverged(~x(k), ~x(k+1), ε);
periodically,δ = ||A~x(k) − ~xk||1;

until δ < ε;
return ~x(k+1);
}

Algorithm 3: Adaptive PageRank

The basic Adaptive PageRank algorithm is given in Algorithm3.
Identifying pages in each iteration that have converged is inexpensive. However, reordering the

matrix A at each iteration is expensive. Therefore, we exploit the idea given above by periodically
identifying converged pages and constructingAN without explicitly reordering identifiers. SinceAN

is smaller thanA, the iteration cost for future iterations is reduced. We describe the details of the
algorithm in the next section.

5.2. Filter-Based Adaptive PageRank

Since the web matrixA is several gigabytes in size, forming the submatrixAN needed in Equation 5
will not be practical to do in each iteration. Furthermore, there is in general no efficient way to simply
“ignore” the unnecessary entries (e.g., edges pointing to converged pages) inA if they are scattered
throughoutA. We describe in this section an efficient implementation of the Adaptive PageRank
scheme.

Consider the following reformulation of the algorithm thatwas described in the previous section.
Consider the matrixA as described in Equation 4. Note that the submatrixAC is never actually used
in computing~x(k+1). Let us define the matrixA′ as:

A′ =

(

AN

0

)

. (7)

where we have replacedAC with an all-zero matrix of the same dimensions asAC . Similarly, let us

define~x′
(k)

C as:

~x′
(k)

C =

(

~0

~x
(k)
C

)

. (8)

Now note that we can express an iteration of Adaptive PageRank as

~x(k+1) = A′~x(k) + ~x′
(k)

C . (9)

SinceA′ has the same dimensions asA, it seems we have not reduced the iteration cost; however,
note that the cost of the matrix-vector multiplication is essentially given by the number of nonzero

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 39

functionfilterAPR (A, ~x(0), ~v) {
repeat

~x(k+1) = A′′~x(k) + ~x′′
C ;

periodically,
[N, C] = detectConverged(~x(k), ~x(k+1), ε);
[A′′] = filter(A′′, N, C);
[~x′′

C] = filter(~x(k), C);
periodically,δ = ||A~x(k) − ~xk||1;

until δ < ε;
return ~x(k+1);
}

Algorithm 4: Filter-Based Adaptive PageRank

entries in the matrix,not the matrix dimensions.∗

The above reformulation gives rise to the filter-based Adaptive PageRank scheme: if we can
periodically increase the sparsity of the matrixA, we can lower the average iteration cost. Consider the
set of indicesC of pages that have been identified as having converged. We define the matrixA′′ as
follows:

A′′
ij =

{

0 if i ∈ C,

Aij otherwise.
(10)

In other words, when constructingA′′, we replace the rowi in A with zeros ifi ∈ C. Similarly, define
~x′′

(k)

C as follows:

(x′′(k)
C)i =

{

(x(k))i if i ∈ C,

0 otherwise.
(11)

Note thatA′′ is much sparser thanA, so that the cost of the multiplicationA′′~x is much cheaper
than the cost of the multiplicationA~x. In fact, the cost is the same as if we had an ordered matrix, and
performed the multiplicationAN~x. Now note that

~x(k+1) = A′′~x(k) + ~x′′
(k)

C (12)

represents an iteration of the Adaptive PageRank algorithm. No expensive reordering of page
identifiers is needed. The filter-based implementation of Adaptive PageRank is given in Algorithm 4.

5.3. Modified Adaptive PageRank

The core of the Adaptive PageRank algorithm is in replacing the matrix multiplicationA~x(k) with
equations 5 and 6, reducing redundant computation by not recomputing the PageRanks of those pages
in C (i.e., those pages that have converged).

∗More precisely, since the multiplicationA~x is performed using Algorithm 1 using the matrixP and the vector~v, the number
of nonzero entries inP determines the iteration cost. Note that subsequently, when we discuss zeroing out rows ofA, this
corresponds implementationally to zeroing out rows of the sparse matrixP .

40 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

functionmodifiedAPR(A, ~x(0), ~v) {
repeat

~x
(k+1)
N = ANN~x

(k)
N + ~y;

~x
(k+1)
C = ~x

(k)
C ;

periodically,
[N, C] = detectConverged(~x(k), ~x(k+1), ε);

~y = ACN~x
(k)
C ;

periodically,δ = ||A~x(k) − ~xk||1;
until δ < ε;
return ~x(k+1);
}

Algorithm 5: Modified Adaptive PageRank

In this section, we show how to further reduce redundant computation by not recomputing the
components of the PageRanks of those pages inN due to links from those pages inC.

More specifically, we can write the matrixA in equation 4 as follows:

A =

(

ANN ANC

ACN ACC

)

whereANN are the links from pages that have not converged to pages thathave not converged,ACN

are links from pages that have converged to pages that have not converged, and so on.
We may now rewrite equation 5 as follows:

~x
(k+1)
N = ANN~x

(k)
N + ACN~x

(k)
C .

Since the~xC does not change at each iteration, the componentACN~x
(k)
C does not change at each

iteration. Therefore, we only need to recomputeACN~x
(k)
C each time the matrixA is reordered. This

variant of Adaptive PageRank is summarized in Algorithm 5.
As with the standard Adaptive PageRank scheme, explicit reordering of identifiers is not necessary

in the implementation. As shown in Algorithm 6, we can simplyform two matricesACN andANN

that have their “deleted” columns and rows zeroed out, increasing their sparsity and thereby reducing
their effective size. We expect that this algorithm should speed up the computation of PageRank even
further as the partial sum denoted as~y in Algorithm 6 is not recomputed in every iteration.

5.4. Advantages

We now discuss how the Adaptive PageRank scheme speeds up thecomputation of PageRank. The key
parameter in the algorithm is how often to identify converged pages and construct the “compacted”
matrix A′′ (or in the case of Modified AdaptivePageRank,A′′

CN and A′′
NN); since the cost of

constructingA′′ from A is on the order of the cost of the multiplyA~x, we do not want to apply
it too often. However, looking at the convergence statistics given in Section 4, it is clear that even
periodically filtering out the “converged edges” fromA will be effective in reducing the cost of future
iterations for 3 reasons:

1. Reduced i/o for reading in the link structure

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 41

functionfilterMAPR (A, ~x(0), ~v) {
repeat

~x(k+1) = ANN~x(k) + ~y + ~x′′
C ;

periodically,
N ′ = N, C′ = C; /* Keep track of prev. values */
[N, C] = detectConverged(~x(k), ~x(k+1), ε);
[A′′

NN , A′′
CN] = filter(A′′

N ′N ′ , A′′
C′N ′ , N, C);

[~x′′
C] = filter(~x(k), C);

~y = ACN~x(k);
periodically,δ = ||A~x(k) − ~xk||1;

until δ < ε;
return ~x(k+1);
}

Algorithm 6: Filter-Based Modified Adaptive PageRank

2. Fewer memory accesses when executing Algorithm 1
3. Fewer flops when executing Algorithm 1

We expect the number of iterations required for convergenceto stay roughly constant, although the
average iterationcostwill be lowered.

5.5. Misconvergence

It is possible that the convergence test determines incorrectly that the PageRank of a page has
converged, when in fact, it hasn’t. For example, a pagei may have the same value for several iterations,
and later on change significantly. In this case, the adaptivealgorithms proposed will decide that the
pagei has converged, and fix theith component.

To combat this, we run the adaptive PageRank algorithm in phases where in each phase, we begin
with the original version of the link structure, iterate a certain number of times (in our case 8), prune
the link structure, and iterate some additional number of times (again, 8). In successive phases, we
reduce the tolerance threshold used when pruning. In each phase, pruning using the current threshold
is done once, during the 8th iteration.† This strategy tries to keep all pages at roughly the same level of
error while computing successive iterates to achieve some specified final tolerance.

6. Experimental Results

A comparison of the total cost of the standard PageRank algorithm and the two variants of the Adaptive
PageRank algorithm follow. Figure 4(a) depicts the total number of FLOPS needed to compute the
PageRank vector to an L1 residual threshold of10−3 and10−4 using the Power Method and the two
variants of the Adaptive Power Method. The Adaptive algorithms operated in phases as described

†For slightly better performance, our implementations of Algorithms 4 and 6 fold thefilter() operation into the previous matrix
multiply step.

42 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

0

5

10

15

20

25

30

35

40

0.001 0.0001

Final L1 Residual

10
^9

 F
L

O
P

S
Standard

Adaptive (APR)

Modified Adaptive (MAPR)

0

50

100

150

200

250

300

350

400

0.001 0.0001

Final L1 Residual

M
in

u
te

s

Standard

Adaptive (APR)

Modified Adaptive (MAPR)

(a) (b)

0

5

10

15

20

25

30

35

40

45

50

0.001 0.0001

Final L1 Residual

N
u

m
b

er
 o

f
it

er
at

io
n

s

Standard

Adaptive (APR)

Modified Adaptive (MAPR)

(c)

Figure 4. Experiments on LARGEWEB dataset depicting total cost for computing the PageRank vector to an L1
residual threshold of10−3 and10

−4; (a) FLOPS (b) Wallclock time (c) Number of iterations

above using10−2, 10−3, and10−4 as the successive tolerances. As shown in Figure 4(a), the Modified
Adaptive PageRank (MAPR) algorithm decreases the number of FLOPS needed by 26.2% and27.8%
in reaching final L1 residuals of10−3 and 10−4, respectively, compared with the standard power
method. Figure 4(b) depicts the total wallclock time neededfor the same scenarios. TheMAPR
algorithm reduces the wallclock time needed to compute the PageRank vectors by 20.3% and 21.6%
in reaching final L1 residuals of10−3 and10−4, respectively. Note that the adaptive methods took
a few more iterations for reaching the desired tolerances than the standard power method, as shown
in Figure 4(c); however, as the average iteration cost was much lower, the overall speedup is still
significant.

7. Conclusion
In this work, we present two contributions. First, we show that most pages in the web converge to their
true PageRank quickly, while relatively few pages take muchlonger to converge. We further show that
those slow-converging pages generally have high PageRank,and those pages that converge quickly
generally have low PageRank. Second, we develop two algorithms, called Adaptive PageRank and
Modified Adaptive PageRank, that exploit this observation to speed up the computation of PageRank
by 18% and 28%, resp., by avoiding redundant computation.

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 43

8. Acknowledgements

We would like to thank Chris Manning for useful conversations.
This paper is based on work supported in part by the National Science Foundation under Grant

No. IIS-0085896 and Grant No. CCR-9971010, and in part by theResearch Collaboration between
NTT Communication Science Laboratories, Nippon Telegraphand Telephone Corporation and CSLI,
Stanford University (research project on Concept Bases forLexical Acquisition and Intelligently
Reasoning with Meaning).

REFERENCES

1. A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRank computation and the structure of the web: Experiments and
algorithms. InProceedings of the Eleventh International World Wide Web Conference, Poster Track, 2002.

2. K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation in a hyperlinked environment. InProceedings
of the ACM-SIGIR, 1998.

3. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan. Automatic resource compilation by
analyzing hyperlink structure and associated text. InProceedings of the Seventh International World Wide Web Conference,
1998.

4. S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to topic-specific web resource discovery.
In Proceedings of the Eighth International World Wide Web Conference, 1999.

5. G. H. Golub and C. F. V. Loan.Matrix Computations. The Johns Hopkins University Press, Baltimore, 1996.
6. G. Grimmett and D. Stirzaker.Probability and Random Processes. Oxford University Press, 1989.
7. T. H. Haveliwala. Efficient computation of PageRank.Stanford University Technical Report, 1999.
8. T. H. Haveliwala. Topic-sensitive PageRank. InProceedings of the Eleventh International World Wide Web Conference,

2002.
9. T. H. Haveliwala and S. D. Kamvar. The second eigenvalue ofthe Google matrix.Stanford University Technical Report,

2003.
10. J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke.WebBase: A repository of web pages. InProceedings of the

Ninth International World Wide Web Conference, 2000.
11. G. Jeh and J. Widom. Scaling personalized web search. InProceedings of the Twelfth International World Wide Web

Conference, 2003.
12. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Exploting the block structure of the web for computing

PageRank.Stanford University Technical Report, 1999.
13. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation methods for accelerating PageRank

computations. InProceedings of the Twelfth International World Wide Web Conference, 2003.
14. J. Kleinberg. Authoritative sources in a hyperlinked environment. InProceedings of the ACM-SIAM Symposium on

Discrete Algorithms, 1998.
15. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the web.Stanford

Digital Libraries Working Paper, 1998.
16. D. Rafiei and A. O. Mendelzon. What is this page known for? Computing web page reputations. InProceedings of the

Ninth International World Wide Web Conference, 2000.
17. M. Richardson and P. Domingos. The intelligent surfer: Probabilistic combination of link and content information in

PageRank. InAdvances in Neural Information Processing Systems, volume 14. MIT Press, Cambridge, MA, 2002.

