
Neural Event Semantics for Grounded Language Understanding

Shyamal Buch Li Fei-Fei Noah D. Goodman
Stanford University

{shyamal,feifeili}@cs.stanford.edu ngoodman@stanford.edu

Abstract

We present a new conjunctivist framework,
neural event semantics (NES), for compo-
sitional grounded language understanding.
Our approach treats all words as classifiers
that compose to form a sentence meaning
by multiplying output scores. These clas-
sifiers apply to spatial regions (events) and
NES derives its semantic structure from lan-
guage by routing events to different classi-
fier argument inputs via soft attention. NES
is trainable end-to-end by gradient descent
with minimal supervision. We evaluate
our method on compositional grounded lan-
guage tasks in controlled synthetic and real-
world settings. NES offers stronger gener-
alization capability than standard function-
based compositional frameworks, while im-
proving accuracy over state-of-the-art neu-
ral methods on real-world language tasks.

1 Introduction

Capturing the compositional semantics of
grounded language is a long-standing goal in
natural language processing. Composition yields
systematicity, and is thus essential to developing
systems that can generalize broadly in real-world
settings. Recent progress with neural module
networks (Andreas et al., 2016b; Hu et al., 2017)
and related models (Johnson et al., 2017b; Yi
et al., 2018; Bahdanau et al., 2019a) have moved
neural network methods closer to this goal.

These works are largely based on the idea, func-
tionism (Montague, 1970), that semantic composi-
tion is function composition. In Fig. 1(a), func-
tion predicates compose by nesting: predicates
like “red” and “circle” operate on sets of ele-
ments, progressively filtering them at each step
(circle(red(x))). The final relational pred-
icate above is thus several steps removed from
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Figure 1: (a) Prior neural network methods for compo-
sitional semantics, such as neural module networks, de-
rive compositional structure through nested application
of function modules. This paradigm, rooted in func-
tionism, is powerful but retains drawbacks to learnabil-
ity due to its complexity. (b) We propose neural event
semantics (NES), a new framework based on conjunc-
tivism, where all words are classifiers and output scores
compose by simple multiplication. We call the input
spatial regions to these classifiers events: NES derives
semantic structure from language by learning how to
route event inputs of classifiers for different words in a
context-sensitive manner. By relaxing this routing op-
eration with soft attention, NES enables end-to-end dif-
ferentiable learning without low-level supervision for
compositional grounded language understanding.

the original inputs x,y. Similarly, in module net-
works, atomic module blocks compose by sequen-
tially passing outputs of intermediate blocks to
later modules. The diverse composition ruleset
needed to coordinate function inputs and outputs
leads to complexity in this paradigm, which has
practical implications for its fundamental learn-
ability. Indeed, neural module network instan-
tiations of this framework often depend on low-
level ground truth module layout programs (John-
son et al., 2017b) or large amounts of training
data to sustain end-to-end reinforcement learning
methods (Yi et al., 2018; Mao et al., 2019).
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While functionism is the dominant paradigm in
linguistic semantics, there is an intriguing alter-
native: event semantics (Davidson, 1967). Con-
junctivism (Pietroski, 2005) is a particularly pow-
erful version of event semantics, wherein the only
composition operator is conjunction — structure
arises by routing event variables to the function
predicates. We illustrate this key difference be-
tween paradigms in Figure 1: in a conjunctivist
setting (Fig. 1(b)), even the relational above
has events e1, e2 directly routed as input, rather
than taking inputs that are output results of a se-
quence of filter operations. Overall meaning
is still preserved, since e1 concurrently routes to
(red, circle) and e2 to (green, square).
All module outputs directly contribute to the final
truth value without intermediate steps. Altogether,
this shift from deriving compositional structure
by functional module layout to conjunctive events
routing offers a path to improved learnability; we
explore the implications of this line of thinking in
the context of compositional neural models.

We propose neural event semantics (NES), a
new conjunctivist framework for compositional
grounded language understanding. Our work ad-
dresses the drawbacks of modern neural mod-
ule approaches by re-examining the underlying
semantics framework, shifting from functionism
to conjunctivism. The focus of NES revolves
around event variables, abstractions of entities in
the world (e.g. in images, we can think of events
as spatial regions). We treat all words as event
classifiers: for each word, a single score indicates
the presence of a concept on a specific input (e.g.
red, above in Fig. 1(b)). We compose output
scores from classifiers by multiplication, gener-
alizing logical conjunction. The structural heart
of NES is the intermediate soft (attentional) event
routing stage, which ensures that these otherwise
independent word-level modules receive contextu-
ally consistent event inputs. In this way, the sim-
ple product of all classifier scores accurately rep-
resents the intended compositional structure of the
full sentence. Our NES framework is end-to-end
differentiable, able to learn from high-level super-
vision by gradient descent while providing inter-
pretability at the level of individual words.

We evaluate our NES framework on a series
of grounded language tasks aimed at assessing its
generalizability. We verify the merits of our con-
junctivist design in a controlled comparison with

functionist methods on the synthetic ShapeWorld
benchmark (Kuhnle and Copestake, 2017). We
show NES exhibits stronger systematic general-
ization over prior techniques, without requiring
any low-level supervision. Further, we verify the
flexibility of the framework in real-world language
settings, offering significant gains (+4 to 6 points)
in the state-of-the-art accuracy for language and
zero-shot generalization tasks on the CiC refer-
ence game benchmark (Achlioptas et al., 2019).

2 Background and Related Work

Compositional Neural Networks. The advent of
neural module networks (NMN) (Andreas et al.,
2016a,b; Hu et al., 2017) and related techniques
(Johnson et al., 2017b; Yi et al., 2018; Bahdanau
et al., 2019a) has proven to be a driving force
in compositional language understanding. These
techniques share a key principle: small, reusable
neural network modules stack together as func-
tional building blocks in an overall executable
neural program. A parsing system determines the
programmatic layout, wiring the outputs of inter-
mediate blocks to the inputs of other blocks.

The reliance of these techniques on pre-
specified module libraries, ground truth super-
vision on functional module layouts, and/or
sample-inefficient reinforcement learning meth-
ods (Williams, 1992) has motivated subsequent
work to eschew explicit semantics for recurrent
attentional computation techniques (Hudson and
Manning, 2018; Perez et al., 2018; Hu et al.,
2018; Hudson and Manning, 2019). This class of
more implicit semantics methods offers the ben-
efits of end-to-end differentiability of traditional
non-compositional neural networks (Lake et al.,
2017), making them better suited for real-world
settings. As a trade-off, however, these methods
exhibit less systematic generalization than their
more explicit counterparts (Marois et al., 2018;
Jayram et al., 2019; Bahdanau et al., 2019b).

Recent work has also suggested that the mod-
ular network approach leads to limitations of sys-
tematic generalization: functional module layout
can lead to entangled concept understanding (Bah-
danau et al., 2019a; Subramanian et al., 2020).
While these works go on to propose mitigating
measures, such as module-level pretraining, we
consider an orthogonal approach: re-visiting the
underlying semantics foundation. This enables us
to address the challenges jointly: our NES frame-
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Figure 2: We propose neural event semantics (NES), an end-to-end differentiable framework based on conjunc-
tivist event semantics (Sec 3.1). NES parses input text to a neural logical form F , which can score a given set of
input events. In NES, all words are event classifiers (Sec. 3.3) whose scores compose by multiplication (Sec. 3.4).
The structural heart of NES is a differentiable event argument routing operation (Sec. 3.2), ensuring arguments
to each event classifier are contextually correct. NES semantically grounds F to an input world W by existential
event variable intepretation (Sec. 3.5), finding a satisfying assignment (if one exists) of events e from values V .

work retains the end-to-end learnability of implicit
methods, while improving upon the systematic
generalizability of explicit ones.

Grounded Compositional Semantics. Our work
is also closely related to the broader, pre-neural
network body of prior work which developed
models for compositional semantics in grounded
language settings (Matuszek et al., 2012; Krishna-
murthy and Kollar, 2013; Malinowski and Fritz,
2014). These methods all share the two-stage ap-
proach of semantic parsing and evaluation, and
combine functionist and conjunctivist elements.
The parsing stage typically leverages a (function-
ist) combinatory categorial grammar (CCG) parser
(Zettlemoyer and Collins, 2005) to map input lan-
guage input to a discrete (conjunctive) logical
form bound by an existential closure. The eval-
uation stage passes visual segments as input to
these predicates to obtain a final score represent-
ing its truth condition. In our work, we aim to
generalize these frameworks to a modular neural
network setting, embracing conjunctivist design
across all stages to improve end-to-end learnabil-
ity. Our proposed soft event routing mechanism
relaxes prior discrete constraints and offers an al-
ternative to probablistic program (Krishnamurthy
et al., 2016) formulations. Together, NES is able
to learn how to predict the (soft) conjunctive neu-
ral logical forms while jointly learning the un-

derlying semantics of each concept (without pre-
specification) end-to-end from denotation alone.
Grounded Language Understanding. The space
of grounded language understanding methods and
tasks is large, encompassing tasks in image-
caption agreement (Kuhnle and Copestake, 2017;
Suhr et al., 2019), reference grounding (Monroe
et al., 2017; Achlioptas et al., 2019), instruction
following (Ruis et al., 2020; Vogel and Juraf-
sky, 2010; Chaplot et al., 2018), captioning (Chen
et al., 2015), and question answering (Antol et al.,
2015; Johnson et al., 2017a; Hudson and Manning,
2019), among others. Often, the ability to oper-
ate with only high-level labels is critical (Karpathy
and Fei-Fei, 2015). Consistent with recent work
(Bahdanau et al., 2019a), we center our analysis on
foundational tasks of caption agreement and refer-
ence grounding, on both synthetic and real-world
language data, with the understanding that core in-
sights can translate to related tasks.

3 Technical Approach

3.1 Prelude: Classical Conjunctivism to NES

To explain our proposed differentiable neural ap-
proach, we first revisit classical logic in our cur-
rent context. In conjunctivist event semantics
(Pietroski, 2005), we work with the space of exis-
tentially quantified conjunctions of predicates. For



illustration, consider the partial logical form:

∃e1, e2 ∈ V. [[circle(e1) ∧ on(e1, e2)]] (1)

where ei are event variables and V is the domain
of candidate event values. To evaluate this expres-
sion, we need an interpretation of the variables:
an assignment of event values in V to each event
variable ei. We then route these events to the argu-
ments of predicates based on the logical form. The
logical form gives the abstract template for which
events route to which inputs and, most crucially,
which arguments are shared across predicates (e1
routes to “circle” and the first argument of “on”).
We make this routing explicit by a routing ten-
sor Awri ∈ {0, 1}: for each argument slot (r) of
each predicate (w, for word), Awr∗ ∈ {0, 1}n is
a one-hot vector indicating which of the n event
variables ei ∈ e belongs in this argument slot. We
can thus rewrite the matrix expression in Eq. 1 as:

[[circle(A11∗e, A12∗e) ∧ on(A21∗e, A22∗e)]] (2)

Without loss of generality1, we upgrade each pred-
icate to take a fixed m arguments; here m = 2.
Eq. 2 makes it clear that the routing tensorA is the
key syntactical element specifying the structure of
the logical form in Eq. 1. Having routed events
ei to predicate arguments via A, we can evaluate
the predicates (“circle”, “on”). These predicates
are Boolean functions, assigned by a lookup ta-
ble (lexicon). We compose the outputs of these
Boolean functions by conjunction to get the truth-
value of the entire matrix. This describes how we
evaluate the matrix expression in Eq. 1 for a spe-
cific assignment of ei in V . We arrive at the fi-
nal interpretation of Eq. 1 by existential quantifi-
cation: searching over the possible assignments to
see if there exists one that makes the matrix true.

We emphasize that the logical form is fully de-
termined by the routing tensor A and the lexicon
mapping each word/predicate to a Boolean func-
tion. Evaluation is specified by conjunctive com-
position and finding a satisfying variable interpre-
tation. Our strategy to develop a learnable frame-
work is to soften each of the key components: ar-
gument routing (Sec. 3.2), predicate evaluation
(Sec. 3.3), conjunctive composition (Sec. 3.4),
and existential event interpretation (Sec. 3.5).

1We add a background event variable e∅, backed by a
null representation; A can route e∅ to extra slots. In Eq. 2,
routed events to “circle” are A11∗e = e1 and A12∗e = e∅.
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Figure 3: Words as Classifiers of Routed Events.
All words w correspond to modules Mw of a single
type signature. Predicted argument routing attention A
routes input events e from the overall logical form F to
the specific arguments in the event classifier Mw (per
Eq. 5), ensuring contextual consistency between event
classifiers for different words. qw, a decontextualized
word embedding, indicates to Mw its lexical concept.
Mw shown here with maximum arity m = 2 slots and
n = 3 events (including the ungrounded background
event e∅); since “circle” only binds to one argument e1,
the second slot is bound to e∅. See Sec. 3.2 and 3.3.

Overview. We propose a neural event semantics
(NES) framework, illustrated in Fig. 2, which re-
laxes this classical logic into a differentiable com-
putation that can be learned end-to-end. NES takes
a text statement T and constructs a neural logi-
cal form F . This form is specified by a now real-
valued routing tensor Awri ∈ [0, 1] and a lexicon
associating event classifiers Mw to each word w.
NES specifies composition via the product of clas-
sifier prediction scores, as a relaxation of conjunc-
tion. Finally, evaluation is completed by existen-
tially interpreting event variables ei into a domain
of event values V (grounded representations ex-
tracted from a visual world W ) by a max operator.

3.2 Differentiable Event Argument Routing

Our first key operation in NES is to predict the ar-
gument routing tensor A from the input language.
Critically, we relaxA from its original discrete for-
mulation in Sec. 3.1 to a continuous-valued one
Awri ∈ [0, 1], where Awr∗ ∈ [0, 1]n is normal-
ized by softmax over the index for the n events
ei. This softened routing can be seen as a form of
attention, determining which argument slot r for a
wordw will attend to which event variables ei (see
Fig. 3). We predict these attentions directly from
the input tokenized text sequence T = [t1, . . . , tl],
of length l. For each token word tw, we pass
a word embedding qw as input to a bidirectional
LSTM (Graves and Schmidhuber, 2005) which
serves as the sequence encoder and outputs for-
ward/backward hidden states (h→w , h

←
w ∈ Rdh)



capturing the bidirectional context surrounding tw.
Passing the concatenated states through a linear
layer, we obtain a final hidden state:

hw =W ([h→w , h
←
w ]) + b ∈ Rdh (3)

From hw, a multilayer perceptron (MLPROUTE)
network outputs for each argument slot r:

Awr∗ = softmax(MLPROUTE(hw)) (4)

Over the full input sequence of length l, we obtain
the full argument routing tensor A ∈ [0, 1]l×m×n,
with m argument slots per word and n events.
Note that the prediction of A from input text T
plays the role of capturing syntax for NES, using
the language to derive coordination of argument
routings across different words.2

A key design aspect of the routing operation:
because A can route an ungrounded background
event e∅ to (extra) argument slots, NES can implic-
itly learn the arity of each word. Further, the at-
tention formulation enables partial routing of such
background events; we observe later in Sec. 4.1.4
that this is critical to enabling the more complex
coordination necessary to handle negation.

3.3 Words as Event Classifiers
In NES, all words are event classifiers: words are
associated with modules Mw that output a real-
valued score sw of how true a lexical concept is
for a given set of (routed) event inputs (Sec. 3.2,
Fig. 3). Denoting events ei ∈ Rde , e∅ as a null
background event, and e = [e1 · · · en−1 | e∅] ∈
Rn×de , we can formalize the routed inputs as
Awr∗e ∈ Rde . The concatenation of these routed
inputs over all m argument slots is input to Mw.

While in principle the modules can be com-
pletely separate for each word in the lexicon, we
choose to share the weights of the different clas-
sifiers Mw: this improves memory efficiency for
large vocabularies and is helpful in real-world lan-
guage generalization settings. Thus, we can re-
alize modules Mw by an MLP network that re-
ceives the word embedding qw as further input (see
Fig. 3), computing its output sw as:

sw = σ(MLPMw([Aw1∗e, . . . , Awm∗e; qw]))
(5)

where σ denotes the sigmoid function that normal-
izes the output score sw ∈ [0, 1].3

2We emphasize that this is a language-only operation: co-
ordination here is not conditional on the later grounding step
to specific event values V in the visual world (Sec. 3.5).

3qw is a decontextualized embedding that only represents

3.4 Conjunctive Composition in NES
Per Sec. 3.1, the matrix of a classical conjunctive
logical form (for a given interpretation of vari-
ables) is evaluated by composing Boolean predi-
cate outputs by conjunction. For the neural logical
form F in NES, we consider the real-valued gener-
alization of conjunction: we compose the l word-
level scores sw from the classifiers Mw (Eq. 5) by
multiplication (

∏
w sw). For numerical stability,

we calculate the combined log score in log space:

log sF =
1

l

∑
w

log sw (6)

where the length normalization is optional but
helps with training on variable length sequences.

3.5 Existential Event Variable Interpretation
In the previous Sec. 3.2-3.4, we’ve described how
NES translates input language to a neural logical
form F , and how such a logical form can oper-
ate for a specific intepretation (binding) of events
to candidate values V . Now, we describe the fi-
nal existential variable interpretation step, which
relaxes the existential quantification of classical
logic (Eq. 1) into a max operation over possible
event interpretations of a specific input domain V .
Candidate Event Values V . We decompose our
input world W into a set of candidate event pro-
posals, with corresponding representation values
V . In our experiments, we process input visual
scenes W with a pre-trained convolutional visual
encoder φ (Simonyan and Zisserman, 2015; He
et al., 2016) to provide a set of up to k candidate
event value representations V = {v1, . . . , vk},
with v ∈ Rde . These candidate values capture
the information corresponding to the localized im-
age segment surrounding that specific event; we
base our approach on recent findings of object-
centric representations for compositional modular
network approaches (Yi et al., 2018). To capture
spatial information, we augment each representa-
tion with the spatial coordinates of the center of
its bounding box; this enables NES and our rele-
vant baseline methods (e.g. NMN) to assess the
semantics of spatial relationships (e.g. “below”)
while operating directly on event values.
Assignment and Final Scoring. Given the do-
main V of candidate event values, an interpreta-
tion is thus an assignment of each of the n − 1

the standalone lexical concept, not the recurrent embedding
hw. Consistent with Subramanian et al. (2020), we find this
improves systematic generalization in NES and baselines.



grounded event variables (we don’t include e∅) to
a unique value in V : we denote this assignment
operation as e ← V . We translate the existen-
tial closure (∃e1, e2 in Fig. 2) as an operation that
determines the best scoring assignment of event
candidate values to event variables. Expanded, the
final grounded score s∗F = max

e←V
sF is:

s∗F = max
e←V

1

l

∑
w

logMw(Aw1∗e, . . . , Awm∗e; qw)

(7)
Fig. 4 visualizes output score tables (including

sw, sF , s
∗
F ) with k = 2 candidate event values and

n = 3 events including background e∅. We high-
light that Fig. 4 shows how each individual module
provides consistent outputs depending on the spe-
cific event interpretation e ← V (e.g. “below” is
only true if (e1, e2) bind to (v2, v1), not (v1, v2)).
The final score s∗F reflects the sF of that correct
assignment, since it is the max score.

3.6 Training: Learning from Denotation
We train our overall system end-to-end with gradi-
ent descent with a dataset of (statement T , world
scene W , true/false denotation label Y ) triplets.
We apply a straightforward binary cross entropy
loss at the level of text statements and their truth
labels to the final output score s∗F , without need-
ing any low-level ground truth supervision of the
neural logical form. Overall, our full NES frame-
work offers advantages from both traditional neu-
ral module network methods and end-to-end dif-
ferentiable implicit semantics techniques.

The max operation in Eq. 7 is a technical chal-
lenge for the end-to-end training. To improve gra-
dient flow, we propose to use a tunable approxima-
tion fmax, which approaches the max as β → ∞
and is always upper-bounded by it:

fmax(s;β) =

∑
q (sq)

β+1∑
q (sq)

β
≤ max(s) (8)

In context, s is a vector of all the scores sF (Eq. 6)
corresponding to the assignments e← V , and the
output of Eq. 8 is a bounded approximation of s∗F
in Eq. 7. See Appendix A for correctness and de-
tails.4 During test-time inference, we still use the
original max operation shown in Eq. 7.

4Bound follows from Hölder’s inequality. Eq. 8 is im-
portant since standard alternatives (e.g. log-sum-exp) do not
have this upper-bound, and the possibility of multiple valid
assignments e ← V renders softmax inappropriate. Since
fmax converges quickly to the max operation as β increases,
we can use numerically stable values β ≤ 4 during training.
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Figure 4: Qualitative Results (Scoring). Example
end-to-end NES results on ShapeWorld. We show an
input world with two event candidates (for clarity) with
representations v1, v2 for the red and green circles, re-
spectively. We visualize the possible event assignments
(e1, e2) ∈ {(v1, v2), (v2, v1)} and the classifier scores
sw ∈ [0, 1] for each assignment, including stop words.
We find NES provides correct and consistent predic-
tions across assignments and concepts, without any ex-
plicit logical form-level supervision. See Sec. 4.1.4.

4 Experiments

4.1 Experiments: Synthetic Language

We design the first series of experiments to high-
light key compositional and generalization proper-
ties of NES in a controlled, synthetic setting.

4.1.1 Dataset and Tasks
ShapeWorld. Our synthetic tasks and datasets
are based on the ShapeWorld benchmark suite
(Kuhnle and Copestake, 2017), which was de-
signed specifically for evaluation of compositional
models for grounded semantics. Here, events
are based on simple objects: shapes with differ-
ent color attributes and spatial relationships. Im-
ages are generated by sampling events from task-
specific distributions with visual noise (e.g. hue,
size variance), and are placed without hard grid
constraints. For each image, multiple true/false
language statements are generated with a tem-
plated grammar (Copestake et al., 2016). Negative
statements are generated close to the distribution
of positive statements to ensure difficulty: models
must understand all aspects of the statement cor-
rectly to output a truth condition label. We visual-
ize an example in the qualitative results (Fig. 4).
Task A: Standard Generalization. This gener-
alization task evaluates compositional models on
the standard setting where train and evaluation
splits are based on the same underlying input event
distribution. This task is similar to the original
SHAPES dataset (Andreas et al., 2016b), without
shape positions locked to a 3× 3 spatial grid.



Standard (Task A) Compositional (Task B)
0.7

0.8

0.9

1.0
Ac

cu
ra

cy

NMN-GT
NES-GT

Figure 5: Validating Conjunctivism. Here, we pro-
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Figure 6: Validating Conjunctivism: Attribute Re-
sponse. Response graphs for color attributes on Shape-
World data in Task B. Our conjunctivist NES frame-
work offers stronger disentangled understanding of
each word as a concept classifier, compared to the prior
functionist NMN framework. See Sec. 4.1.3.

Task B: Compositional Generalization. The
compositional generalization task examines the
systematic generalization of models to an unseen
event distribution. During test time, every instance
has at least one event sampled from a held-out dis-
tribution. For example, while red triangles and
blue squares may be present at train time, blue
triangles and red squares are only present during
test time. Critically, any language associated with
these unseen events is always false during train-
ing since these events are never actually present.
Thus, models that overfit on complete phrases dur-
ing training will not generalize well at test time.

Task Variant: Negation. For both tasks, we in-
clude a variation with negation to ensure NES
can model non-intersective modifiers, which are
prevalent in real-world grounded language. In
these variants, true and false statements that in-
clude attribute-level negation (e.g. phrases like
“not red”) are also generated for each image.

4.1.2 Baseline and Model Details

Baselines. Across our synthetic experiments, we
compare NES against baselines in 3 categories:
• Black-box neural networks. These baseline
neural network models combine CNN, LSTM,
and attention components (Johnson et al., 2017a)
and represent standard end-to-end black-box tech-
niques for language + vision tasks.
• Functionist approaches. For our functionist
baselines, we consider the prevailing parameter-
izations of the neural module networks (NMN)
framework (Andreas et al., 2016b). For the mod-
ules, we leverage the base generic module design
introduced in the E2ENMN framework (Hu et al.,
2017; Bahdanau et al., 2019a). Because our ex-
periments are event-centric, the inputs and imple-
mentation of the framework are consistent with
prior work (Yi et al., 2018; Mao et al., 2019; Sub-
ramanian et al., 2020). Thus, each module takes
as input a set of localized event values (originally
from the image), an attention over these values
(from a preceding module step), and a decontex-
tualized word embedding. The module then ap-
plies the attention and processes the input, be-
fore outputting an updated attention to be used
in dependent downstream module steps. For end-
to-end (E2E) experiments, ground truth programs
are used to pre-train the parsing module layout
generator, which is the structural heart of NMN.
This parser is implemented using a sequence-
to-sequence Bi-LSTM (Hu et al., 2017; Johnson
et al., 2017b). We emphasize that, in our experi-
ments, we ensure consistent hidden state sizes for
both the modules and the sequence encoder for
NMN and NES, as well as consistent event-centric
visual + decontextualized word embedding input.
• Implicit semantics methods. This class of
models leverages recursive computation units with
attention over visual and textual input to provide
better compositionality than traditional end-to-end
black-box neural network methods. We exam-
ine the MAC model (Hudson and Manning, 2018,
2019) as a representative baseline, following re-
cent prior work (Bahdanau et al., 2019a). Similar
to our NMN baseline, we report results with an
event-centric version of the MAC model, follow-
ing Mao et al. (2019), such that MAC is able to
attend over a discrete set of localized event values.
Thus, we can enable fair and consistent compari-
son of MAC, NMN, and other baselines with NES.

Implementation Details. Models and baselines
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Figure 7: End-to-End Methods. Generalization performance of end-to-end-methods on ShapeWorld tasks. We
observe that our conjunctivist NES framework offers stronger generalization performance on both standard (Task
A) and systematic (Task B) compositional task settings. See Section 4.1.4 for additional details and analysis.

are implemented in PyTorch (Paszke et al., 2019).
Localized event candidate values V are extracted
by a pre-processing step. Our encoder φ is a
ResNet-101 network (He et al., 2016), and lo-
calized event feature representations are based on
conv4 features per prior work (Johnson et al.,
2017a; Hudson and Manning, 2018) with pixel
grid coordinates (per Sec. 3.5) to capture the nec-
essary spatial and visual information for the down-
stream semantics. Following standard work in
object detection (He et al., 2017), we use pool-
ing to ensure all localized event values have the
same dimension. Word embeddings are 300-dim
GloVe.6B embeddings (Pennington et al., 2014).
All text and visual inputs are consistent across all
models for fair comparison. As noted previously,
model sizes are also kept consistent across models
where applicable. Please refer to the supplement
for implementation and additional details.5

4.1.3 Validating Conjunctivism

Overview. Our first experiments are centered
around validating a fundamental design princi-
ple underlying our NES framework: that concept
meaning can be effectively represented by con-
junction of event classifiers. Both NMN and NES
leverage syntax to guide their compositional struc-
ture: functional module layout (NMN) and event
routing (NES), respectively.6 Here, we isolate the
impact of the design philosophy on the quality of
the learned semantics by providing ground truth

5Available at https://neural-event-semantics.github.io/
6We note that while we focus on the functionist realiza-

tions of NMNs prevalent in prior work, we recognize that the
broader family of modular network approaches can include
conjunctivist elements as well. A key intention of these ex-
periments is to illustrate the value of our conjunctivist design
as a compelling direction for future modular network design.

(GT) “syntax” (layout or routing) to each frame-
work, assessing performance on Tasks A and B.
Systematic Generalization. Figure 5 shows the
results for both NMN-GT and NES-GT. Both
frameworks perform equally well on the standard
generalization task (Task A), showing that the
NES conjunctivist design preserves the efficacy
of the functionist paradigm. In Task B however,
while both frameworks perform reasonably well,
NES exhibits stronger systematic generalization
capability than the NMN model when evaluated
on an unseen event distribution. These quantitative
results suggest that NES enables a stronger decou-
pling of individual concepts, yielding higher accu-
racy when they are composed for unseen events.

To explore concept disentanglement further, we
analyze the color sensitivity of color words in Fig-
ure 6. For this analysis, we take the trained models
from Task B and examine the normalized response
score of different modules (e.g. red) to a con-
tinuous spectrum of color input. We sample the
input shapes for each color classifier from the un-
seen event distribution. Our analysis suggests that
NES offers stronger disentanglement of attribute
concepts: color words respond to separated and
appropriate spectral regions, in contrast to NMN.7

4.1.4 End-to-End Experiments

Overview. Having validated that conjunctivist
composition can support strong performance with
known event routings, our second set of synthetic
experiments are designed to assess the full end-
to-end learning capability of the NES framework,
including the critical event routing stage. In this
setting, we offer no ground truth logical form input

7This finding, with respect to NMN, is analogous and con-
sistent with concurrent prior work (Subramanian et al., 2020).

https://neural-event-semantics.github.io/
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Figure 8: Learned Event Routing. We visualize the
predicted soft event routings of a sentence from Fig-
ure 4. (i) shows how “a” and “triangle” are effectively
arity-1 functions, with the same event e1 routed to their
first argument, and e∅ to the second. (iii) shows the
same, with e2. (ii) shows an arity-2 routing for rela-
tional predicates, and (iv) shows how punctuation can
be given an arity-0 routing. See Sec. 4.1.4.

or supervision to the NES model, and evaluate per-
formance on all tasks. We do necessary program
layout pre-training for the E2E-Func (NMN) base-
line prior to end-to-end REINFORCE training.
Generalization. In Figure 7, we show that our
initial findings in Sec. 4.1.3 hold in the more gen-
eral end-to-end setting, across the broader set of
model classes. While compositional methods con-
sistently outperform the noncompositional base-
lines, there is a clear differentiation between MAC
and NES/E2E-Func on Task B (systematic novel-
event generalization). This suggests that MAC re-
lies too strongly on correlative associations of text
phrases for unseen events, overfitting at training.

In Fig. 4, we visualize a table of NES score
predictions on a specific input V , using a two-
event setting for visual clarity. An input state-
ment is considered true if there is an assignment
(grounding to V ) of the events with a high overall
score. Across different event assignments e← V ,
NES provides consistent and correct score out-
puts. Because NES considers each word as its own
event classifier (with appropriate routing), it pro-
vides interpretable indicators for which attributes
are specifically not present for each assignment.

In Figure 8, we visualize the event routing pre-
dictions from an example NES model trained end-
to-end. Consistent with our observation in Fig-
ure 4, we see that the model can learn approx-
imate routings and implicit arity of the different
event classifiers. Though event routings are mod-
eled as soft attention and classifier output scores
are continuous, both have approached nearly dis-
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Figure 9: Negation with NES. (a) We visualize one
way in which NES can handle coordination for non-
intersective modifiers (e.g. attribute negation) by lever-
aging the background event e∅. NES soft routing leads
to a modified event argument input e′1 attending over e1
and e∅, enabling the red classifier to output the oppo-
site prediction (now, output score = 1.0 if original e1 is
not red). (b) NES performance on Task A and B nega-
tion variants remains consistent. Ablation (Sec. 4.1.4)
highlights the impact of the event routing mechanism.

crete outputs by the end of learning, capturing the
underlying logical structure of the domain.8

Negation. Finally, we demonstrate that NES is
capable of handling non-intersective modifiers by
examining its ability to model property negation.
In contrast with functionist models, conjunctivist
event semantics must handle negation through
modification of the input event to the given pred-
icate (Pietroski, 2005). In Figure 9, we show the
results from these experiments. First, we observe
that NES can maintain the same level of general-
ization accuracy in variants of Task A and B that
contain negation. Visualizing an example model,
we see that NES learns to coordinate negation
through its event routing stage: the presence of
“not” in the textual input can lead NES to predict
a soft routing Aw1∗ that attends to a combination
of both e1 and the ungrounded background e∅ for
the first argument of “red” (denoted as e′1 in the
example). Now, when this specific “red” attribute
classifier processes its updated event arguments,
its classification behavior is reversed: a high score

8Without low-level supervision to break symmetry, it is
possible for separate end-to-end training runs to learn dif-
ferent but equivalent routing schemes (and matching event
classifiers): for example, NES can learn event classifiers M
where argument slot 2 is consistently its primary slot (instead
of slot 1). In such a case, we can use the jointly learned (con-
sistently inverted) event routings to remap for visualization.



when the attribute is not present in the original e1.
We compare with an ablation variant of NES

that removes this routing flexibility: for attribute
classifiers Mw, we restrict their routing attention
Aw∗∗ to only consider the n − 1 grounded events
in the first argument slot (removing e∅ from con-
sideration) and fix the second slot a2 to the back-
ground e∅. Because individual event classifier
modules only take decontextualized word embed-
dings, the event routing mechanism is the only way
for context information to influence the classifica-
tion. Thus, this ablation directly reflects the im-
pact of the flexible event routing mechanism and
its usage of the ungrounded background event to
handle more complex language settings. We find
that while the ablation maintains performance on
the standard tasks, its accuracy significantly de-
creases in this setting where some input statements
have negation. Overall, we observe that the rich,
augmented event space and flexible event routing
stage enable our conjunctivist framework to learn
how to model non-intersective modifiers, a crucial
step for real-world language (Sec. 4.2).

4.2 Experiments: Real-World Language

Having validated the efficacy of NES in a con-
trolled synthetic setting, we now explore NES in
a grounded reference game task to demonstrate its
broader applicability. Because the overall end-to-
end NES framework requires no low-level super-
vision during training, it mirrors the broader ap-
plicability of implicit semantics methods (MAC)
to less structured, human-generated language.
Chairs-in-Context (CiC). The Chairs-in-Context
(CiC) dataset (Achlioptas et al., 2019) con-
tains chairs and other objects from the ShapeNet
dataset, paired with human-generated language
collected in the context of a reference game. Each
CiC input consists of a set of 3 chairs representing
a contrastive communication context, with a hu-
man utterance (up to 33 tokens) intended to iden-
tify one of the chairs. In total, there are over 75k
triplets with an 80-10-10 split for train-val-test.
CiC also contains a zero-shot evaluation set with
triplets of unseen object classes (e.g. tables). CiC
is challenging due to its relatively long-tail lan-
guage diversity and varied visual inputs.
Task A: Language Generalization. Our first CiC
benchmark task is language generalization, where
a model must ground the specific chair from the
input set given a referring utterance. The dataset

Table 1: CiC-Language Generalization. NES on
real-world language from the Chairs-in-Context (CiC)
dataset. *SG architectures from Achlioptas et al.
(2019) are the previously reported state-of-the-art
method. NES+ grounds sub-events on the feature grid
input. -SN indicates ShapeNet pre-trained features.

METHOD INPUT LISTENER ACC.

MAJORITY N/A 0.333

*SG-NOATTN VGG16-SN 0.812 ± 0.008
*SG-ATTN VGG16-SN 0.817 ± 0.008

LSTM-ATTN VGG16-SN 0.731 ± 0.012
POE VGG16-SN 0.752 ± 0.009

NMN VGG16-SN 0.763 ± 0.023
MAC VGG16-SN 0.818 ± 0.013

NES VGG16 0.842 ± 0.005
NES VGG16-SN 0.856 ± 0.005

NES RES101 0.853 ± 0.011
NES+ RES101 0.870 ± 0.009

Table 2: CiC-Zero Shot Generalization. Zero-
shot generalization to unseen objects on the Chairs-in-
Context (CiC) dataset. Results suggest NES can learn
words as event classifiers in a general, object-agnostic
manner. *SG model from (Achlioptas et al., 2019).

ZERO-SHOT CLASSES

MODEL LAMP BED TABLE SOFA ALL

MAJOR. 0.333 0.333 0.333 0.333 0.333

*SG 0.501 0.564 0.637 0.536 0.560

POE 0.422 0.466 0.587 0.483 0.490
NMN 0.462 0.492 0.572 0.532 0.515
MAC 0.533 0.531 0.632 0.551 0.567

NES
w/VGG16 0.544 0.578 0.693 0.588 0.601
w/Res101 0.573 0.589 0.715 0.610 0.622

split ensures no overlap in speaker-listener pairs
between training and evaluation, so models must
generalize to new communication contexts.
Task B: Zero-Shot Generalization. Our sec-
ond CiC benchmark task is zero-shot generaliza-
tion, which examines the ability for the model to
generalize from understanding attribute concepts
learned in a chairs context to contexts with unseen
object classes like tables and lamps. The overall
task setting is the same as before, but during eval-
uation the triplets are composed of objects from
a particular unseen class. For consistency with
prior work, all models here are evaluated on an
image-only setting (i.e. no 3D point-cloud repre-
sentation). We provide a breakdown of the results
on the full zero-shot transfer set by class.
Models and Implementation. Our main base-
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Figure 10: CiC Qualitative Results. We visualize results on the (a) CiC evaluation set and (b) zero-shot evaluation
set. Chair and bed triplets (c∗, b∗) are shown with NES output scores. Tables show relative classifier scores that are
normalized per word, for visualization purpose only (e.g. if a word has classifier scores of 1.0 across events, then
we show them as 0.333). NES grounds real-world reference language and provides meaningful interpretability on
how individual classifiers contribute to the final score. (c) Event classifiers can be used standalone for retrieval,
showing lexical consistency between antonyms – (d) shows Pearson correlations (p-value< 1e−13). See Sec. 4.2.

line is the recent ShapeGlot (SG) architecture
(Achlioptas et al., 2019). The SG baseline lever-
ages recurrent, convolutional, and attention com-
ponents in an end-to-end architecture to achieve
state-of-the-art performance on the language and
zero-shot generalization datasets. We also con-
sider a conjunctive baseline with event classifiers
without the soft event routing stage, reminiscent of
a product-of-experts (PoE) classification setting.
This baseline serves to illustrate the impact of the
flexible routing stage on compositionality, and in
particular handling of non-intersective modifiers.
We additionally report two compositional base-
lines from Sec. 4.1.2, MAC and NMN, follow-
ing the protocols outlined by our previous end-
to-end synthetic experiments 4.1.4. Because CiC
contains unstructured human-generated text and it
is difficult to train NMN end-to-end from denota-
tion alone, we initialize the sequence-to-sequence
program generator in the NMN baseline by pre-
training on auxiliary parse information for 1,000
examples (Suhr et al., 2019; Yi et al., 2018); all
other baselines do not have any additional supervi-
sion data. Finally, we also consider a denser input
event space for NES corresponding to sub-regions
in the image input. Here, sub-events are addition-
ally sampled from the (unannotated) final conv4
feature grid of the encoder network; we denote this
as NES+ in our experiments. We adopt consis-
tent experimental settings from Achlioptas et al.
(2019), treating each chair as an event candidate
space, with predictions normalized by 3-way soft-

max over possible target images. All model sizes
are kept comparable in number of parameters for
fair comparison. We leverage the same pre-trained
VGG16 features (Simonyan and Zisserman, 2015;
Chang et al., 2015) and GloVe (Wiki.6B) embed-
dings (Pennington et al., 2014). For completeness,
we report results with VGG16 and ResNet-101
without ShapeNet pre-training for both tasks.
Analysis. We report our results in Table 1 and
Table 2 against the prior state-of-the-art SG ar-
chitecture (Achlioptas et al., 2019). The MAC
baseline provides comparable performance to the
prior state-of-the-art. The NMN baseline has rea-
sonable accuracy, albeit lower than the MAC and
SG baselines. This is likely due to the ambigu-
ity in longer token sequences (up to 33 tokens),
which can contain filler words and occasional dis-
fluencies that hurt the efficacy of the sequence-to-
sequence program generator. Nonetheless, NMN
outperforms the PoE baseline, which serves as a
simplistic conjunctive modular baseline without
the NES event routing framework.

We observe that our model improves over
the prior state-of-the-art work on this dataset by
a large margin on the original neural listener
task. Further, NES significantly improves zero-
shot generalization performance, indicating that
it has learned event classifiers for attributes (e.g.
“messy”, “tall”) that can generalize to entirely un-
seen input event distributions. We visualize qual-
itative results in Fig. 10: NES can provide inter-
pretable event classifier outputs at the word level



without any additional low-level supervision, in
both the main (chairs) and unseen zero-shot set-
tings. We also show how learned event classi-
fiers are lexically consistent by performing stan-
dalone retrieval of antonym pairs. We observe that
high-ranked retrievals for a word classifier corre-
late with low-ranked retrievals of its antonym.

4.3 Overall Discussion

We provide additional discussion of the overall
NES framework, considering its broader implica-
tions, limitations, and avenues for further work.
Broader Generality. In the above sections, we
have described our key results of NES on the
ShapeWorld and CiC benchmarks. However,
modular neural network approaches like NMN are
intuitively suited to settings where the visual and
language environments are particularly regular,
context-free, and unambiguous. In its current for-
mulation, NES is similarly suited to such struc-
tured settings: effective generalization to highly ir-
regular and context-sensitive vision and language
settings in images and videos (Zhou et al., 2019;
Huang* et al., 2018), remains outside the current
scope of the presented paper. Nonetheless, we
believe that careful consideration of key elements
in the NES framework, such as the proposed soft
event routing system with ungrounded events for
coordinating richer meaning, can offer a promis-
ing route towards improving the state-of-the-art.
Computational Complexity. Through its existen-
tial quantification operating over events, the com-
plexity of event assignment (Eq. 7) during infer-
ence scales by O(kn−1), where k is the number of
visual event candidates V and n−1 the number of
events e in the logical form F (excluding e∅). This
was not an issue in the domains examined here,
but may become one in complex vision-language
domains. Exploring potential relationships with
concurrent techniques (Bogin et al., 2020) that in-
crease computational complexity but also improve
systematicity may prove insightful here as well.

5 Conclusion

In this work, we introduced neural event seman-
tics (NES) for compositional grounded language
understanding. Our framework’s conjunctivist de-
sign offers a compelling alternative to designs
rooted primarily in function-based semantics: by
deriving structure from events and their (soft) rout-
ings, NES operates with a simpler composition

ruleset (conjunction) and effectively learns seman-
tic concepts without any low-level ground truth
supervision. Controlled synthetic experiments
(ShapeWorld) show the generalization benefits of
our framework, and we demonstrate broader appli-
cability of NES on real-world language data (CiC)
by significantly improving language and zero-shot
generalization over prior state-of-the-art. Ulti-
mately, our work shows that deep consideration of
the mechanisms for compositional neural methods
may yield techniques better suited for differen-
tiable neural modeling, maintaining core expres-
sivity for grounded language understanding tasks.

A Appendix: Equation 8

We describe a formula for an approximation of the
max function (L∞-norm), used during training to
improve end-to-end gradient flow (Sec. 3.6). Let
s ∈ Rn ≥ 0 be a vector of non-negative scores.
We consider fmax : Rn → R (Eq. 8 in Sec 3.6):

fmax(s;β) =

∑
i (si)

β+1∑
i (si)

β

where β ≥ 0 is a hyperparameter. As β → ∞,
fmax(s;β) → s∗, where s∗ = max(s) = L∞(s).
We can show this by dividing the numerator and
denominator by (s∗)β+1 and taking the limit:

lim
β→∞

fmax(s) = lim
β→∞

(∑
i (si)

β+1
/ (s∗)

β+1∑
i (si)

β
/ (s∗)

β+1

)
(9)

Now all terms where |si| < s∗ tend to 0, leaving
us just the maximum terms in the numerator and
denominator where |si| = s∗. Thus, Eq. 9 reduces
to 1

1/s∗ = s∗ , as desired.
Further, |fmax(s)| has the essential property of

always being upper-bounded by s∗. We show this
by Hölder’s inequality. Let xi = si, yi = (si)

β ,
and let p → ∞ and q → 1 (satisfying conditions
1/p+ 1/q = 1 and p, q ∈ (1,∞)). Then,

∑
i

|xiyi| ≤

(∑
i

|xi|p
) 1

p
(∑

i

|yi|q
) 1

q

∑
i |xiyi|

(
∑
i |yi|q)

1
q

≤

(∑
i

|xi|p
) 1

p

|fmax(s)| ≤ L∞(s) = s∗

Thus, with non-negative scores si ≥ 0, we have
lim
β→∞

fmax(s) = max(s) and fmax(s) ≤ max(s).
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