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This work investigates the use of linguistically motivated features to improve search, in par-
ticular for ranking answers to non-factoid questions. We show that it is possible to exploit
existing large collections of question–answer pairs (from online social Question Answering sites)
to extract such features and train ranking models which combine them effectively. We investigate
a wide range of feature types, some exploiting natural language processing such as coarse word
sense disambiguation, named-entity identification, syntactic parsing, and semantic role label-
ing. Our experiments demonstrate that linguistic features, in combination, yield considerable
improvements in accuracy. Depending on the system settings we measure relative improvements
of 14% to 21% in Mean Reciprocal Rank and Precision@1, providing one of the most compelling
evidence to date that complex linguistic features such as word senses and semantic roles can have
a significant impact on large-scale information retrieval tasks.

1. Introduction

The problem of Question Answering (QA) has received considerable attention in the
past few years. Nevertheless, most of the work has focused on the task of factoid
QA, where questions match short answers, usually in the form of named or numerical
entities. Thanks to international evaluations organized by conferences such as the Text
REtrieval Conference (TREC) and the Cross Language Evaluation Forum (CLEF) Work-
shop, annotated corpora of questions and answers have become available for several
languages, which has facilitated the development of robust machine learning models
for the task.1
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Table 1
Sample content from Yahoo! Answers.

High Q: How do you quiet a squeaky door?
Quality A: Spray WD-40 directly onto the hinges of the door. Open and close the door

several times. Remove hinges if the door still squeaks. Remove any rust,
dirt or loose paint. Apply WD-40 to removed hinges. Put the hinges back,
open and close door several times again.

High Q: How does a helicopter fly?
Quality A: A helicopter gets its power from rotors or blades. So as the rotors turn,

air flows more quickly over the tops of the blades than it does below.
This creates enough lift for flight.

Low Q: How to extract html tags from an html documents with c++?
Quality A: very carefully

The situation is different once one moves beyond the task of factoid QA. Com-
paratively little research has focused on QA models for non-factoid questions such
as causation, manner, or reason questions. Because virtually no training data is avail-
able for this problem, most automated systems train either on small hand-annotated
corpora built in-house (Higashinaka and Isozaki 2008) or on question–answer pairs
harvested from Frequently Asked Questions (FAQ) lists or similar resources (Soricut
and Brill 2006; Riezler et al. 2007; Agichtein et al. 2008). None of these situations is
ideal: The cost of building the training corpus in the former setup is high; in the latter
scenario the data tend to be domain-specific, hence unsuitable for the learning of open-
domain models, and for drawing general conclusions about the underlying scientific
problems.

On the other hand, recent years have seen an explosion of user-generated content
(or social media). Of particular interest in our context are community-driven question-
answering sites, such as Yahoo! Answers, where users answer questions posed by other
users and best answers are selected manually either by the asker or by all the partici-
pants in the thread.2 The data generated by these sites have significant advantages over
other Web resources: (a) they have a high growth rate and they are already abundant;
(b) they cover a large number of topics, hence they offer a better approximation of open-
domain content; and (c) they are available for many languages. Community QA sites,
similar to FAQs, provide a large number of question–answer pairs. Nevertheless, these
data have a significant drawback: they have high variance of quality (i.e., questions
and answers range from very informative to completely irrelevant or even abusive).
Table 1 shows some examples of both high and low quality content from the Yahoo!
Answers site.

In this article we investigate two important aspects of non-factoid QA:

1. Is it possible to learn an answer-ranking model for non-factoid questions, in a
completely automated manner, using data available in on-line social QA sites?
This is an interesting question because a positive answer indicates that a
plethora of training data are readily available to researchers and system

2 http://answers.yahoo.com.
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developers working on natural language processing, information retrieval,
and machine learning.

2. Which features and models are more useful in this context, that is, ample but
noisy data? For example: Are similarity models as effective as models that
learn question-to-answer transformations? Does syntactic and semantic
information help?

Social QA sites are the ideal vehicle to investigate such questions. Questions posted
on these sites typically have a correct answer that is selected manually by users. As-
suming that all the other candidate answers are incorrect (we discuss this assumption
in Section 5), it is trivial to automatically organize these data into a format ready for
discriminative learning, namely, the pair question–correct answer generates one posi-
tive example and all other answers for the same question are used to generate negative
examples. This allows one to use the collection in a completely automated manner to
learn answer ranking models.

The contributions of our investigation are the following:

1. We introduce and evaluate many linguistic features for answer re-ranking.
Although several of these features have been introduced in previous work,
some are novel in the QA context, for example, syntactic dependencies
and semantic role dependencies with words generalized to semantic tags.
Most importantly, to the best of our knowledge this is the first work that
combines all these features into a single framework. This allows us to
investigate their comparative performance in a formal setting.

2. We propose a simple yet powerful representation for complex linguistic
features, that is, we model syntactic and semantic information as bags of
syntactic dependencies or semantic role dependencies and build similarity
and translation models over these representations. To address sparsity,
we incorporate a back-off approach by adding additional models where
lexical elements in these structures are generalized to semantic tags.
These models are not only simple to build, but, as our experiments
indicate, they perform at least as well as complex, dedicated models such
as tree kernels.

3. We are the first to evaluate the impact of such linguistic features in a
large-scale setting that uses real-world noisy data. The impact on QA of
some of the features we propose has been evaluated before, but these
experiments were either on editorialized data enhanced with gold
semantic structures (e.g., the Wall Street Journal corpus with semantic
roles from PropBank [Bilotti et al. 2007]), or on very few questions
(e.g., 413 questions from TREC 12 [Cui et al. 2005]). On the other hand,
we evaluate on over 25,000 questions, and each question has up to
100 candidate answers from Yahoo! Answers. All our data are processed
with off-the-shelf natural language (NL) processors.

The article is organized as follows. We describe our approach, including all the
features explored for answer modeling, in Section 2. We introduce the corpus used in
our empirical analysis in Section 3. We detail our experiments and analyze the results
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in Section 4. Section 5 discusses current shortcomings of our system and proposes
solutions. We overview related work in Section 6 and conclude the article in Section 7.

2. Approach

Figure 1 illustrates our QA architecture. The processing flow is the following. First, the
answer retrieval component extracts a set of candidate answers A for a question Q
from a large collection of answers, C, provided by a community-generated question-
answering site. The retrieval component uses a state-of-the-art information retrieval
(IR) model to extract A given Q. The second component, answer ranking, assigns to
each answer Ai ∈ A a score that represents the likelihood that Ai is a correct answer
for Q, and ranks all answers in descending order of these scores. In our experiments,
the collection C contains all answers previously selected by users of a social QA site
as best answers for non-factoid questions of a certain type (e.g., “How to” questions).
The entire collection of questions, Q, is split into a training set and two held-out sets:
a development one used for parameter tuning, and a testing one used for the formal
evaluation.

Our architecture follows closely the architectures proposed in the TREC QA track
(see, e.g., Voorhees 2001). For efficiency reasons, most participating systems split the
answer extraction phase into a retrieval phase that selected likely answer snippets
using shallow techniques, followed by a (usually expensive) answer ranking phase
that processes only the candidates proposed by the retrieval component. Due to this
separation, such architectures can scale to collections of any size. We discuss in Section 6
how related work has improved this architecture further—for example, by adding
query expansion terms from the translation models back to answer retrieval (Riezler
et al. 2007).

The focus of this work, however, is on the re-ranking model implemented in the
answer ranking component. We call this model FMIX—from feature mix—because the
proposed scoring function is a linear combination of four different classes of features

Figure 1
Architecture of our QA framework.
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(detailed in Section 2.2). To accommodate and combine all these feature classes, our
QA approach combines three types of machine learning methodologies (as highlighted
in Figure 1): the answer retrieval component uses unsupervised IR models, the an-
swer ranking is implemented using discriminative learning, and finally, some of the
ranking features are produced by question-to-answer translation models, which use
class-conditional generative learning. To our knowledge, this combined approach is
novel in the context of QA. In the remainder of the article, we will use the FMIX
function to answer the research objectives outlined in the Introduction. To answer the
first research objective we will compare the quality of the rankings provided by this
component against the rankings generated by the IRmodel used for answer retrieval. To
answer the second research objective we will analyze the contribution of the proposed
feature set to this function.

We make some simplifying assumptions in this study. First, we will consider only
manner questions, and in particular only “How to” questions. This makes the corpus
more homogeneous and more focused on truly informational questions (as opposed
to social questions such as “Why don’t girls like me?”, or opinion questions such as
“Who will win the next election?”, both of which are very frequent in Yahoo! Answers).
Second, we concentrate on the task of answer-re-ranking, and ignore all other modules
needed in a complete on-line social QA system. For example, we ignore the problem
of matching questions to questions, very useful when retrieving answers in a FAQ or
a QA collection (Jeon, Croft, and Lee 2005), and we ignore all “social” features such as
the authority of users (Jeon et al. 2006; Agichtein et al. 2008). Instead, we concentrate on
matching answers and on the different textual features. Hence, the document collection
used in our experiments contains only answers, without the corresponding questions
answered. Furthermore, we concentrate on the re-ranking phase and we do not explore
techniques to improve the recall of the initial retrieval phase (by methods of query
expansion, for example). Such aspects are complementary to our work, and can be
investigated separately.

2.1 Representations of Content

One of our main interests in using very large data sets was to show that complex lin-
guistic features can improve rankingmodels if they are correctly combinedwith simpler
features, in particular using discriminative learning methods on a particular task. For
this reason we explore several forms of textual representation going beyond the bag
of words. In particular, we generate our features over four different representations
of text:

Words (W): This is the traditional IR view where the text is seen as a bag of words.

n-grams (N): The text is represented as a bag of word n-grams, where n ranges from two
up to a given length (we discuss structure parameters in the following).

Dependencies (D): The text is converted to a bag of syntactic dependency chains. We
extract syntactic dependencies in the style of the CoNLL-2007 shared task using the
syntactic processor described in Section 3.3 From the tree of syntactic dependencies we
extract all the paths up to a given length following modifier-to-head links. The top part

3 http://depparse.uvt.nl/depparse-wiki/SharedTaskWebsite.
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Figure 2
Sample syntactic dependencies and semantic tags.

Figure 3
Sample semantic proposition.

of Figure 2 shows a sample corpus sentence with the actual syntactic dependencies ex-
tracted by our syntactic processor. The figure indicates that this representation captures
important syntactic relations, such as subject–verb (e.g., helicopter

SBJ−−→ gets) or object-
verb (e.g., power

OBJ−−→ gets).

Semantic Roles (R): The text is represented as a bag of predicate–argument rela-
tions extracted using the semantic parser described in Section 3. The parser follows the
PropBank notations (Palmer, Gildea, and Kingsbury 2005), that is, it assigns semantic
argument labels to nodes in a constituent-based syntactic tree. Figure 3 shows an exam-
ple. The figure shows that the semantic proposition corresponding to the predicate gets
includes A helicopter as the Arg0 argument (Arg0 stands for agent), its power as the Arg1
argument (or patient), and from rotors or blades as Arg2 (or instrument). Semantic roles
have the advantage that they extract meaning beyond syntactic representations (e.g., a
syntactic subject may be either an agent or a patient in the actual proposition). We con-
vert the semantic propositions detected by our parser into semantic dependencies using
the same approach as Surdeanu et al. (2008), that is, we create a semantic dependency
between each predicate and the syntactic head of every one of its arguments. These
dependencies are labeled with the label of the corresponding argument. For example,
the semantic dependency that includes the Arg0 argument in Figure 3 is represented as
gets

Arg0
−−→ helicopter. If the syntactic constituent corresponding to a semantic argument is
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a prepositional phrase (PP), we convert it to a bigram that includes the preposition and
the head word of the attached phrase. For example, the tuple for Arg2 in the example is
represented as gets

Arg2
−−→ from-rotors.

In all representations we remove structures where either one of the elements is a
stop word and convert the remaining words to their WordNet lemmas.4

The structures we propose are highly configurable. In this research, we investigate
this issue along three dimensions:

Degree of lexicalization:We reduce the sparsity of the proposed structures by replacing
the lexical elements with semantic tags which might provide better generalization. In
this article we use two sets of tags, the first consisting of coarse WordNet senses, or
supersenses (WNSS) (Ciaramita and Johnson 2003), and the second of named-entity
labels extracted from the Wall Street Journal corpus. We present in detail the tag sets
and the processors used to extract them in Section 3. For an overview, we show a sample
annotated sentence in the bottom part of Figure 2.

Labels of relations: Both dependency and predicate–argument relations can be labeled
or unlabeled (e.g., gets

Arg0
−−→ helicopter versus gets→ helicopter). We make this distinction

in our experiments for two reasons: (a) removing relation labels reduces the model
sparsity because fewer elements are created, and (b) performing relation recognition
without classification is simpler than performing the two tasks, so the corresponding
NL processors might be more robust in the unlabeled-relation setup.

Structure size: This parameter controls the size of the generated structures, namely,
number of words in n-grams or dependency chains, or number of elements in the
predicate–argument tuples. Nevertheless, in our experiments we did not see any im-
provements from structure sizes larger than two. In the experiments reported in this
article, all the structures considered are of size two, that is, we use bigrams, dependency
chains of two elements, and tuples of one predicate and one semantic argument.

2.2 Features

We explore a rich set of features inspired by several state-of-the-art QA systems
(Harabagiu et al. 2000; Magnini et al. 2002; Cui et al. 2005; Soricut and Brill 2006; Bilotti
et al. 2007; Ko, Mitamura, and Nyberg 2007). To the best of our knowledge this is the
first work that: (a) adapts all these features for non-factoid answer ranking, (b) combines
them in a single scoring model, and (c) performs an empirical evaluation of the different
feature families and their combinations.

For clarity, we group the features into four sets: features that model the similarity
between questions and answers (FG1), features that encode question-to-answer trans-
formations using a translation model (FG2), features that measure keyword density and
frequency (FG3), and features that measure the correlation between question–answer
pairs and other collections (FG4). Wherever applicable, we explore different syntactic
and semantic representations of the textual content, as introduced previously. We next
explain in detail each of these feature groups.

4 http://wordnet.princeton.edu.
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FG1: Similarity Features. We measure the similarity between a question Q and an
answer A using the length-normalized BM25 formula (Robertson and Walker 1997),
which computes the score of the answer A as follows:

BM25(A) =
|Q|∑

i=0

(k1 + 1)tf Ai (k3 + 1)tf Qi
(K+ tf Ai )(k3 + tf Qi )

log(idfi) (1)

where tf Ai and tf Qi are the frequencies of the question term i in A and Q, and idfi is
the inverse document frequency of term i in the answer collection. K is the length-
normalization factor:

K = k1((1− b)+ b|A|/avg len)

where avg len is the average answer length in the collection. For all the constants in the
formula (b, k1, and k3) we use values reported optimal for other IR collections (b = 0.75,
k1 = 1.2, and k3 = 1, 000).

We chose this similarity formula because, of all the IR models we tried, it provided
the best ranking at the output of the answer retrieval component. For completeness
we also include in the feature set the value of the tf · idf similarity measure. For both
formulas we use the implementations available in the Terrier IR platform with the
default parameters.5

To understand the contribution of our syntactic and semantic processors we com-
pute the similarity features for different representations of the question and answer
content, ranging from bag of words to semantic roles. We detail these representations in
Section 2.1.

FG2: Translation Features. Berger et al. (2000) showed that similarity-based models
are doomed to perform poorly for QA because they fail to “bridge the lexical chasm”
between questions and answers. One way to address this problem is to learn question-
to-answer transformations using a translation model (Berger et al. 2000; Echihabi and
Marcu 2003; Soricut and Brill 2006; Riezler et al. 2007). In our model, we incorporate this
approach by adding the probability that the question Q is a translation of the answer
A, P(Q|A), as a feature. This probability is computed using IBM’s Model 1 (Brown et al.
1993):

P(Q|A) =
∏

q∈Q

P(q|A) (2)

P(q|A) = (1− λ)Pml(q|A)+ λPml(q|C) (3)

Pml(q|A) =
∑

a∈A

(T(q|a)Pml(a|A)) (4)

where the probability that the question term q is generated from answer A, P(q|A),
is smoothed using the prior probability that the term q is generated from the entire
collection of answers C, Pml(q|C). λ is the smoothing parameter. Pml(q|C) is computed

5 http://ir.dcs.gla.ac.uk/terrier.
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using the maximum likelihood estimator. To mitigate sparsity, we set Pml(q|C) to a small
value for out-of-vocabulary words.6 Pml(q|A) is computed as the sum of the probabilities
that the question term q is a translation of an answer term a, T(q|a), weighted by the
probability that a is generated fromA. The translation table for T(q|a) is computed using
the EM algorithm implemented in the GIZA++ toolkit.7

Translation models have one important limitation when used for retrieval tasks:
They do not guarantee that the probability of translating a word to itself, that is, T(w|w),
is high (Murdock and Croft 2005). This is a problem for QA, where word overlap
between question and answer is a good indicator of relevance (Moldovan et al. 1999).
We address this limitation with a simple algorithm: we set T(w|w) = 0.5 and re-scale
the other T(w′|w) probabilities for all other words w′ in the vocabulary to sum to 0.5, to
guarantee that

∑
w′ T(w′|w) = 1. This has the desired effect that T(w|w) becomes larger

than any other T(w′|w). Our initial experiments proved empirically that this is essential
for good performance.

As prior work indicates, tuning the smoothing parameter λ is also crucial for the
performance of translation models, especially in the context of QA (Xue, Jeon, and
Croft 2008). We tuned the λ parameter independently for each of the translation models
introduced as follows: (a) for a smaller subset of the development corpus introduced
in Section 3 (1,500 questions) we retrieved candidate answers using our best retrieval
model (BM25); (b) we implemented a simple re-ranking model using as the only feature
the translation model probability; and (c) we explored a large range of values for λ

and selected the one that maximizes the mean reciprocal rank (MRR) of the re-ranking
model. This process selected a wide range of values for the λ parameter for the different
translation models (e.g., 0.09 for the translation model over labeled syntactic depen-
dencies, and 0.43 for the translation model over labeled semantic role dependencies).

Similarly to the previous feature group, we add translation-based features for the
different text representations detailed in Section 2.1. By moving beyond the bag-of-
words representation we hope to learn relevant transformations of structures, for ex-
ample, from the squeaky→ door dependency to spray←WD-40 in the Table 1 example.

FG3: Density and Frequency Features. These features measure the density and fre-
quency of question terms in the answer text. Variants of these features were used
previously for either answer or passage ranking in factoid QA (Moldovan et al. 1999;
Harabagiu et al. 2000). Tao and Zhai (2007) evaluate a series of proximity-based mea-
sures in the context of information retrieval.

Same word sequence: Computes the number of non-stop question words that are
recognized in the same order in the answer.

Answer span: The largest distance (in words) between two non-stop question words in
the answer. We compute multiple variants of this feature, where we count: (a) the total
number of non-stop words in the span, or (b) the number of non-stop nouns.

Informativeness: Number of non-stop nouns, verbs, and adjectives in the answer text
that do not appear in the question.

6 We used 1E-9 for the experiments in this article.
7 http://www.fjoch.com/GIZA++.html.

359



Computational Linguistics Volume 37, Number 2

Same sentencematch:Number of non-stop question termsmatched in a single sentence
in the answer. This feature is added both unnormalized and normalized by the question
length.

Overall match: Number of non-stop question terms matched in the complete answer.

All these features are computed as raw counts and as normalized counts (dividing
the count by the question length, or by the answer length in the case of Answer span).
The last two features (Same sentence match and Overall match) are computed for all
text representations introduced, including syntactic and semantic dependencies (see
Section 2.1).

Note that counting the number of matched syntactic dependencies is essentially
a simplified tree kernel for QA (e.g., see Moschitti et al. 2007) matching only trees of
depth 2. We also include in this feature group the following tree-kernel features.

Tree kernels: Tomodel larger syntactic structures that are shared between questions and
answers we compute the tree kernel values between all question and answer sentences.
We implemented a dependency-tree kernel based on the convolution kernels proposed
by Collins and Duffy (2001). We add as features the largest value measured between
any two individual sentences, as well as the average of all computed kernel values for
a given question and answer. We compute tree kernels for both labeled and unlabeled
dependencies, and for both lexicalized trees and for trees where words are generalized
to their predicted WNSS or named-entity tags (when available).

FG4: Web Correlation Features. Previous work has shown that the redundancy of a
large collection (e.g., the Web) can be used for answer validation (Brill et al. 2001;
Magnini et al. 2002). In the same spirit, we add features that measure the correlation
between question–answer pairs and large external collections:

Web correlation:Wemeasure the correlation between the question–answer pair and the
Web using the Corrected Conditional Probability (CCP) formula of Magnini et al. (2002):

CCP(Q,A) = hits(Q+ A)/(hits(Q) hits(A)2/3) (5)

where hits returns the number of page hits from a search engine. The hits procedure
constructs a Boolean query from the given set of terms, represented as a conjunction of
all the corresponding keywords. For example, for the second question in Table 1, hits(Q)
uses the Boolean query: helicopter AND fly.

It is notable that this formula is designed for Web-based QA, that is, the conditional
probability is adjusted with 1/hits(A)2/3 to reduce the number of cases when snippets
containing high-frequency words are marked as relevant answers. This formula was
shown to perform best for the task of QA (Magnini et al. 2002). Nevertheless, this
formula was designed for factoid QA, where both the question and the exact answer
have a small number of terms. This is no longer true for non-factoid QA. In this context
it is likely that the number of hits returned forQ, A, orQ+ A is zero given the large size
of the typical question and answer. To address this issue, wemodified the hits procedure
to include a simple iterative query relaxation algorithm:

1. Assign keyword priorities using a set of heuristics inspired by
Moldovan et al. (1999). The complete priority detection algorithm
is listed in Table 2.
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Table 2
Keyword priority heuristics.

Step Keyword type Priority

(a) Non-stop keywords within quotes 8
(b) Non-stop keywords tagged as proper nouns 7
(c) Contiguous sequences of 2+ adjectives as nouns 6
(d) Contiguous sequences of 2+ nouns 5
(e) Adjectives not assigned in step (c) 4
(f) Nouns not assigned in steps (c) or (d) 3
(g) Verbs and adverbs 2
(h) Non-stop keywords not assigned in the previous steps 1

2. Fetch the number of page hits using the current query.

3. If the number of hits is larger than zero, stop; otherwise discard the set of
keywords with the smallest priority in the current query and repeat from
step 2.

Query-log correlation: As in Ciaramita, Murdock, and Plachouras (2008), we also com-
pute the correlation between question–answer pairs from a search-engine query-log
corpus of more than 7.5 million queries, which shares roughly the same time stamp
with the community-generated question–answer corpus. Using the query-log correla-
tion between two snippets of text was shown to improve performance for contextual
advertising, that is, linking a user’s query to the description of an ad (Ciaramita,
Murdock, and Plachouras 2008). In this work, we adapt this idea to the task of QA.
However, because it is not clear which correlation metric performs best in this context,
we compute both the Pointwise Mutual Information (PMI) and chi square (χ2) associ-
ation measures between each question–answer word pair in the query-log corpus. The
largest and the average values are included as features, as well as the number of QA
word pairs which appear in the top 10, 5, and 1 percentile of the PMI and χ

2 word pair
rankings.

We replicate all features that can be computed for different content representations
using every independent representation and parameter combination introduced in
Section 2.1. For example, we compute similarity scores (FG1) for 16 different repre-
sentations of question/answer content, produced by different parametrizations of the
four different generic representations (W, N, D, R). One important exception to this
strategy are the translation-model features (FG2). Because our translation models aim
to learn both lexical and structural transformations between questions and answers,
it is important to allow structural variations in the question/answer representations.
In this article, we implement a simple and robust approximation for this purpose: For
translation models we concatenate all instances of structured representations (N, D, R)
with the corresponding bag-of-words representation (W). This allows the translation
models to learn some combined lexical and structural transformation (e.g., from the
dependency squeaky→ door dependency to the tokenWD-40). All in all, replicating our
features for all the different content representations yields 137 actual features to be used
for learning.
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2.3 Ranking Models

Our approach is agnostic with respect to the actual learning model. To emphasize this,
we experimented with two learning algorithms. First, we implemented a variant of the
ranking Perceptron proposed by Shen and Joshi (2005). In this framework the ranking
problem is reduced to a binary classification problem. The general idea is to exploit the
pairwise preferences induced from the data by training on pairs of patterns, rather than
independently on each pattern. Given a weight vector α, the score for a pattern x (a
candidate answer) is given by the inner product between the pattern and the weight
vector:

fα(x) = 〈x,α〉 (6)

However, the error function depends on pairwise scores. In training, for each pair
(xi, xj) ∈ A, the score fα(xi − xj) is computed; note that if f is an inner product fα(xi −
xj) = fα(xi)− fα(xj). In this framework one can define suitable margin functions that
take into account different levels of relevance; for example, Shen and Joshi (2005)
propose g(i, j) = ( 1i −

1
j ), where i and j are the rank positions of xi and xj. Because in

our case there are only two relevance levels we use a simpler sign function yi,j, which
is negative if i > j and positive otherwise; yi,j is then scaled by a positive rate τ found
empirically on the development data. In the presence of numbers of possible rank levels
appropriate margin functions can be defined. During training, if fα(xi − xj) ≤ yi,jτ, an
update is performed as follows:

α
t+1 = α

t + (xi − xj)yi,jτ (7)

We notice, in passing, that variants of the perceptron including margins have been
investigated before; for example, in the context of uneven class distributions (see Li et al.
2002). It is interesting to notice that such variants have been found to be competitive
with SVMs in terms of performance, while being more efficient (Li et al. 2002; Surdeanu
and Ciaramita 2007). The comparative evaluation from our experiments are consistent
with these findings. For regularization purposes, we use as a final model the average of
all Perceptron models posited during training (Freund and Schapire 1999).

We also experimented with SVM-rank (Joachims 2006), which is an instance of
structural SVM—a family of Support Vector Machine algorithms that model structured
outputs (Tsochantaridis et al. 2004)—specifically tailored for ranking problems.8 SVM-
rank optimizes the area under a ROC curve. The ROC curve is determined by the true
positive rate vs. the false positive rate for varying values of the prediction threshold,
thus providing a metric closely related to Mean Average Precision (MAP).

3. The Corpus

The corpus is extracted from a sample of the U.S. Yahoo! Answers questions and
answers. We focus on the subset of advice or “how to” questions due to their fre-
quency, quality, and importance in social communities. Nevertheless, our approach

8 http://www.cs.cornell.edu/People/tj/svm light/svm rank.html.
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is independent of the question type. To construct our corpus, we implemented the
following successive filtering steps:

Step 1: From the full corpus we keep only questions that match the regular
expression:
how (to|do|did|does|can|would|could|should)
and have an answer selected as best either by the asker or by the
participants in the thread. The outcome of this step is a set of
364,419 question–answer pairs.

Step 2: From this corpus we remove the questions and answers of dubious
quality. We implement this filter with a simple heuristic by keeping
only questions and answers that have at least four words each, out
of which at least one is a noun and at least one is a verb. The
rationale for this step is that genuine answers to “how to” questions
should have a minimal amount of structure, approximated by the
heuristic. This step filters out questions like How to be excellent? and
answers such as I don’t know. The outcome of this step forms our
answer collection C. C contains 142,627 question–answer pairs.
This corpus is freely available through the Yahoo! Webscope
program.9

Arguably, all these filters could be improved. For example, the first step can be
replaced by a question classifier (Li and Roth 2006). Similarly, the second step can be
implemented with a statistical classifier that ranks the quality of the content using
both the textual and non-textual information available in the database (Jeon et al. 2006;
Agichtein et al. 2008). We plan to further investigate these issues, which are not the
main object of this work.

The data was processed as follows. The text was split at the sentence level, token-
ized and POS tagged, in the style of the Wall Street Journal Penn TreeBank (Marcus,
Santorini, and Marcinkiewicz 1993). Each word was morphologically simplified using
the morphological functions of the WordNet library. Sentences were annotated with
WNSS categories, using the tagger of Ciaramita and Altun (2006), which annotates
text with a 46-label tagset.10 These tags, defined by WordNet lexicographers, provide
a broad semantic categorization for nouns and verbs and include labels for nouns such
as food, animal, body, and feeling, and for verbs labels such as communication, contact,
and possession. We chose to annotate the data with this tagset because it is less biased
towards a specific domain or set of semantic categories than, for example, a named-
entity tagger. Using the same tagger as before we also annotated the text with a named-
entity tagger trained on the BBNWall Street Journal (WSJ) Entity Corpus which defines
105 categories for entities, nominal concepts, and numerical types.11 See Figure 2 for a
sample sentence annotated with these tags.

Next, we parsed all sentences with the dependency parser of Attardi et al. (2007).12

We chose this parser because it is fast and it performed very well in the domain adap-
tation shared task of CoNLL 2007. Finally, we extracted semantic propositions using

9 You can request the corpus by email at research-data-requests@yahoo-inc.com. More information
about this corpus can be found at: http://www.yr-bcn.es/MannerYahooAnswers.

10 http://sourceforge.net/projects/supersensetag.
11 LDC catalog number LDC2005T33.
12 http://sourceforge.net/projects/desr.
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the SwiRL semantic parser of Surdeanu et al. (2007).13 SwiRL starts by syntactically
analyzing the text using a constituent-based full parser (Charniak 2000) followed by a
semantic layer, which extracts PropBank-style semantic roles for all verbal predicates in
each sentence.

It is important to realize that the output of all mentioned processing steps is noisy
and contains plenty of mistakes, because the data have huge variability in terms of
quality, style, genres, domains, and so forth. In terms of processing speed, both the
semantic tagger of Ciaramita and Altun and the Attardi et al. parser process 100+
sentences/second. The SwiRL system is significantly slower: On average, it parses less
than two sentences per second. However, recent research showed that this latter task
can be significantly sped up without loss of accuracy (Ciaramita et al. 2008).

We used 60% of the questions for training, 20% for development, and 20% for test-
ing. Our ranking model was tuned strictly on the development set for feature selection
(described later) and the λ parameter of the translation models. The candidate answer
set for a given question is composed of one positive example, that is, its corresponding
best answer, and as negative examples all the other answers retrieved in the top N by
the retrieval component.

4. Experiments

We used several measures to evaluate our models. Recall that we are using an initial
retrieval engine to select a pool of N answer candidates (Figure 1), which are then re-
ranked. This couples the performance of the initial retrieval engine and the re-rankers.
We tried to de-couple them in our performance measures, as follows. We note that if
the initial retrieval engine does not rank the correct answer in the pool of top N results,
it is impossible for any re-ranker to do well. We therefore follow the approach of Ko
et al. (2007) and define performance measures only with respect to the subset of pools
which contain the correct answer for a given N.

This complicates slightly the typical notions of recall and precision. Let us callQ the
set of all queries in the collection and QN the subset of queries for which the retrieved
answer pool of size N contains the correct answer. We will then use the following
performance measure definitions:

Retrieval Recall@N: The usual recall definition: |QN|
|Q| . This is equal for all re-rankers.

Re-ranking Precision@1: Average Precision@1 over the QN set, where the Precision@1
of a query is defined as 1 if the correct answer is re-ranked into the first position,
0 otherwise.

Re-ranking MRR: MRR over theQN set, where the reciprocal rank is the inverse of the
rank of the correct answer.

Note that as N gets larger, QN grows in size, increasing the Retrieval Recall@N but
also increasing the difficulty of the task for the re-ranker, and therefore decreasing Re-
ranking Precision@1 and Re-ranking MRR.

During training of the FMIX re-ranker, the presentation of the training instances is
randomized, which defines a randomized training protocol producing different models
with each permutation of the data. We exploit this property to estimate the variance on
the experimental results by reporting the average performance of 10 different models,
together with an estimate of the standard deviation.

13 http://swirl-parser.sourceforge.net.
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Table 3
Re-ranking evaluation for Perceptron and SVM-rank. Improvement indicates relative
improvement over the baseline.

N = 15 N = 25 N = 50 N = 100

Retrieval Recall@N 29.04% 32.81% 38.09% 43.42%

Re-ranking Precision@1
Baseline 41.48 36.74 31.66 27.75
FMIX (Perceptron) 49.87±0.03 44.48±0.03 38.53±0.11 33.72±0.05

FMIX (SVM-rank) 49.48 44.10 38.18 33.52

Improvement (Perceptron) +20.22% +21.06% +21.69% +21.51%
Improvement (SVM-rank) +19.28% +20.03% +20.59% +20.79%

Re-ranking MRR
Baseline 56.12 50.31 43.74 38.53
FMIX (Perceptron) 64.16±0.01 58.20±0.01 51.19±0.07 45.29±0.05

FMIX (SVM-rank) 63.81 57.89 50.93 45.12

Improvement (Perceptron) +14.32% +15.68% +17.03% +17.54%
Improvement (SVM-rank) +13.70% +15.06% +16.43% +17.10%

The initial retrieval engine used to select the pool of candidate answers is the BM25
score as described earlier. This is also our baseline re-ranker. We will compare this to the
FMIX re-ranker using all features or using subsets of features.

4.1 Overall Results

Table 3 and Figure 4 show the results obtained using FMIX and the baseline for in-
creasing values of N. We report results for Perceptron and SVM-rank using the optimal
feature set for each (we discuss feature selection in the next sub-section).

Looking at the first column in Table 3 we see that a good bag-of-words representa-
tion alone (BM25 in this case) can achieve 41.5% Precision@1 (for the 29.0% of queries for

Figure 4
Re-ranking evaluation; precision-recall curve.
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which the retrieval engine can find an answer in the top N = 15 results). These baseline
results are interesting because they indicate that the problem is not hopelessly hard, but
it is far from trivial. In principle, we see much room for improvement over bag-of-words
methods. Indeed, the FMIX re-ranker greatly improves over the baseline. For example,
the FMIX approach using Perceptron yields a Precision@1 of 49.9%, a 20.2% relative
increase.

SettingN to a higher valuewe see recall increase at the expense of precision. Because
recall depends only on the retrieval engine and not on the re-ranker, what we are
interested in is the relative performance of our re-rankers for increasing numbers of
N. For example, setting N = 100 we observe that the BM25 re-ranker baseline obtains
27.7% Precision@1 (for the 43.4% of queries for which the best answer is found in the
top N = 100). For this same subset, the FMIX re-ranker using Perceptron obtains 33.7%
Precision@1, a 21.5% relative improvement over the baseline model.

The FMIX system yields a consistent and significant improvement for all values
of N, regardless of the type of learning algorithm used. As expected, as N grows the
precision of both re-rankers decreases, but the relative improvement holds or increases.
This can be seen most clearly in Figure 4 where re-ranking Precision and MRR are
plotted against retrieval Recall. Recalling that the FMIX model was trained only once,
using pools of N = 15, we can note that the training framework is stable at increasing
sizes of N.

Table 3 and Figure 4 show that the two FMIX variants (Perceptron and SVM-rank)
yield scores that are close (e.g., Precision@1 scores are within 0.5% of each other). We
hypothesize that the small difference between the two different learning models is
caused by our greedy tuning procedures (described in the next section), which converge
to slightly different solutions due to the different learning algorithms. Most importantly,
the fact that we obtain analogous results with two different learningmodels underscores
the robustness of our approach and of our feature set.

These overall results provide strong evidence that: (a) readily available and scalable
NLP technology can be used to improve lexical matching and translation models for
retrieval and QA tasks, (b) we can use publicly available online QA collections to
investigate features for answer ranking without the need for costly human evaluation,
and (c) we can exploit large and noisy on-line QA collections to improve the accuracy of
answer ranking systems. In the remainder of this section we analyze the performance
of the different features.

4.2 Contribution of Feature Groups

In order to gain some insights about the effectiveness of the different features groups,
we carried out a greedy feature selection procedure. We implemented similar processes
for Perceptron and SVM-rank, to guarantee that our conclusions are not biased by a
particular learning model.

4.2.1 Perceptron. We initialized the feature selection process with a single feature that
replicates the baseline model (BM25 applied to the bag-of-words [W] representation).
Then the algorithm incrementally adds to the feature set the single feature that provides
the highest MRR improvement in the development partition. The process stops when
no features yield any improvement. Note that this is only a heuristic process, and needs
to be interpreted with care. For example, if two features were extremely correlated, the
algorithm would choose one at random and discard the other. Therefore, if a feature is
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missing from the selection process it means that it is either useless, or strongly correlated
with other features in the list.

Table 4 summarizes the outcome of this feature selection process. Where applicable,
we show within parentheses the text representation for the corresponding feature: W
for words, N for n-grams, D for syntactic dependencies, and R for semantic roles. We
use subscripts to indicate if the corresponding representation is fully lexicalized (no
subscript), or its elements are replaced by WordNet supersenses (WNSS) or named-
entity tags (WSJ). Where applicable, we use the l superscript to indicate if the cor-
responding structures are labeled. No superscript indicates unlabeled structures. For
example, DWNSS stands for unlabeled syntactic dependencies where the participating
tokens are replaced by their WordNet supersense; RlWSJ stands for semantic tuples of
predicates and labeled arguments with the words replaced with the corresponding WSJ
named-entity tags.

The table shows that, although the features selected span all the four feature groups
introduced, the lion’s share is taken by the translation features (FG2): 75% of the MRR
improvement is achieved by these features. The frequency/density features (FG3) are
responsible for approximately 16% of the improvement. The rest is due to the query-log
correlation features (FG4). This indicates that, even though translation models are the
most useful, it is worth exploring approaches that combine several strategies for answer
ranking.

As we noted before, many features may be missing from this list simply because
they are strongly correlated with others. For example most similarity features (FG1) are
correlated with BM25(W); for this reason the selection process does not choose a FG1
feature until iteration 9. On the other hand, some features do not provide a useful signal

Table 4
Summary of the model selection process using Perceptron.

Iteration Feature Set Group MRR P@1 (%)

0 BM25(W) FG1 56.09 41.14
1 + translation(R) FG2 61.18 46.33
2 + translation(N) FG2 62.49 47.97
3 + overall match(DWNSS) FG3 63.07 48.93
4 + translation(W) FG2 63.27 49.12
5 + query-log avg(PMI) FG4 63.57 49.56
6 + overall match(W) FG3 63.72 49.74
7 + overall match(W), normalized by Q size FG3 63.82 49.89
8 + same word sequence, normalized by Q size FG3 63.90 49.94
9 + BM25(N) FG1 63.98 50.00
10 + informativeness: verb count FG3 64.16 49.97
11 + query-log max(PMI) FG4 64.37 50.28
12 + same sentence match(W) FG3 64.42 50.40
13 + overall match(NWSJ) FG3 64.49 50.51
14 + query-log max(χ2) FG4 64.56 50.59
15 + same word sequence FG3 64.66 50.72
16 + BM25(RWSJ) FG1 64.68 50.78
17 + translation(RlWSJ) FG2 64.71 50.75
18 + answer span, normalized by A size FG3 64.76 50.80
19 + query-log top10(χ2) FG4 64.89 51.06
20 + tree kernel(DWSJ) FG3 64.93 51.07
21 + translation(RWNSS) FG2 64.95 51.16
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at all. A notable example in this class is theWeb-based CCP feature, which was designed
originally for factoid answer validation and does not adapt well to our problem. To test
this, we learned a model with BM25 and the Web-based CCP feature only, and this
model did not improve over the baseline model at all. We hypothesize that because the
length of non-factoid answers is typically significantly larger than in the factoid QA
task, we have to discard a large part of the query when computing hits(Q+ A) to reach
non-zero counts. This means that the final hit counts, hence the CCP value, are generally
uncorrelated with the original (Q,A) tuple.

One interesting observation is that two out of the first three features chosen by
our model selection process use information from the NLP processors. The first feature
selected is the translation probability computed between the R representation (unla-
beled semantic roles) of the question and the answer. This feature alone accounts for
57% of the measured MRR improvement. This is noteworthy: Semantic roles have been
shown to improve factoid QA, but to the best of our knowledge this is the first result
demonstrating that semantic roles can improve ad hoc retrieval (on a large set of non-
factoid open-domain questions). We also find noteworthy that the third feature chosen
measures the number of unlabeled syntactic dependencies with words replaced by their
WNSS labels that are matched in the answer. Overall, the features that use the output of
NL processors account for 68% of the improvement produced by our model over the IR
baseline. These results provide empirical evidence that natural language analysis (e.g.,
coarse word sense disambiguation, syntactic parsing, and semantic role labeling) has a
positive contribution to non-factoid QA, even in broad-coverage noisy settings based
on Web data. To our knowledge, this had not been shown before.

Finally, we note that tree kernels provide minimal improvement: A tree kernel
feature is selected only in iteration 20 and the MRR improvement is only 0.04 points.
One conjecture is that, due to the sparsity and the noise of the data, matching trees of
depth higher than 2 is highly uncommon. Hence matching immediate dependencies
is a valid approximation of kernels in this setup. Another possible explanation is that
because the syntactic trees produced by the parser contain several mistakes, the tree
kernel, which considers matches between an exponential number of candidate sub-
trees, might be particularly unreliable on noisy data.

4.2.2 SVM-rank. For SVM-rank we employed a tuning procedure similar to the one used
for the Perceptron that implements both feature selection and tuning of the regularizer
parameter C. We started with the baseline feature alone and greedily added one feature
at a time. In each iteration we added the feature that provided the best improvement.
The procedure continues to evaluate all available features, until no improvement is
observed. For this step we set the regularizer parameter to 1.0, a value which provided
a good tradeoff between accuracy and speed as evaluated in an initial experiment.
The selection procedure generated 12 additional features. At this point, using only the
selected features, we fine-tuned the regularization parameter C across a wide spectrum
of possible values. This can be useful because in SVM-rank the interpretation of C is
slightly different than in standard SVM, specifically Csvm = Crank/m, where m is the
number of queries, or questions in our case. Therefore, an optimal value can depend
crucially on the target data. The final value selected by this search procedure was equal
to 290, although performance is relatively stable with values between 1 and 100,000. As
a final optimization step, we continued the feature selection routine, starting from the
13 features already chosen and C = 290. This last step selected six additional features.
A further attempt at fine-tuning the C parameter did not provide any improvements.
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This process is summarized in Table 5, using the same notations as Table 4. Al-
though the features selected by SVM-rank are slightly different than the ones chosen
by the Perceptron, the conclusions drawn are the same as before: Features generated
by NL processors provide a significant boost on top of the IR model. Similarly to the
Perceptron, the first feature chosen by the selection procedure is a translation probabil-
ity computed over semantic role dependencies (labeled, unlike the Perceptron, which
prefers unlabeled dependencies). This feature alone accounts for 33.3% of the measured
MRR improvement. This further enforces our observation that semantic roles improve
retrieval performance for complex tasks such as our non-factoid QA exercise. All in all,
13 out of the 18 selected features, responsible for 70% of the total MRR improvement,
use information from the NL processors.

4.3 Contribution of Natural Language Structures

One of the conclusions of the previous analysis is that features based on natural lan-
guage processing are important for the problem of QA. This observation deserves a
more detailed analysis. Table 6 shows the performance of our first three feature groups
when they are applied to each of the content representations and incremental combina-
tions of representations. In this table, for simplicity we merge features from labeled
and unlabeled representations. For example, R indicates that features are extracted
from both labeled (Rl) and unlabeled (R) semantic role representations. The g subscript
indicates that the lexical terms in the corresponding representation are separately gener-
alized toWNSS andWSJ labels. For example,Dgmerges features generated fromDWNSS,

Table 5
Summary of the model selection process using SVM-rank.

Iteration Feature Set Group MRR P@1 (%)

0 BM25(W) FG1 56.09 41.12
1 + translation(Rl) FG2 59.02 43.99
2 + answer span FG3 60.31 45.05
3 + translation(W) FG2 61.16 46.13
4 + translation(R) FG2 61.65 46.77
5 + overall match(D) FG3 62.85 48.57
6 + translation(RlWSJ) FG2 63.05 48.78
7 + translation(NWSJ) FG2 63.23 48.88
8 + translation(DlWSJ) FG2 63.47 49.21
9 + query-log max(χ2) FG4 63.64 49.35
10 + translation(D) FG2 63.77 49.53
11 + translation(N) FG2 63.85 49.66
12 + overall match(NWSJ) FG3 64.03 49.93

+ C fine tuning 64.49 50.43

13 + BM25(DWSJ) FG1 64.49 50.43
14 + BM25(N) FG1 64.74 50.71
15 + tf · idf(DWNSS) FG1 64.74 50.60
16 + answer span in nouns FG3 64.74 50.60
17 + tf · idf(Rl) FG1 64.84 50.89
18 + translation(Dl) FG2 64.88 50.91
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Table 6
Contribution of natural language structures in each feature group. Scores are MRR changes of
the Perceptron on the development set over the baseline model (FG1 with W), for N = 15. The
best scores for each feature group (i.e., column in the table), are marked in bold.

FG1 FG2 FG3

W – +4.18 −6.80
N −13.97 +2.49 −13.63
Ng −18.65 +3.63 −15.57
D −15.15 +1.48 −15.39
Dg −19.31 +3.41 −18.18
R −27.61 +0.33 −27.82
Rg −28.29 +3.46 −26.74

W + N +1.46 +5.20 −4.36
W + N + Ng +1.51 +5.33 −4.31
W + N + Ng + D +1.56 +5.78 −4.31
W + N + Ng + D + Dg +1.56 +5.85 −4.21
W + N + Ng + D + Dg + R +1.58 +6.12 −4.28
W + N + Ng + D + Dg + R + Rg +1.65 +6.29 −4.28

DWSJ, D
l
WNSS, and DlWSJ. For each cell in the table, we use only the features from the

corresponding feature group and representation to avoid the correlation with features
from other groups. We generate each best model using the same feature selection
process described above.

The top part of the table indicates that all individual representations perform worse
than the bag-of-words representation (W) in every feature group. The differences range
from less than one MRR point (e.g., FG2[Rg] versus FG2[W]), to over 28 MRR points
(e.g., FG1[Rg] versus FG1[W]). Such a large difference is justified by the fact that for
feature groups FG1 and FG3 we compute feature values using only the corresponding
structures (e.g., only semantic roles), which could be very sparse. For example, there
are questions in our corpus where our SRL system does not detect any semantic propo-
sition. Because translation models merge all structured representations with the bag-
of-word representation, they do not suffer from this sparsity problem. Furthermore, on
their own, FG3 features are significantly less powerful than FG1 or FG2 features. This
explains why models using FG3 features fail to improve over the baseline. Regardless
of these differences, the analysis indicates that in our noisy setting the bag-of-words
representation outperforms any individual structured representation.

However, the bottom part of the table tells a more interesting story: The second
part of our analysis indicates that structured representations provide complementary
information to the bag-of-words representation. Even the combination of bag of words
with the simplest n-gram structures (W + N) always outperforms the bag-of-words
representation alone. But the best results are always obtained when the combination
includes more natural language structures. The improvements are relatively small, but
remarkable (e.g., see FG2) if we take into account the significant scale and settings of the
evaluation. The improvements yielded by natural language structures are statistically
significant for all feature groups. This observation correlates well with the analysis
shown in Tables 4 and 5, which shows that features using semantic (R) and syntactic
(D) representations contribute the most on top of the IR model (BM25(W)).
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5. Error Analysis and Discussion

Similar to most re-ranking systems, our system improves the answer quality for some
questions while decreasing it for others. Table 7 lists the percentage of questions from
our test set that are improved (i.e., the correct answer is ranked higher after re-ranking),
worsened (i.e., the correct answer is ranked lower), and unchanged (i.e., the position of
the correct answer does not change after re-ranking). The table indicates that, regard-
less of the number of candidate answers for re-ranking (N), the number of improved
questions is approximately twice the number of worsened questions. This explains the
consistent improvements in P@1 and MRR measured for various values of N. As N
increases, the number of questions that are improved also grows, which is an expected
consequence of having more candidate answers to re-rank. However, the percentage
of improved questions grows at a slightly lower rate than the percentage of worsened
questions. This indicates that choosing the ideal number of candidate answers to re-
rank requires a trade-off: On the one hand, having more candidate answers increases
the probability of capturing the correct answer in the set; on the other hand, it also
increases the probability of choosing an incorrect answer due to the larger number
of additional candidates. For our problem, it seems that re-ranking using values of N
much larger than 100 would not yield significant benefits over smaller values of N.
This analysis is consistent with the experiments reported in Table 3 where we did not
measure significant growth in P@1 or MRR for N larger than 50.

Although Table 7 gives the big picture of the behavior of our system, it is important
to look at actual questions that are improved or worsened by the re-ranking model in
order to understand the strengths and weaknesses of our system. Table 8 lists some
representative questions where the re-ranking model brings the correct answer to the
top position. For every question we list: (a) the correct answer and its position as given
by the baseline IR Model (“Baseline”) and the re-ranking model (“Re-ranking”); and (b)
the answer that was ranked by the baseline model in the first position and its position
after re-ranking.

Generally, Table 8 indicates that our model performs considerably better than the
bag-of-words IRmodel. For example, we boost the rank of answers that share structures
with the question: for example, the cook → grouse syntactico-semantic dependency for
the second sample question or make → call and see → number for the third example.
Modeling structures is important especially for questions with minimal context, that is,
short length and common terms, like the third sample question. Due to the structure-
based translation models and/or the generalizations to supersenses or named-entity
labels, our model can match structures even when they are not identical. For example,

Table 7
Percentage of questions in the test set that are improved/worsened/unchanged after re-ranking.
This experiment used the Perceptron model.

Better (%) Worse (%) Unchanged (%)

N = 10 33.98 16.81 49.21
N = 15 36.76 18.56 44.68
N = 25 39.64 20.68 39.68
N = 50 42.95 23.30 33.75
N = 100 45.18 25.28 29.54
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Table 8
Examples of questions improved by our re-ranking model. URLs were replaced with <URL> in
answer texts. Some non-relevant text was replaced with <...> to save space. The remaining text
maintains the original capitalization and spelling. Non-stop question terms are emphasized in
the answers.

How would you rank the top 5 NFL teams? Do your rankings depend on the outcome
of the Colts Vs. Pats Game?

Baseline Re-ranking Correct? Answer Text

2 1 yes Ok. How can you think the Chargers are better than the Colts, Ravens, and

the Broncos? As for the Rankings, this is what I got: 1. Colts (they actually beat

a good team) 2. Bears (for now, they are going to lose to the Giants) 3. Patriots

(the winner of Cotls vs Patriots should be the next #1) 4. Broncos (They lost

on a field goal) 5. Ravens (all about the D)

1 2 no Basically in sport rankings you will look at the how they perform their

wins against their loss or their stats. Ranking is the process of positioning

individuals, groups or businesses on a ordinal scale in relation to others.

A list arranged in this way is said to be in rank order. Some examples: In

many sports, individuals or teams are given rankings, generally by the sport’s

governing body. In football (soccer), national teams are ranked in the FIFA

World Rankings. In snooker, players are ranked using the Snooker world

rankings. In ice hockey, national teams are ranked in the IIHF World Ranking.

In golf, the top male golfers are ranked using the Official World Golf Rankings

how can i cook grouse quick with normal household spices w/o going out to buy stuff?

Baseline Re-ranking Correct? Answer Text

10 1 yes I’ve never cooked a grouse, but poultry is poultry... You could salt it and pepper

it, put some flour on a plate and roll it in the flour to coat it lightly, then heat

a few tablespoons of olive oil in a skillet and pan-fry it. (If you have no olive

oil, use a little vegetable oil plus a pat of butter – the oil is to keep the butter

from burning.) Squeeze a few drops of lemon juice over it if you want. Or:

Skip the flour. Salt and pepper the grouse. Pan-fry it in a little olive oil. When

it’s looking close to ready, pour in a little white wine which will sizzle and

reduce down to a sauce. If you’ve got some fresh or dried herbs (rosemary,

thyme, parsley) you could sprinkle a pinch of that in.

1 2 no Well, a grouse is a prey animal. If there was a decline in the population

of grouse, then the animals that usually prey on the grouse - coyotes, owls,

etc - would probably start eating other prey animals, like the pheasants and

squirrels.

how did I do for make a call and that the other dont see my number?

Baseline Re-ranking Correct? Answer Text

2 1 yes to make a call so that the other person cant see the number... dial *67 and wait

for the three beeps.. then dial the number

1 2 no Oneday out of the blue call her. If u dont have her number, when u see her ask

her if she wanted to go out oneday then get her number. When u talk on the

phone get to know her. But dont ask her out too soon because she may not

feel the same way. After a couple of days or weeks taking to her let her know

how u felt about her since the first time u met her.

372



Surdeanu et al. Learning to Rank Answers to Non-Factoid Questions fromWeb Collections

Table 8
(continued)

how can i find a veterinary college with dorms?

Baseline Re-ranking Correct? Answer Text

14 1 yes <...> I would say not to look for a specific school of veterinarianmedicine but

rather find a creditable University that offers a degree such as Pre-Vet. Then

from there you can attend graduate school to finish up to become a doctor in

that field. Most major universities will have this degree along with dorms. In

my sources you can see that this is just one of many major universities that

offer Pre-vet medicine.

1 7 no Hi there... here’s an instructional video by Cornell University Feline Health

Center - College of VeterinaryMedicine on how to pill cats: <URL>

how to handle commission splits with partners in Real estate?

Baseline Re-ranking Correct? Answer Text

5 1 yes My company splits the commissions all evenly. However many various

agents/brokers are involved (or even think they are involved), it gets split

further. Keeps everyone happy. No one complains that someone gets “more”.

1 3 no You will find information regarding obtaining a real estate license in Okla-

homa at the Oklahoma Real Estate Commission’s website (<URL>) Good luck!

for the fourth question, find→ college can bematched to look→ school if the structures are
generalized toWordNet supersenses. Translation models are crucial to fetching answers
rich in terms related to question concepts. For example, for the first question, our model
boosts the position of the correct answer due to the large numbers of concepts that
are related to NFL, Colts, and Pats: Ravens, Broncos, Patriots, and so forth. In the second
example, our model ranks on the first position the answer containing many concepts
related to cook: salt, pepper, flour, tablespoons, oil, skillet, and so on. In the last example,
our model is capable of associating the bigram real estate to agent and broker. Without
these associationsmany answers are lost to false positives provided by the bag-of-words
similarity models. For example, in the first and last examples in the table, the answers
selected by the baseline model contain more matches of the questions terms than the
correct answers extracted by our model.

All in all, this analysis proves that non-factoid QA is a complex problem where
many phenomena must be addressed. The key for success does not seem to be a unique
model, but rather a combination of approaches each capable of addressing different
facets of the problem. Our model makes a step forward towards this goal, mainly
through concept expansion and the exploration of syntactico-semantic structures. Nev-
ertheless, our model is not perfect. To understand where FMIX fails we performed
a manual error analysis on 50 questions where FMIX performs worse than the IR
baseline and we identified seven error classes. Table 9 lists the distribution of these error
classes and Table 10 lists sample questions and answers from each class. Note that the
percentage values listed in Table 9 sum up to more than 100% because the error classes
are not exclusive. We now detail each of these error classes.
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Table 9
Distribution of error classes in questions where FMIX (Perceptron) performs worse.

COMPLEX INFERENCE 38%
ELLIPSIS 36%
ALSO GOOD 18%
REDIRECTION 10%
ANSWER QUALITY 4%
SPELLING 2%
CLARIFICATION 2%

COMPLEX INFERENCE: This is the most common class of errors (38%). Questions in this
class could theoretically be answered by an automated system but such a system would
require complex reasoning mechanisms, large amounts of world knowledge, and dis-
course understanding. For example, to answer the first question in Table 10, a system
would have to understand that confronting or being supportive are forms of dealing with
a person. To answer the second question, the system would have to know that creating
a CD at what resolution you need supersedes making a low resolution CD. Our approach
captures some simple inference rules through translationmodels but fails to understand
complex implications such as these.

ELLIPSIS: This class of errors is not necessarily a fault of our approach but is rather
caused by the problem setting. Because in a social QA site each answer responds to a
specific question, discourse ellipsis (i.e., omitting the context set by the question in the
answer text) is common. This makes some answers (e.g., the third answer in Table 10)
ambiguous, hence hard to retrieve automatically. This affects 36% of the questions
analyzed.

ALSO GOOD: It is a common phenomenon in Yahoo! Answers that a question is asked
several times by different users, possibly in a slightly different formulation. To enable
our large scale automatic evaluation, we considered an answer as correct only if it was
chosen as the “best answer” for the corresponding question. So in our setting, “best
answers” from equivalent questions are marked as incorrect. This causes 18% of the
“errors” of the re-ranking model. One example is the fourth question in Table 10, where
the answer selected by our re-ranking model is obviously also correct. It is important
to note that at testing time we do not have access to the questions that generated the
candidate answers for the current test question, that is, the system does not know
which questions are answered by the answers in the ALSO GOOD section of Table 10.
So the answers in the ALSO GOOD category are not selected based on the similarity of
the corresponding queries, but rather, based on better semantic matching between test
question and candidate answer.

REDIRECTION: Some answers (10% of the questions analyzed) do not directly answer a
question but rather redirect the user to relevant URLs (see the fifth question in Table 10).
Because we do not extract the text behind URLs in the answer content, such questions
are virtually impossible to answer using our approach.

ANSWER QUALITY: For a small number of the questions analyzed (4%) the choice of “best
answer” is dubious (see the sixth example in Table 10). This is to be expected in a
social QA site, where the selection of best answers is not guaranteed to be optimal.
Nevertheless, the relatively small number of such cases is unlikely to influence the
quality of the evaluation.
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Table 10
Examples of questions in each error class. The corresponding error class is listed on the left side
of the question text. We list the answer ranked at the top position by FMIX only where relevant
(e.g., the ALSO GOOD category). URLs were replaced with <URL> in answer texts. Some
non-relevant text was replaced with <...> to save space. The remaining text maintains the
original capitalization and spelling.

COMPLEX INFERENCE how to deal with a person in denial with M.P.D.?

Baseline Re-ranking Correct? Answer Text

1 6 yes First, i would find out if MPD has been diagnosed by a pro-

fessional. In current terminology, MPD is considered a part

of Dissociative Personality Disorder. In any case, it would be

up to the professionals to help this person because you could

cause further problems by confronting this person with what

you think the problem is. If this person is a family member,

you could ask for a consultation with the psychiatric profes-

sional who is treating him/her. Please, please, just do you

best to be supportive without being confrontational since that

might make things even worse for that person.

COMPLEX INFERENCE How do I make a low resolution CD of 100 phtos that were shot at
8 megapixels?

Baseline Re-ranking Correct? Answer Text

1 4 yes you can use picasa2 from google: <URL> is free. In picasa

you can do “GiftCD” create a CD with you picture at what

resolution you need (including original size)

ELLIPSIS How do mineral ions affect the biology and survival of a pond organism?

Baseline Re-ranking Correct? Answer Text

1 3 yes Some mineral ions are fertilizer and will increase vegetative

growth while others are poisons.

ALSO GOOD How to learn the British accent?

Baseline Re-ranking Correct? Answer Text

4 5 yes Get a dictionary where there is a pronunciation guide which

gives the pronunciation in British English. Watch british

movies and imitate what you can. Then just practice, practice

practice. But before you go about learning accents, slangs or

dialects, make sure you brush up on your basic grammar.

<...>

3 1 no You can do one of two things: first, go to a local bookstore, like

Barnes and Noble. They sell cd’s with different accents from

around the world, accompanied by a book that phonetically

spells the words. This is designed for actors/actresses who

need to learn different accents. Also, go rent a bunch of british

movies, or watch british television. Continually pause and

repeat common phrases and words.
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Table 10
(continued)

REDIRECTION How can I build an easy lean-to shed out of scrap wood and skids?

Baseline Re-ranking Correct? Answer Text

6 15 yes the pallet shed... <URL> building a wood shed from pallets...

<URL> good ideas from those who’ve been there...<URL> pics. of

the shed... <URL> nice pics. <URL> taking pallets apart... and other

tips... <URL> <...>

ANSWER QUALITY How do make a Naruto AMV? Can you show me how? I need the
website or program and the exact directions.?

Baseline Re-ranking Correct? Answer Text

2 94 yes i’m not an expert. but i sure do like Naruto. i’ll wait for answers

too

SPELLING how does aliquid expansion boiler thrrmosstat work?

Baseline Re-ranking Correct? Answer Text

2 4 yes the liquid expands inside the thermostat when the liquid reaches

the shutoff temp or pressure it will shut off the boiler preventing

boiler explosions

CLARIFICATION how could you combine your styles and personalities effectively to
produce the best paper?

Baseline Re-ranking Correct? Answer Text

29 1 yes Your question is not clear. Are you asking about writing styles?

it also depends on what kind of paper you are writing? Your

question cannot be answered without more info.

SPELLING: Two percent (2%) of the error cases analyzed are caused by spelling errors
(e.g., the seventh example in Table 10). Because these errors are relatively infrequent,
they are not captured by our translation models, and our current system does not
include any other form of spelling correction.

CLARIFICATION: Another 2% of the questions inspected manually had answers that
pointed to errors or ambiguities in the question text rather than responding to the given
question (see the last example in Table 10). These answers are essentially correct but
they require different techniques to be extracted: Our assumption is that questions are
always correct and sufficient for answer extraction.

6. Related Work

There is a considerable amount of previous work in several related areas. First, we will
discuss related work with respect to the features and models used in this research; most
of this work is to be found in the factoid QA community, where the most sophisticated
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QA selection and re-ranking algorithms have been developed. We then review existing
work in non-factoid QA; we will see that in this area there is much less work, and the
emphasis has been so far in query re-writing and scalability using relatively simple
features andmodels. Finally wewill discuss relatedwork in the area of community-built
(social) QA sites. Although we do not exploit the social aspect of our QA collection, this
is complementary to our work and would be a natural extension. Table 11 summarizes
aspects of the different approaches discussed in this section, highlighting the differences
and similarities with our current work.

Our work borrows ideas from many of the papers mentioned in this section, es-
pecially for feature development; indeed our work includes matching features as well
as translation and retrieval models, and operates at the lexical level, the parse tree

Table 11
Comparison of some of the characteristics of the related work cited. Task: Document Retrieval
(DRet), Answer Extraction (Ex) or Answer Re-ranking or Selection (Sel).Queries: factoid (Fact)
or non-factoid (NonFact). Features: lexical (L), n-grams (Ngr), collocations (Coll), paraphrases
(Para), POS, syntactic dependency tree (DT), syntactic constituent tree (CT), named entities (NE),
WordNet Relations (WNR), WordNet supersenses (WNSS), semantic role labeling (SRL), causal
relations (CR), query classes (QC), query-log co-ocurrences (QLCoOcc).Models: bag-of-words
scoring (BOW), tree matching (TreeMatch), linear (LM), log-linear (LLM), statistical learning
(kernel) (SL), probabilistic grammar (PG), statistical machine translation (SMT), query likelihood
language model (QLLM).Development and Evaluation: data sizes used, expressed as number
of queries/number of query–answer pairs (i.e., sum of all candidate answers per question).
Data: type of source used for feature construction, training and/or evaluation. Question marks
are place holders for information not available or not applicable in the corresponding work.

Publication Task Queries Features Models Devel Eval Data

Agichtein et al. DRet NonFact L, Ngr, Coll BOW, LM ?/10K 50/100 WWW
(2001)

Echihabi and Sel Fact, L, Ngr, Coll, SMT 4.6K/100K 1K/300K? TREC, KM,
Marcu (2003) NonFact DT, NE, WWW

WN

Higashinaka and Sel NonFact L, WN, SRL, SL 1K/500K 1K/500K WHYQA
Isozaki (2008) (Why) CR

Punyakanok et al. Sel Fact L, POS, DT, TreeMatch ?/400 TREC13
(2004) NE, QC

Riezler et al. DRet NonFact L, Ngr, Para SMT 10M/10M 60/1.2K WWW, FAQ
(2007)

Soricut and Brill DRet, NonFact L, Ngr, Coll BOW, SMT 1M/? 100/? WWW, FAQ
(2006) Sel,

Ex

Verberne et al. Sel NonFact CT, WN, BOW, LLM same as eval 186/28K Webclopedia,
(2010) (Why) Para Wikipedia

Wang et al. (2007) Sel Fact L, POS, DT, LLM, PG 100/1.7K 200/1.7K TREC13
NE, WNR,
Hyb

Xue et al. (2008) DRet, NonFact, L, Coll SMT, QLLM 1M/1M 50/? SocQA,
Sel Fact TREC9

This work Sel NonFact L, Ngr, POS, TreeMatch, 112K/1.6M 28K/up to SocQA,
(How) DT, SRL, BOW, SMT, 2.8M QLog

NE, WN, SL
WNSS,
Hyb,
QLCoOcc
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level, as well as the level of semantic roles, named entities, and lexical semantic classes.
However, to the best of our knowledge no previous work in QA has evaluated the use
of so many types of features concurrently, nor has it built so many combinations of these
features at different levels. Furthermore, we employ unsupervised methods, generative
methods, and supervised learning methods. This is made possible by the choice of the
task and the data collection, another novelty of our work which should enable future
research in complex linguistic features for QA and ranking.

Factoid QA. Within the statistical machine translation community there has been
much research on the issue of automatically learning transformations (at the lexical,
syntactical, and semantical level). Some of this work has been applied to automated
QA systems, mostly for factoid questions. For example, Echihabi and Marcu (2003)
presented a noisy-channel approach (IBM model 4) adapted for the task of QA. The
features used included lexical and parse-tree elements as well as some named entities
(such as dates). They use a dozen heuristic rules to heavily reduce the feature space and
choose a single representation mode for each of the tokens in the queries (for example:
“terms overlapping with the question are preserved as surface text”) and learn language
models on the resulting representation. We extend Echihabi and Marcu by considering
deeper semantic representations (such as SRL andWNSS), but instead of using selection
heuristics we learn models from each of the full representations (as well as from some
hybrid representations) and then combine them using discriminant learning techniques.

Punyakanok, Roth, and Yih (2004) attempted a more comprehensive use of the
parse tree information, computing a similarity score between question and answer
parse trees (using a distance function based on approximate tree matching algorithms).
This is an unsupervised approach, which is interesting especially when coupled with
appropriate distances. Shen and Joshi (2005) extend this idea with a supervised learning
approach, training dependency tree kernels to compute the similarity. In our work we
also used this type of feature, although we show that, in our context, features based on
dependency tree kernels are subsumed by simpler features that measure the overlap
of binary dependencies. Another alternative is proposed by Cui et al. (2005), where
significant words are aligned and similarity measures (based on mutual information of
correlations) are then computed on the resulting dependency paths. Shen and Klakow
(2006) extend this using a dynamic time warping algorithm to improve the alignment
for approximate question phrase mapping, and learn a Maximum Entropy model to
combine the obtained scores for re-ranking. Wang, Smith, andMitamura (2007) propose
to use a probabilistic quasi-synchronous grammar to learn the syntactic transformations
between questions and answers. We extend the work of Cui et al. by considering paths
within and across different representations beyond dependency trees, although we do
not investigate the issue of alignment specifically—instead we use standard statistical
translation models for this.

Non-factoid QA. The previous works dealt with the problem of selection, that is,
finding the single sentence that correctly answers the question out of a set of candidate
documents. A related problem in QA is that of retrieval: selecting potentially relevant
documents or sentences prior to the selection phase. This problem is closer to gene-
ral document retrieval and it is therefore easier to generalize to the non-factoid domain.
Retrieval algorithms tend to be much simpler than selection algorithms, however, in
part due to the need for speed, but also because there has been little previous evidence
that complex algorithms or deeper linguistic analysis helps at this stage, especially in
the context of non-factoid questions.
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Previous work addressed the task by learning transformations between questions
and answers and using them to improve retrieval. All these works use only lexical
features. For example, Agichtein et al. (2001) learned lexical transformations (from the
original question to a set of Web search queries, from “what is a” to “the term”, “stands
for”, etc.) which are likely to retrieve good candidate documents in commercial Web
search engines; they applied this successfully to large-scale factoid and non-factoid QA
tasks. Murdock and Croft (2005) study the problem of candidate sentence retrieval for
QA and show that a lexical translation model can be exploited to improve factoid QA.
Xue, Jeon, and Croft (2008) show that a linear interpolation of translation models and
a query likelihood language model outperforms each individual model for a QA task
that is independent of the question type. In the same space, Riezler et al. (2007) develop
SMT-based query expansionmethods and use them for retrieval from FAQpages. In our
work we did not address the issue of query expansion and re-writing directly: While
our re-ranking approach is limited to the recall of the retrieval model, these methods of
query transformation could be used in a complementary manner to improve the recall.
Even more interesting would be to couple the two approaches in an efficient manner;
this remains as future work.

There has also been some work in the problem of selection for non-factoid ques-
tions. Girju (2003) extracts non-factoid answers by searching for certain semantic struc-
tures (e.g., causation relations as answers to causation questions). We generalized this
methodology (in the form of semantic roles) and evaluated it systematically. Soricut
and Brill (2006) develop a statistical model by extracting (in an unsupervised manner)
QA pairs from one million FAQs obtained from the Web. They show how different
statistical models may be used for the problems of ranking, selection, and extraction
of non-factoid QAs on the Web; due to the scale of their problem they only consider lex-
ical n-grams and collocations, however. More recent work has showed that structured
retrieval improves answer ranking for factoid questions: Bilotti et al. (2007) showed that
matching predicate–argument frames constructed from the question and the expected
answer types improves answer ranking. Cui et al. (2005) learned transformations of
dependency paths from questions to answers to improve passage ranking. All these
approaches use similarity models at their core because they require the matching of
the lexical elements in the search structures, however. On the other hand, our approach
allows the learning of full transformations from question structures to answer structures
using translation models applied to different text representations.

The closest work to ours is that of Higashinaka and Isozaki (2008) and Verberne
et al. (2010), both on Why questions. Higashinaka et al. consider a wide range of
semantic features by exploiting WordNet and gazetteers, semantic role labeling, and
extracted causal relations. Verberne et al. exploit syntactic information from constituent
trees, WordNet synonymy sets and relatedness measures, and paraphrases. As in our
models, both these works combine these features using discriminative learning tech-
niques and apply the learned models to re-rank answers to non-factoid questions (Why
type questions). Their features, however, are based on counting matches or events
defined heuristically. We have extended this approach in several ways. First, we use a
much larger feature set that includes correlation and transformation-based features and
five different content representations. Second, we use generative (translation) models
to learn transformation functions before they are combined by the discriminant learner.
Finally, we carry out training and evaluation at a much larger scale.

Content from community-built question–answer sites can be retrieved by searching
for similar questions already answered (Jeon, Croft, and Lee 2005) and ranked using
meta-data information like answerer authority (Jeon et al. 2006; Agichtein et al. 2008).
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Here we show that the answer text can be successfully used to improve answer ranking
quality. Our method is complementary to the earlier approaches. It is likely that an
optimal retrieval engine from social media would combine all three methodologies.
Moreover, our approach might have applications outside of social media (e.g., for open-
domainWeb-based QA), because the rankingmodel built is based only on open-domain
knowledge and the analysis of textual content.

7. Conclusions

In this work we describe an answer ranking system for non-factoid questions built
using a large community-generated question–answer collection. We show that the best
ranking performance is obtained when several strategies are combined into a single
model. We obtain the best results when similarity models are aggregated with features
that model question-to-answer transformations, frequency and density of content, and
correlation of QA pairs with external collections. Although the features that model
question-to-answer transformations provide the most benefits, we show that the com-
bination is crucial for improvement. Further, we show that complex linguistic features,
most notably semantic role dependencies and semantic labels derived from WordNet
senses, yield a statistically significant performance increase on top of the traditional
bag-of-words and n-gram representations. We obtain these results using only off-the-
shelf NL processors that were not adapted in any way for our task. As a side effect, our
experiments prove that we can effectively exploit large amounts of availableWeb data to
do research on NLP for non-factoid QA systems, without any annotation or evaluation
cost. This provides an excellent framework for large-scale experimentation with various
models that otherwise might be hard to understand or evaluate.

As implications of our work, we expect the outcome of our investigation to help
several applications, such as retrieval from social media and open-domain QA on the
Web. On social media, for example, our system should be combined with a component
that searches for similar questions already answered; the output of this ensemble can
possibly be filtered further by a content-quality module that explores “social” features
such as the authority of users, and so on. Although we do not experiment on Wikipedia
or news sites in this work, one can view our data as a “worse-case scenario,” given its
ungrammaticality and annotation quality. It seems reasonable to expect that training our
model on cleaner data (e.g., fromWikipedia or news), would yield even better results.

This work can be extended in several directions. First, answers that were not se-
lected as best, but were marked as good by a minority of voters, could be incorporated
in the training data, possibly introducing a graded notion of relevance. This wouldmake
the learning problemmore interesting andwould also provide valuable insights into the
possible pitfalls of user-annotated data. It is not clear if more data, but of questionable
quality, is beneficial. Another interesting problem concerns the adaptation of the re-
ranking model trained on social media to collections from other genres and/or domains
(news, blogs, etc.). To our knowledge, this domain adaptation problem for QA has not
been investigated yet.
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