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Leech's main academic interests are: English grammar;
... Corpus-based natural language processing by computer

2 external links: www.culinaryanthropologist.org/about.html

Matt eats very well. He is also a computational linguist
who takes time o� from the research he usually does for
culinary road trips and other adventures.

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 6 / 21



Solution More Examples

Cross-lingualExamples:

Computational linguistics

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 7 / 21



Solution More Examples

Cross-lingualExamples:

Computational linguistics

3 anchor-texts of links into parallel Wikipedia pages:

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 7 / 21



Solution More Examples

Cross-lingualExamples:

Computational linguistics

3 anchor-texts of links into parallel Wikipedia pages:

I de/Computerlinguistik

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 7 / 21



Solution More Examples

Cross-lingualExamples:

Computational linguistics

3 anchor-texts of links into parallel Wikipedia pages:

I de/Computerlinguistik

I fr/Linguistique informatique

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 7 / 21



Solution More Examples

Cross-lingualExamples:

Computational linguistics

3 anchor-texts of links into parallel Wikipedia pages:

I de/Computerlinguistik

I fr/Linguistique informatique

I sv/Spr�akteknologi

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 7 / 21



Solution More Examples

Cross-lingualExamples:

Computational linguistics

3 anchor-texts of links into parallel Wikipedia pages:

I de/Computerlinguistik

I fr/Linguistique informatique

I sv/Spr�akteknologi

4 ... titles and other relevant strings!

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 7 / 21



Solution More Examples

Cross-lingualExamples:

Computational linguistics

3 anchor-texts of links into parallel Wikipedia pages:

I de/Computerlinguistik

I fr/Linguistique informatique

I sv/Spr�akteknologi

4 ... titles and other relevant strings! (these don't count)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 7 / 21



Solution Volume

Volume:

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...
I canonicalize everything (especially redirects)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...
I canonicalize everything (especially redirects)

Wikipedia's coverage is extensive (and growing)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...
I canonicalize everything (especially redirects)

Wikipedia's coverage is extensive (and growing)
I extrinsic quantity ! quality

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...
I canonicalize everything (especially redirects)

Wikipedia's coverage is extensive (and growing)
I extrinsic quantity ! quality
I not intrinsic quality (main di�erentiator)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...
I canonicalize everything (especially redirects)

Wikipedia's coverage is extensive (and growing)
I extrinsic quantity ! quality
I not intrinsic quality (main di�erentiator)

| pre-Wikipedia (Koningstein et al., 2003{4)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...
I canonicalize everything (especially redirects)

Wikipedia's coverage is extensive (and growing)
I extrinsic quantity ! quality
I not intrinsic quality (main di�erentiator)

| pre-Wikipedia (Koningstein et al., 2003{4),

ESA (2007), Wiki-linking (Milne and Witten, 2008), etc.

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Solution Volume

Volume:
wisdom of one huge crowd!

I 3,152,091,432 individual links ( � half English, half parallel)
I 297,073,139 distinct concept-word pairs
I 175,100,788 unique strings
I 7,560,141 concepts

includes \ red" links to non-existent pages...
I canonicalize everything (especially redirects)

Wikipedia's coverage is extensive (and growing)
I extrinsic quantity ! quality
I not intrinsic quality (main di�erentiator)

| pre-Wikipedia (Koningstein et al., 2003{4),

ESA (2007), Wiki-linking (Milne and Witten, 2008), etc.

http://wikipapers.referata.com/wiki/List of datasets

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 8 / 21



Football Forward

Football: Forward

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 9 / 21



Football Forward

Football: Forward

44,984 | Association football

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 9 / 21



Football Forward

Football: Forward

44,984 | Association football

23,373 | American football

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 9 / 21



Football Back

Football: Back

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football
I soccer

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football
I soccer
I association football

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football
I soccer
I association football
I f�utbol
I futbol
I Fu�ball
I futebol

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football
I soccer
I association football
I f�utbol
I futbol
I Fu�ball
I futebol

American football

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football
I soccer
I association football
I f�utbol
I futbol
I Fu�ball
I futebol

American football
I American football

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football
I soccer
I association football
I f�utbol
I futbol
I Fu�ball
I futebol

American football
I American football
I f�utbol americano

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Football Back

Football: Back

Association football
I soccer
I association football
I f�utbol
I futbol
I Fu�ball
I futebol

American football
I American football
I f�utbol americano
I football am�ericain

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 10 / 21



Entities Ambiguity

NamedEntities: Highly Ambiguous

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 11 / 21



Entities Ambiguity

NamedEntities: Highly Ambiguous

people named after other people

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 11 / 21



Entities Ambiguity

NamedEntities: Highly Ambiguous

people named after other people

places named after other places

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 11 / 21



Entities Ambiguity

NamedEntities: Highly Ambiguous

people named after other people

places named after other places

people named after places where they are from

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 11 / 21



Entities Ambiguity

NamedEntities: Highly Ambiguous

people named after other people

places named after other places

people named after places where they are from

places named after people who founded them

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 11 / 21



Entities Ambiguity

NamedEntities: Highly Ambiguous

people named after other people

places named after other places

people named after places where they are from

places named after people who founded them

organizations named after people or places

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 11 / 21



Entities Ambiguity

NamedEntities: Highly Ambiguous

people named after other people

places named after other places

people named after places where they are from

places named after people who founded them

organizations named after people or places

organizations become places...

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 11 / 21



Entities Example

NamedEntities: Example | Stanford

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC

10. Bank of the West Classic 1.0 |

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC

10. Bank of the West Classic 1.0 |
11. Stanford, Illinois 0.9 LOC

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC

10. Bank of the West Classic 1.0 |
11. Stanford, Illinois 0.9 LOC
12. Leland Stanford 0.9 PER

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC

10. Bank of the West Classic 1.0 |
11. Stanford, Illinois 0.9 LOC
12. Leland Stanford 0.9 PER
13. Charles Villiers Stanford 0.8 PER

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC

10. Bank of the West Classic 1.0 |
11. Stanford, Illinois 0.9 LOC
12. Leland Stanford 0.9 PER
13. Charles Villiers Stanford 0.8 PER
14. Stanford, New York 0.8 LOC

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Example

NamedEntities: Example | Stanford
1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 |
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 |
6. Stanford Cardinal men's basketball 2.0 ORG
7. Stanford prison experiment 2.0 |
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC

10. Bank of the West Classic 1.0 |
11. Stanford, Illinois 0.9 LOC
12. Leland Stanford 0.9 PER
13. Charles Villiers Stanford 0.8 PER
14. Stanford, New York 0.8 LOC
15. Stanford, Bedfordshire 0.8 LOC

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 12 / 21



Entities Evaluation

NamedEntities: Objective Evaluation

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...
I beats the median entry in all competitions! (so far)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...
I beats the median entry in all competitions! (so far)
I tops most entries with a simple additional heuristic

(Chang et al., 2010)

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...
I beats the median entry in all competitions! (so far)
I tops most entries with a simple additional heuristic

(Chang et al., 2010)

abstract away sheer engineering e�ort

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...
I beats the median entry in all competitions! (so far)
I tops most entries with a simple additional heuristic

(Chang et al., 2010)

abstract away sheer engineering e�ort
I let research focus on context-sensitive techniques

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...
I beats the median entry in all competitions! (so far)
I tops most entries with a simple additional heuristic

(Chang et al., 2010)

abstract away sheer engineering e�ort
I let research focus on context-sensitive techniques
I machine learning

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...
I beats the median entry in all competitions! (so far)
I tops most entries with a simple additional heuristic

(Chang et al., 2010)

abstract away sheer engineering e�ort
I let research focus on context-sensitive techniques
I machine learning, linguistic features

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Entities Evaluation

NamedEntities: Objective Evaluation
entity linking (TAC-KBP)

I task: disambiguate entity mentions in text,
by linking to appropriate Wikipedia article
| e.g., George Bush junior versus senior...

dictionary baseline: simple look-ups (as MFS in WSD)
I return highest scoring concept for every string mention
I no learning, ignores context, not language-speci�c...
I beats the median entry in all competitions! (so far)
I tops most entries with a simple additional heuristic

(Chang et al., 2010)

abstract away sheer engineering e�ort
I let research focus on context-sensitive techniques
I machine learning, linguistic features, etc.

Spitkovsky and Chang (Stanford/Google) Cross-Lingual Concepts LREC (2012-05-25) 13 / 21



Engineering Words to Concepts

From Words to Concepts and Back:

Examples:
word sense disambiguation

named entity recognition
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Examples (Generation):
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Engineering Modularity and Abstraction

From Words to Concepts and Back:

Comes up in IR and NLP all the time!
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From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

Dictionary modules : stubs.

Interface is conditional probabilities :
| P(concept j words); and P(words j concept).

Conceptually trivial platform (hides engineering/systems details) .
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5. carbonated beverages 0.3
6. non-alcoholic 0.2
7. soft 0.1
8. pop 0.1
9. carbonated soft drink 0.1

10. aerated water 0.1

Restricted to English Wikipedia (and hence missing 2/3 of the data) .
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P̂(URL j s) URL (and Associated Scores)
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0.0169492 bushbaby w:2/5

0.00847458 Lesser bushbaby W:1/111 W08 W09 WDB

0.00847458 bushbabies c t w:1/5

README�le has (much) more about the features;

More than half the paper is detailed examples...
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| earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafs ky

cleaner �ltered English dictionary, designed for precision

To be released soon! | by A. Subramanya, S. Singh, F. Pereira a nd A. McCallum

We hope you will �nd creative uses for these! :)
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Conclusion Thanks!

Thanks!

Yet in each word some concept there must be...

Quite true! But don't torment yourself too anxiously;
For at the point where concepts fail,
At the right time a word is thrust in there.

| Mephistopheles, in Goethe's Faust (Part I, Scene III,

as translated by G.M. Priest)

http://www.levity.com/alchemy/faust05.html
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Conclusion Questions?

Thanks!

Any questions?
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