A Cross-Lingual Dictionary for English Wikipedia Concepts

Valentin I. Spitkovsky

with Angel X. Chang

Stanford University / Google Inc.
From Words to Concepts and Back:
From Words to Concepts and Back:
Dictionaries for Linking Text, Entities and Ideas
From **Words** to Concepts and Back:

Dictionaries for Linking **Text**, Entities and Ideas
From Words to **Concepts** and Back:

Dictionaries for Linking Text, **Entities** and **Ideas**
From Words to Concepts and Back:
Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...
— from Goethe’s Faust
From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

— from Goethe’s *Faust*

Example:
From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

— from Goethe’s *Faust*

Example:

- word sense disambiguation
From Words to Concepts and Back:
Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...
— from Goethe’s Faust

Example:

- word sense disambiguation

football
From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...
— from Goethe’s *Faust*

Example:

- word sense disambiguation

football
From Words to Concepts and Back:
Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...
— from Goethe’s *Faust*

Example:
- word sense disambiguation

football
Problem Space:

Problem Space:
Problem Space:

- words:
Problem Space:

- words: raw, unstructured natural language representation
Problem Space:

- words: raw, unstructured natural language representation
 - low-level (high-dimensional)
Problem Space:

- words: raw, unstructured natural language representation
 - low-level (high-dimensional)

- concepts:
Problem Space:

- words: raw, unstructured natural language representation
 - low-level (high-dimensional)

- concepts: concrete, structured organization of knowledge
Problem Space:

- **words**: raw, unstructured natural language representation
 - low-level (high-dimensional)

- **concepts**: concrete, structured organization of knowledge
 - Wikipedia articles
Problem Space:

- **words**: raw, unstructured natural language representation
 - low-level (high-dimensional)

- **concepts**: concrete, structured organization of knowledge
 - Wikipedia articles, as in explicit semantic analysis (ESA)
 (Gabrilovich and Markovitch, 2007)
Problem Space:

- **words**: raw, unstructured natural language representation
 - low-level (high-dimensional)

- **concepts**: concrete, structured organization of knowledge
 - Wikipedia articles, as in explicit semantic analysis (ESA) (Gabrilovich and Markovitch, 2007)

- **or coarse categories**
Problem Space:

- words: raw, unstructured natural language representation
 - low-level (high-dimensional)

- concepts: concrete, structured organization of knowledge
 - Wikipedia articles, as in explicit semantic analysis (ESA) (Gabrilovich and Markovitch, 2007)

- or coarse categories
 - high-level (low-dimensional) representation
Problem Space:

- **words**: raw, unstructured natural language representation
 - *low-level* (high-dimensional)

- **concepts**: concrete, structured organization of knowledge
 - Wikipedia articles, as in explicit semantic analysis (ESA) (Gabrilovich and Markovitch, 2007)
 - or coarse categories
 - *high-level* (low-dimensional) representation
 - e.g., aggregation via Wikipedia’s **hierarchical structure**
Connection:
Connection:

Leech’s main academic interests are: English grammar; ... Corpus-based natural language processing by computer
Connection:

Leech’s main academic interests are: English grammar; ... Corpus-based natural language processing by computer
Leech’s main academic interests are: English grammar; ... Corpus-based natural language processing by computer
Connection:

Leech’s main academic interests are: English grammar; ...

Corpus-based natural language processing by computer

He is also a computational linguist who...
Connection:

Leech’s main academic interests are: English grammar; ...

Corpus-based natural language processing by computer

He is also a computational linguist who...
Connection:

Leech’s main academic interests are: English grammar; ...

Corpus-based natural language processing by computer

He is also a *computational linguist* who...
Connection:

Leech’s main academic interests are: English grammar; ...

Corpus-based natural language processing by computer

He is also a computational linguist who...
Leech’s main academic interests are: English grammar; ... Corpus-based natural language processing by computer

He is also a computational linguist who...
Leech’s main academic interests are: English grammar; ... Corpus-based natural language processing by computer

He is also a computational linguist who...
Solution:
Solution:

- anchor-texts are pretty good descriptors of pages
 (Manning, Raghavan and Schütze, 2008; Ch. 21)
Solution:

- anchor-texts are pretty good descriptors of pages
 (Manning, Raghavan and Schütze, 2008; Ch. 21)

- collect all anchor-text from each article’s incoming links
Solution:

- anchor-texts are pretty good descriptors of pages
 (Manning, Raghavan and Schütze, 2008; Ch. 21)

- collect all anchor-text from each article’s incoming links

\[\{(\text{concept}, \text{words}) \mapsto \text{count}\} \]
Solution:

- anchor-texts are pretty good descriptors of pages
 (Manning, Raghavan and Schütze, 2008; Ch. 21)

- collect all anchor-text from each article’s incoming links

\[
\hat{P}(\text{concept} \mid \text{words}) = \frac{\text{count}(\text{concept, words})}{\sum \text{count}(\ast, \text{words})}
\]
Solution:

- anchor-texts are pretty good descriptors of pages

 (Manning, Raghavan and Schütze, 2008; Ch. 21)

- collect all anchor-text from each article’s incoming links

\[
\hat{P}(\text{concept} | \text{words}) = \frac{\text{count}((\text{concept}, \text{words}))}{\sum \text{count}(\ast, \text{words})}
\]

\[
\hat{P}(\text{words} | \text{concept}) = \frac{\text{count}((\text{concept}, \text{words}))}{\sum \text{count}(\text{concept}, \ast)}
\]
Types:

Computational_linguistics
Types:

Computational_linguistics

inter-Wikipedia links:
Types:

Computational_linguistics

Inter-Wikipedia links:

Geoffrey_Leech
Types:

Computational_linguistics

1. **inter-Wikipedia links:**

Geoffrey_Leech

Leech’s main academic interests are: English grammar;
... Corpus-based natural language processing by computer
Types:

1. **inter-Wikipedia links:**

 Leech’s main academic interests are: English grammar;
 ... Corpus-based natural language processing by computer

2. **external links:**
Types:

- Computational linguistics

1. inter-Wikipedia links:
 - Geoffrey_Leech

Leech’s main academic interests are: English grammar; ... Corpus-based natural language processing by computer

2. external links: www.culinaryanthropologist.org/about.html
Types:

1. **inter-Wikipedia links:**

 Leech’s main academic interests are: English grammar; ... Corpus-based natural language processing by computer

2. **external links:**

 www.culinaryanthropologist.org/about.html

Matt eats very well. He is also a computational linguist who takes time off from the research he usually does for culinary road trips and other adventures.
Cross-lingual Examples:

Computational_linguistics
Cross-lingual Examples:

Computational_linguistics

anchor-texts of links into parallel Wikipedia pages:
Cross-lingual Examples:

- Computational_linguistics

Anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik
Cross-lingual Examples:

Computational_linguistics

anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik
- fr/Linguistique_informatique
Cross-lingual Examples:

- de/Computerlinguistik
- fr/Linguistique_informatique
- sv/Språkteknologi

Anchor-texts of links into parallel Wikipedia pages:
Cross-lingual Examples:

Computational_linguistics

3 anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik
- fr/Linguistique_informatique
- sv/Språkteknologi

4 ... titles and other relevant strings!
Cross-lingual Examples:

- anchor-texts of links into parallel Wikipedia pages:
 - de/Computerlinguistik
 - fr/Linguistique_informatique
 - sv/Språkteknologi

- titles and other relevant strings! (these don’t count)
Volume:

Cross-Lingual Concepts

Spitkovsky and Chang (Stanford/Google)
Volume:

- wisdom of one huge crowd!
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (\sim half English, half parallel)
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (≈ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (~ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
Volume:

- **wisdom of one huge crowd!**
 - 3,152,091,432 individual links (≈ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (≈ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes “red” links to non-existent pages...
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (∼ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes “red” links to non-existent pages...
 - canonicalize everything (especially redirects)
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (~ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes “red” links to non-existent pages...
 - canonicalize everything (especially redirects)

- Wikipedia’s coverage is extensive (and growing)
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (~ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes “red” links to non-existent pages...
 - canonicalize everything (especially redirects)

- Wikipedia’s coverage is extensive (and growing)
 - extrinsic quantity → quality
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links \((\sim \text{half English, half parallel})\)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes "red" links to non-existent pages...
 - canonicalize everything (especially redirects)

- Wikipedia’s coverage is extensive (and growing)
 - extrinsic quantity \(\rightarrow\) quality
 - *not* intrinsic quality (main differentiator)
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (~ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes “red” links to non-existent pages...
 - canonicalize everything (especially redirects)

- Wikipedia’s coverage is extensive (and growing)
 - extrinsic quantity → quality
 - not intrinsic quality (main differentiator)
 — pre-Wikipedia (Koningstein et al., 2003–4)
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (≈ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes “red” links to non-existent pages...
 - canonicalize everything (especially redirects)

- Wikipedia’s coverage is extensive (and growing)
 - extrinsic quantity → quality
 - not intrinsic quality (main differentiator)
 - pre-Wikipedia (Koningstein et al., 2003–4), ESA (2007), Wiki-linking (Milne and Witten, 2008), etc.
Volume:

- wisdom of one huge crowd!
 - 3,152,091,432 individual links (~ half English, half parallel)
 - 297,073,139 distinct concept-word pairs
 - 175,100,788 unique strings
 - 7,560,141 concepts

- includes “red” links to non-existent pages...
 - canonicalize everything (especially redirects)

- Wikipedia’s coverage is extensive (and growing)
 - extrinsic quantity → quality
 - not intrinsic quality (main differentiator)
 — pre-Wikipedia (Koningstein et al., 2003–4),
 ESA (2007), Wiki-linking (Milne and Witten, 2008), etc.

http://wikipapers.referata.com/wiki/List_of_datasets
Football: Forward
Football: Forward

- 44,984 — Association football
Football: Forward

- 44,984 — Association football

- 23,373 — American football
Football: Back
Football: Back

- Association football
Football: Back

- Association football
 - soccer
Association football

- soccer
- association football
Football: Back

- Association football
 - soccer
 - association football
 - fútbol
 - futbol
 - Fußball
 - futebol
Football: Back

- **Association football**
 - soccer
 - association football
 - fútbol
 - futbol
 - Fußball
 - futebol

- **American football**
Football: Back

- **Association football**
 - soccer
 - association football
 - fútbol
 - futbol
 - Fußball
 - futebol

- **American football**
 - American football
Association football
- soccer
- association football
- fútbol
- futbol
- Fußball
- futebol

American football
- American football
- fútbol americano
Football: Back

- Association football
 - soccer
 - association football
 - fútbol
 - futbol
 - Fußball
 - futebol

- American football
 - American football
 - fútbol americano
 - football américain
Named Entities: Highly Ambiguous
Named Entities: Highly Ambiguous

- people named after other people
Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
Named Entities: Highly Ambiguous

- **people** named after other **people**
- **places** named after other **places**
- **people** named after **places** where they are from
Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
- people named after places where they are from
- places named after people who founded them
Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
- people named after places where they are from
- places named after people who founded them
- organizations named after people or places
Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
- people named after places where they are from
- places named after people who founded them
- organizations named after people or places
- organizations become places...
Named Entities: Example — Stanford
Named Entities: Example

1. Stanford University

— Stanford

50.3 ORG
Named Entities: Example

1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 —
Named Entities: Example

1. Stanford University
 - 50.3 ORG
2. Stanford (disambiguation)
 - 7.7 —
3. Stanford, California
 - 7.5 LOC
Named Entities: Example

<table>
<thead>
<tr>
<th></th>
<th>Stanford University</th>
<th>50.3</th>
<th>ORG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Stanford (disambiguation)</td>
<td>7.7</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Stanford, California</td>
<td>7.5</td>
<td>LOC</td>
</tr>
<tr>
<td>4</td>
<td>Stanford Cardinal football</td>
<td>5.7</td>
<td>ORG</td>
</tr>
<tr>
<td></td>
<td>Named Entities: Example</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Stanford University 50.3 ORG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Stanford (disambiguation) 7.7 —</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Stanford, California 7.5 LOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Stanford Cardinal football 5.7 ORG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Stanford Cardinal 4.1 —</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Named Entities: Example

<table>
<thead>
<tr>
<th></th>
<th>Entity</th>
<th>Score</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stanford University</td>
<td>50.3</td>
<td>ORG</td>
</tr>
<tr>
<td>2</td>
<td>Stanford (disambiguation)</td>
<td>7.7</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Stanford, California</td>
<td>7.5</td>
<td>LOC</td>
</tr>
<tr>
<td>4</td>
<td>Stanford Cardinal football</td>
<td>5.7</td>
<td>ORG</td>
</tr>
<tr>
<td>5</td>
<td>Stanford Cardinal</td>
<td>4.1</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Stanford Cardinal men’s basketball</td>
<td>2.0</td>
<td>ORG</td>
</tr>
<tr>
<td></td>
<td>Named Entities: Example — Stanford</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Stanford University</td>
<td>50.3</td>
<td>ORG</td>
</tr>
<tr>
<td>2</td>
<td>Stanford (disambiguation)</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Stanford, California</td>
<td>7.5</td>
<td>LOC</td>
</tr>
<tr>
<td>4</td>
<td>Stanford Cardinal football</td>
<td>5.7</td>
<td>ORG</td>
</tr>
<tr>
<td>5</td>
<td>Stanford Cardinal</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Stanford Cardinal men’s basketball</td>
<td>2.0</td>
<td>ORG</td>
</tr>
<tr>
<td>7</td>
<td>Stanford prison experiment</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>
Named Entities: Stanford

<table>
<thead>
<tr>
<th></th>
<th>Entity</th>
<th>Score</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stanford University</td>
<td>50.3</td>
<td>ORG</td>
</tr>
<tr>
<td>2</td>
<td>Stanford (disambiguation)</td>
<td>7.7</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Stanford, California</td>
<td>7.5</td>
<td>LOC</td>
</tr>
<tr>
<td>4</td>
<td>Stanford Cardinal football</td>
<td>5.7</td>
<td>ORG</td>
</tr>
<tr>
<td>5</td>
<td>Stanford Cardinal</td>
<td>4.1</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Stanford Cardinal men’s basketball</td>
<td>2.0</td>
<td>ORG</td>
</tr>
<tr>
<td>7</td>
<td>Stanford prison experiment</td>
<td>2.0</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Stanford, Kentucky</td>
<td>1.7</td>
<td>LOC</td>
</tr>
</tbody>
</table>
Named Entities: Example

<table>
<thead>
<tr>
<th>Rank</th>
<th>Entity</th>
<th>Score</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stanford University</td>
<td>50.3</td>
<td>ORG</td>
</tr>
<tr>
<td>2</td>
<td>Stanford (disambiguation)</td>
<td>7.7</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Stanford, California</td>
<td>7.5</td>
<td>LOC</td>
</tr>
<tr>
<td>4</td>
<td>Stanford Cardinal football</td>
<td>5.7</td>
<td>ORG</td>
</tr>
<tr>
<td>5</td>
<td>Stanford Cardinal</td>
<td>4.1</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Stanford Cardinal men’s basketball</td>
<td>2.0</td>
<td>ORG</td>
</tr>
<tr>
<td>7</td>
<td>Stanford prison experiment</td>
<td>2.0</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Stanford, Kentucky</td>
<td>1.7</td>
<td>LOC</td>
</tr>
<tr>
<td>9</td>
<td>Stanford, Norfolk</td>
<td>1.0</td>
<td>LOC</td>
</tr>
</tbody>
</table>

— Stanford
Named Entities: Example

1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 —
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 —
6. Stanford Cardinal men’s basketball 2.0 ORG
7. Stanford prison experiment 2.0 —
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC
10. Bank of the West Classic 1.0 —
Named Entities: Example

1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 —
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 —
6. Stanford Cardinal men’s basketball 2.0 ORG
7. Stanford prison experiment 2.0 —
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC
10. Bank of the West Classic 1.0 —
11. Stanford, Illinois 0.9 LOC

Spitkovsky and Chang (Stanford/Google)
Cross-Lingual Concepts
LREC (2012-05-25)
Named Entities: Example

1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 —
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 —
6. Stanford Cardinal men’s basketball 2.0 ORG
7. Stanford prison experiment 2.0 —
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC
10. Bank of the West Classic 1.0 —
11. Stanford, Illinois 0.9 LOC
12. Leland Stanford 0.9 PER
Named Entities: Example

1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 —
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 —
6. Stanford Cardinal men’s basketball 2.0 ORG
7. Stanford prison experiment 2.0 —
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC
10. Bank of the West Classic 1.0 —
11. Stanford, Illinois 0.9 LOC
12. Leland Stanford 0.9 PER
13. Charles Villiers Stanford 0.8 PER
Named Entities: Example — Stanford

<table>
<thead>
<tr>
<th>Rank</th>
<th>Entity</th>
<th>Score</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stanford University</td>
<td>50.3</td>
<td>ORG</td>
</tr>
<tr>
<td>2</td>
<td>Stanford (disambiguation)</td>
<td>7.7</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Stanford, California</td>
<td>7.5</td>
<td>LOC</td>
</tr>
<tr>
<td>4</td>
<td>Stanford Cardinal football</td>
<td>5.7</td>
<td>ORG</td>
</tr>
<tr>
<td>5</td>
<td>Stanford Cardinal</td>
<td>4.1</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Stanford Cardinal men’s basketball</td>
<td>2.0</td>
<td>ORG</td>
</tr>
<tr>
<td>7</td>
<td>Stanford prison experiment</td>
<td>2.0</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Stanford, Kentucky</td>
<td>1.7</td>
<td>LOC</td>
</tr>
<tr>
<td>9</td>
<td>Stanford, Norfolk</td>
<td>1.0</td>
<td>LOC</td>
</tr>
<tr>
<td>10</td>
<td>Bank of the West Classic</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>Stanford, Illinois</td>
<td>0.9</td>
<td>LOC</td>
</tr>
<tr>
<td>12</td>
<td>Leland Stanford</td>
<td>0.9</td>
<td>PER</td>
</tr>
<tr>
<td>13</td>
<td>Charles Villiers Stanford</td>
<td>0.8</td>
<td>PER</td>
</tr>
<tr>
<td>14</td>
<td>Stanford, New York</td>
<td>0.8</td>
<td>LOC</td>
</tr>
</tbody>
</table>
Named Entities: Example — Stanford

1. Stanford University 50.3 ORG
2. Stanford (disambiguation) 7.7 —
3. Stanford, California 7.5 LOC
4. Stanford Cardinal football 5.7 ORG
5. Stanford Cardinal 4.1 —
6. Stanford Cardinal men’s basketball 2.0 ORG
7. Stanford prison experiment 2.0 —
8. Stanford, Kentucky 1.7 LOC
9. Stanford, Norfolk 1.0 LOC
10. Bank of the West Classic 1.0 —
11. Stanford, Illinois 0.9 LOC
12. Leland Stanford 0.9 PER
13. Charles Villiers Stanford 0.8 PER
14. Stanford, New York 0.8 LOC
15. Stanford, Bedfordshire 0.8 LOC
Named Entities: Objective Evaluation
Named Entities: Objective Evaluation

- entity linking (TAC-KBP)
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text

(TAC-KBP)
Named Entities: Objective Evaluation

- entity linking
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article

(TAC-KBP)
Named Entities: Objective Evaluation

- entity linking

 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
Named Entities: Objective Evaluation

- **entity linking** (TAC-KBP)
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
 - beats the median entry in all competitions! (so far)
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline: simple look-ups** (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
 - beats the median entry in all competitions! (so far)
 - tops most entries with a simple additional heuristic

(TAC-KBP)

(Chang et al., 2010)
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
 - beats the median entry in all competitions! (so far)
 - tops most entries with a simple additional heuristic (Chang et al., 2010)

- abstract away sheer engineering effort
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
 - beats the median entry in all competitions! (so far)
 - tops most entries with a simple additional heuristic

- **abstract** away sheer engineering effort
 - let research focus on **context-sensitive** techniques
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
 - beats the median entry in all competitions! (so far)
 - tops most entries with a simple additional heuristic
 - (Chang et al., 2010)

- **abstract** away sheer engineering effort
 - let research focus on context-sensitive techniques
 - machine learning
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
 - beats the median entry in all competitions! (so far)
 - tops most entries with a simple additional heuristic (Chang et al., 2010)

- **abstract** away sheer engineering effort
 - let research focus on context-sensitive techniques
 - machine learning, linguistic features
Named Entities: Objective Evaluation

- **entity linking**
 - task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article — e.g., George Bush junior versus senior...

- **dictionary baseline**: simple look-ups (as MFS in WSD)
 - return highest scoring concept for every string mention
 - no learning, ignores context, not language-specific...
 - beats the median entry in all competitions! (so far)
 - tops most entries with a simple additional heuristic (Chang et al., 2010)

- **abstract** away sheer engineering effort
 - let research focus on context-sensitive techniques
 - machine learning, linguistic features, etc.
From Words to Concepts and Back:

Examples:
- word sense disambiguation
- named entity recognition
From Words to Concepts and Back:

Examples:
- word sense disambiguation
- named entity recognition
- entity linking
From Words to Concepts and Back:

Examples:
- word sense disambiguation
- named entity recognition
- entity linking
- coreference resolution
From Words to Concepts and Back:

Examples:
- word sense disambiguation
- named entity recognition
- entity linking
- coreference resolution
- web search
From Words to Concepts and Back:

Examples (Recognition):
- word sense disambiguation
- named entity recognition
- entity linking
- coreference resolution
- web search
From Words to Concepts and Back:

— inverse problem —

Examples (Generation):
From Words to Concepts and Back:

— inverse problem —

Examples (Generation):
 - word synonyms
From Words to Concepts and Back:

— inverse problem —

Examples (Generation):
- word synonyms
- paraphrasing
From Words to Concepts and Back:

— inverse problem —

Examples (Generation):
- word synonyms
- paraphrasing
- summarization
From Words to Concepts and Back:

— inverse problem —

Examples (Generation):
- word synonyms
- paraphrasing
- summarization
- translation
From Words to Concepts and Back:

— inverse problem —

Examples (Generation):
- word synonyms
- paraphrasing
- summarization
- translation
- keyword targeting
From Words to Concepts and Back:

Comes up in IR and NLP all the time!
From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering:
From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.
From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.
From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.
- **Interface** is conditional **probabilities**:
From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.
- Interface is conditional probabilities:
 \[P(\text{concept} \mid \text{words}) \];
From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- **Dictionary modules**: stubs.

- **Interface is conditional probabilities**:
 \[P(\text{concept} \mid \text{words}); \text{ and } P(\text{words} \mid \text{concept}). \]
From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.

- Interface is conditional probabilities:
 \[P(\text{concept} \mid \text{words}); \text{and} \ P(\text{words} \mid \text{concept}). \]

Conceptually trivial platform (hides engineering/systems details).
Another Example: Soft_drink
Another Example: Soft_drink

- Normalized (for capitalization, pluralization and punctuation differences).
Another Example: Soft_drink

- Normalized (for capitalization, pluralization and punctuation differences).

1. soft drink 28.6
2. soda 5.5
3. soda pop 0.9
4. fizzy drinks 0.6
5. carbonated beverages 0.3
6. non-alcoholic 0.2
7. soft 0.1
8. pop 0.1
9. carbonated soft drink 0.1
10. aerated water 0.1
Another Example: — Soft_drink

- Normalized (for capitalization, pluralization and punctuation differences).

1. soft drink 28.6
2. soda 5.5
3. soda pop 0.9
4. fizzy drinks 0.6
5. carbonated beverages 0.3
6. non-alcoholic 0.2
7. soft 0.1
8. pop 0.1
9. carbonated soft drink 0.1
10. aerated water 0.1

- Restricted to English Wikipedia (and hence missing 2/3 of the data).
WYSIWYG Examples: — see paper and data
WYSIWYG Examples: — see paper and data

- A small, manageable one: $s = \textit{bushbabies}$:
WYSIWYG Examples: — see paper and data

- A small, manageable one: \(s \rightarrow \text{bushbabies} \):

<table>
<thead>
<tr>
<th>(\hat{P}(\text{URL} \mid s))</th>
<th>URL</th>
<th>(and Associated Scores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.966102</td>
<td>Galago</td>
<td>D W:110/111 W08 W09 WDB w:2/5 w’:2/2</td>
</tr>
<tr>
<td>0.0169492</td>
<td>bushbaby</td>
<td>w:2/5</td>
</tr>
<tr>
<td>0.00847458</td>
<td>Lesser_bushbaby</td>
<td>W:1/111 W08 W09 WDB</td>
</tr>
<tr>
<td>0.00847458</td>
<td>bushbabies</td>
<td>c t w:1/5</td>
</tr>
</tbody>
</table>
WYSIWYG Examples: — see paper and data

- A small, manageable one: \(s = \text{bushbabies} \):

<table>
<thead>
<tr>
<th>(\hat{P}(\text{URL} \mid s))</th>
<th>URL</th>
<th>(and Associated Scores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.966102</td>
<td>Galago</td>
<td>D W:110/111 W08 W09 WDB w:2/5 w’:2/2</td>
</tr>
<tr>
<td>0.0169492</td>
<td>bushbaby</td>
<td>w:2/5</td>
</tr>
<tr>
<td>0.00847458</td>
<td>Lesser_bushbaby</td>
<td>W:1/111 W08 W09 WDB</td>
</tr>
<tr>
<td>0.00847458</td>
<td>bushbabies</td>
<td>c t w:1/5</td>
</tr>
</tbody>
</table>

- README file has (much) more about the features;
WYSIWYG Examples: — see paper and data

- A small, manageable one: $s = \text{bushbabies}$:

<table>
<thead>
<tr>
<th>$\hat{P}(\text{URL} \mid s)$</th>
<th>URL</th>
<th>(and Associated Scores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.966102</td>
<td>Galago</td>
<td>D W:110/111 W08 W09 WDB w:2/5 w’:2/2</td>
</tr>
<tr>
<td>0.0169492</td>
<td>bushbaby</td>
<td></td>
</tr>
<tr>
<td>0.00847458</td>
<td>Lesser_bushbaby</td>
<td>W:1/111 W08 W09 WDB</td>
</tr>
<tr>
<td>0.00847458</td>
<td>bushbabies</td>
<td>c t w:1/5</td>
</tr>
</tbody>
</table>

- README file has (much) more about the features;
- More than half the paper is detailed examples...
Resource:
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
 - but... lots of features to help filter out the noise!
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
 - but... lots of features to help filter out the noise!
 - suitable for use with machine learning techniques
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
 - but... lots of features to help filter out the noise!
 - suitable for use with machine learning techniques

http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall

- e.g., “click here” or “on Wikipedia”
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques

http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2

— earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky
Resource:

- **noisy unfiltered cross-lingual dictionary designed for recall**
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
 - but… lots of features to help filter out the noise!
 - suitable for use with machine learning techniques

http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2

— earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky

- **cleaner filtered English dictionary, designed for precision**
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
 - but... lots of features to help filter out the noise!
 - suitable for use with machine learning techniques

http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2
 — earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky

- cleaner filtered English dictionary, designed for precision

To be released soon!
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
 - but... lots of features to help filter out the noise!
 - suitable for use with machine learning techniques

http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2

— earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky

- cleaner filtered English dictionary, designed for precision

To be released soon! — by A. Subramanya, S. Singh, F. Pereira and A. McCallum
Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
 - e.g., “click here” or “on Wikipedia”
 - reconciliation of canonical URLs for non-existent pages
 - contradictory redirects (Wikipedia snapshots from different times)
 - but... lots of features to help filter out the noise!
 - suitable for use with machine learning techniques

http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2

— earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky

- cleaner filtered English dictionary, designed for precision

To be released soon! — by A. Subramanya, S. Singh, F. Pereira and A. McCallum

We hope you will find creative uses for these! :)

Thanks!

Yet in each word some concept there must be...

Quite true! But don’t torment yourself too anxiously; For at the point where concepts fail, At the right time a word is thrust in there.

— Mephistopheles, in Goethe’s *Faust* (Part I, Scene III, as translated by G.M. Priest)

http://www.levity.com/alchemy/faust05.html
Thanks!

Any questions?